МЕТОДЫ ГРАФОВОЙ РЕДУКЦИИ В МОДЕЛЯХ ХИМИЧЕСКОЙ КИНЕТИКИ

Авторы: 
А.Р. Герб, Е. Е. Девятых*, Г. А. Омарова
УДК: 
519.17+51-7
DOI: 
10.24412/2073-0667-2024-3-29-46
Аннотация: 

Работа посвящена исследованию и анализу графовых алгоритмов редукции в моделях хими­ческой кинетики. Проведено сравнительное исследование pyMARS на основе поддерживаемых методов DRG, DRGEP, PFA. Отражены «плюсы» и «минусы» программного пакета pyMARS.

Список литературы

  1. Ra Y., Reitz R. D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels // Combustion and Flame. 2008. V. 155. N 4. P. 713-738. [El. Res.]: https://doi.org/10.1016/j.combustflame.2008.05.002.
  2. Lu T., Law С. K. A directed relation graph method for mechanism reduction // Proc, of the Combustion Institute. 2005. V. 30, iss. 1. P. 1333-1341. DOL 10.1016/j.proci.2004.08.145.
  3. Pepiot-Desjardins P., Pitsch H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms // Combustion and Flame. 2008. V. 154. N 1-2. P. 67-81. DOL 10.1016/j.combustflame.2007.10.020.'
  4. Niemeyer К. E., Sung C.-J. On the importance of graph search algorithms for DRGEP-based mechanism reduction methods // Combustion and Flame. 2011. V. 158, iss. 8. P. 1439-1443. DOL 10.1016/j.combustflame.2010.12.010.
  5. Sun W., Chen Z., Gou X., Ju Y. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms // Combustion and Flame. 2010. V. 157. N 7. P. 1298-1307. DOL 10.1016/j.combustflame.2010.Оз'.ООб.
  6. Gao X., Yang S., Sun W. A global pathway selection algorithm for the reduction of detailed chemical kinetic mechanisms // Combustion and Flame. 2016. V. 167. P. 238-247. DOL 10.1016/j.combustflame. 2016.02.007.
  7. Niemeyer К. E., Sung C.-J., Raju M. P. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis // Combustion and Flame. 2010. V. 157. N 9. P. 1760-1770. DOL 10.1016/j.combustflame.2009.12.022.
  8. Rabitz H., Kramer M., Dacol D. Sensitivity analysis in chemical kinetics // Annual Review of Physical Chemistry. 1983. V. 34. N 1. P. 419-46L D01:10.1146/annurev.pc.34.100183.002223.
  9. Zheng X., Lu T., Law С. K. Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene // Proc, of the Combustion Institute. 2007. V. 31, iss. 1. P. 367-375. DOL 10.1016/j.proci.2006.07.182.
  10. Sankaran R., Hawkes E. R., Chen J. H., Lu T., Law С. K. Structure of a spatially developing turbulent lean methane — air bunsen flame // Proc, of the Combustion Institute. 2007. V. 31, iss. 1. P. 1291-1298. DOL 10.1016/j.proci.2006.08.025.
  11. Mauersberger G. ISSA (iterative screening and structure analysis) — a new reduction method and its application to the tropospheric cloud chemical mechanism RACM/CAPRAM2.4 // Atmospheric Environment. 2005. V. 39, iss. 23-24. P. 4341-4350. DOL 10.1016/j.atmosenv.2005.02.015.
  12. Pepiot-Desjardins P., Pitsch H. An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms // Combustion Theory and Modelling. 2008. V. 12, iss. 6. P. 1089­1108. DOL 10.1080/13647830802245177.
  13. Zeuch T., Moreac G., Ahmed S., Mauss F. A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction // Combustion and Flame. 2008. V. 155. P. 651­674. DOL 10.1016/j.combustflame.2008.05.007.
  14. Tosatto L., Bennett В. A. V., Smooke M. D. Comparison of different DRG-based methods for the skeletal reduction of JP-8 surrogate mechanisms // Combustion and Flame. 2013. V. 160. P. 1572-1582. [EL Res.]: https : / /doi . org/10.1016/j . combustf lame .2013.03.024.
  15. The Kinetic Pre-Processor (KPP). [El. Res.]: https://github.com/KineticPreProcessor/ KPP?tab=readme- оv-f ile.
  16. Lin H., Long M. S., Sander R., Sandu A., Yantosca R. M., Estrada L. A., et al. An adaptive auto-reduction solver for speeding up integration of chemical kinetics in atmospheric chemistry models: Implementation and evaluation in the Kinetic Pre-Processor (KPP) version 3.0.0. // J. of Adv. Modeling Earth Systems. 2023. V. 15. e2022MS003293. [EL Res.]: https://doi.org/10.1029/ 2022MS003293.
  17. [EL Res.]: https://www.opensmokepp.polimi.it/index.php.
  18. Stagni A., Cuoci A., Frassoldati A., Faravelli T., Ranzi E. Lumping and reduction of detailed kinetic schemes: An effective coupling // Indust. Engin. Chem. Res. 2014. V. 53, iss. 22. P. 9004-9016. DOL 10.1021/ie403272f.

     

  19. [El. Res.]: http://kintecus.com/index.htm.
  20. lanni J. С. Kintecus, Windows Version 6.01. 2017. [El. Res.]: www.kintecus.com.
  21. lanni J. C. A Comparison of the Bader — Deuflhard and the Cash — Karp Runge — Kutta Integrators for the GRI-MECH 3.0 model based on the chemical kinetics code kintecus // Comput. Fluid and Solid Mechanics. 2003 / K. J. Bathe (ed.). P. 1368-1372.
  22. [El. Res.]: https://github.com/Niemeyer-Research-Group/pyMARS.
  23. [El. Res.]: https://niemeyer-research-group.github.io/pyMARS.
  24. Niemeyer К. E., Mestas P. O., Clayton P. pyMARS: an open software package for reducing chemical kinetics models // 10th Meeting of the Western States Section of The Combustion Institute. Laramie, WY USA, 2017.
  25. Mestas III P. O., Clayton P., Niemeyer К. E. pyMARS: Automatically reducing chemical kinetic models in Python // J. of Open Source Software. 2019. V. 4, iss. 41. P. 1543. DOI: 10.21105.joss.01543.
  26. Mestas III P. O. Comparing chemical kinetic model reduction techniques using pyMARS //A THESIS submitted to Oregon State University University Honors College, 2020.
  27. Goodwin D. G., Moffat H. K., Speth R. L. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. [El. Res.]: http://www.cantera.org. Version 2.3.0. 2017.
  28. Lu T., Law С. K. Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane // Combustion and Flame. 2006. V. 144, iss. 1-2. P. 24-36. DOL 10.1016/j .combustflame.2005.02.015.
  29. Dijkstra E. W. A note on two problems in connexion with graphs // Numerische Mathematik. 1959. V. 1, iss. 1. P. 269-271. DOL 10.1007/bf01386390.
  30. Wagner D., Willhalm T. Speed-up techniques for shortest-path computations // STAGS 2007. Ed. by W. Thomas, P. Weil. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2007. V. 4393. P. 23-36. DOL10.1007/978-3-540-70918-3_3.
  31. Hagberg A. A., Schult D. A., Swart P. J. Exploring network structure, dynamics, and function using NetworkX // Proc, of the 7th Python in Science Conference. Ed. by G. Varoquaux, T. Vaught, J. Millman. Pasadena, GA USA, 2008. P. 11-15.
  32. The CRECK Modeling Group. Detailed kinetic mechanisms. [El. Res.]: http:// ere ckmodeling.chem.polimi.it/menu-kinetics/menu-kinetics-detailed-mechanisms/.

 

 

 

 

Ключевые слова: 
граф, редукция, модель химкинетики, DRG, DRGEP, PEA, pyMARS.
Номер журнала: 
3(64) 2024 г.
Год: 
2024
Адрес: 
Институт вычислительной математики и математической геофизики СО РАН, 630090, Новосибирск, Россия * Новосибирский государственный университет, 630090, Новосибирск, Россия
Библиографическая ссылка: 
Герб А. Р., Девятых Е. Е., Омарова Г. А. Методы графовой редукции в моделях химической кинетики //"Проблемы информатики", 2024, № 3, с.29-46. DOI: 10.24412/2073-0667-2024-3-29-46. - EDN: DBIOYQ