УЛУЧШЕНИЕ КАЧЕСТВА АЛГОРИТМА РЕКОМЕНДАТЕЛЬНОЙ СИСТЕМЫ С ПОМОЩЬЮ МЕТОДОВ АССОЦИАТИВНОГО АНАЛИЗА
EDN: ERYREM
В сфере развития CRM систем растет спрос на вспомогательные системы, реализующие методы и технологии интеллектуального анализа данных и машинного обучения (Data mining) и способные генерировать полезные знания из огромных массивов собранных в CRM данных. В статье приведены результаты разработки и исследования алгоритма рекомендательного сервиса CRM системы с применением методов ассоциативного анализа данных. Ранее авторами был разработан и реализован базовый вариант алгоритма рекомендательного сервиса, основанный на использовании методов кластерного анализа данных и коллаборативной фильтрации [1-2]. В новой версии алгоритма дополнительно используются методы ассоциативного анализа для формирования рекомендаций по выбору продуктов (услуг), что позволило увеличить точность рекомендательной системы (сервиса) по метрике F2 в среднем с 67,98 % до 81,24 % при несущественном увеличении времени выдачи рекомендаций (в среднем на 2,47 мс). Исследование и сравнение базовой и модифицированной версий алгоритма проводилось на данных страховых компаний, предоставленных компанией „ФБ Консалт“.