
PETSc
Portable, Extensible Toolkit for Scientific Computation

Mathematics and Computer Science Division
Argonne National Laboratory

June 14, 2017

4

PETScPETSc

PETSc Overview

5

PETSc OriginsPETSc Origins

PETSc was developed as a Platform for
Experimentation

We want to experiment with different

Models

Discretizations

Solvers

Algorithms

These boundaries are often blurred...

6

TimelineTimeline

1991 1995 2000 2005 2010

PETSc-1
MPI-1 MPI-2

PETSc-2 PETSc-3
Barry

Bill
Lois

Satish
Dinesh

Hong
Kris
Matt

Victor
Dmitry

Lisandro
Jed
Shri

Peter
Karl

7

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Architecture
tightly coupled (e.g. XT5, BG/P, Earth Simulator)

loosely coupled such as network of workstations

GPU clusters (many vector and sparse matrix kernels)

Software Environment
Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)

Any compiler

Usable from C, C++, Fortran 77/90, Python, and MATLAB

Real/complex, single/double/quad precision, 32/64-bit int

System Size
500B unknowns, 75% weak scalability on Jaguar (225k cores)
and Jugene (295k cores)

Same code runs performantly on a laptop

Free to everyone (BSD-style license), open development

8

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Philosophy: Everything has a plugin architecture

Vectors, Matrices, Coloring/ordering/partitioning algorithms

Preconditioners, Krylov accelerators

Nonlinear solvers, Time integrators

Spatial discretizations/topology

Example

Vendor supplies matrix format and associated preconditioner,
distributes compiled shared library.

Application user loads plugin at runtime, no source code in sight.

9

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Toolset

algorithms

(parallel) debugging aids

low-overhead profiling

Composability

try new algorithms by choosing from product space

composing existing algorithms (multilevel, domain decomposition,
splitting)

Experimentation

Impossible to pick the solver a priori

PETSc’s response: expose an algebra of composition

keep solvers decoupled from physics and discretization

10

PETScPETSc

Portable Extensible Toolkit for Scientific Computing
Computational Scientists

PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEO,
Columbia), PFLOTRAN (DOE), SHARP/UNIC (DOE)

Algorithm Developers (iterative methods and preconditioning)

Package Developers
SLEPc, TAO, Deal.II, Libmesh, FEniCS, PETSc-FEM, MagPar,
OOFEM, FreeCFD, OpenFVM

Funding
Department of Energy

SciDAC, ASCR ISICLES, MICS Program, INL Reactor Program
National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

Documentation and Support
Hundreds of tutorial-style examples

Hyperlinked manual, examples, and manual pages for all routines

Support from petsc-maint@mcs.anl.gov

petsc-maint@mcs.anl.gov

11

The Role of PETScThe Role of PETSc

Developing parallel, nontrivial PDE solvers that de-
liver high performance is still difficult and requires
months (or even years) of concentrated effort.

PETSc is a toolkit that can ease these difficulties and
reduce the development time, but it is not a black-box
PDE solver, nor a silver bullet.

— Barry Smith

12

The Role of PETScThe Role of PETSc

You want to think about how you decompose your
data structures, how you think about them globally.
[...]

If you were building a house, you’d start with a set of
blueprints that give you a picture of what the whole
house looks like. You wouldn’t start with a bunch of
tiles and say. “Well I’ll put this tile down on the ground,
and then I’ll find a tile to go next to it.”

But all too many people try to build their parallel pro-
grams by creating the smallest possible tiles and then
trying to have the structure of their code emerge from
the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive mak-
ing your code parallel.

— Bill Gropp
— http://www.rce-cast.com/Podcast/rce-28-mpich2.html

13

PETScPETSc

Obtaining PETSc

Linux Package Managers

Web: http://mcs.anl.gov/petsc, download tarball

Git: https://bitbucket.org/petsc/petsc

Mercurial: https://bitbucket.org/petsc/petsc-hg

Installing PETSc

$> cd /path/to/petsc/workdir
$> git clone \

https://bitbucket.org/petsc/petsc.git \
--branch master --depth 1

$> cd petsc

$> export PETSC_DIR=$PWD PETSC_ARCH=mpich-gcc-dbg
$> ./configure --with-cc=gcc --with-fc=gfortran

--download-f-blas-lapack
--download-{mpich,ml,hypre}

14

PETSc External PackagesPETSc External Packages

Most packages can be automatically
Downloaded

Configured and Built (in $PETSC_DIR/externalpackages)

Installed with PETSc

Currently works for
petsc4py

PETSc documentation utilities (Sowing, lgrind, c2html)

BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK

MPICH, MPE, OpenMPI

ParMetis, Chaco, Jostle, Party, Scotch, Zoltan

MUMPS, Spooles, SuperLU, SuperLU Dist, UMFPack, pARMS

PaStiX, BLOPEX, FFTW, SPRNG

Prometheus, HYPRE, ML, SPAI

Sundials

Triangle, TetGen, FIAT, FFC, Generator

HDF5, Boost

15

PETSc PyramidPETSc Pyramid

PETSc Structure

16

Flow Control for a PETSc ApplicationFlow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc

17

PETSc ObjectsPETSc Objects

Sample Code

Mat A;
PetscInt m,n,M,N;
MatCreate(comm,&A);
MatSetSizes(A,m,n,M,N); /* or PETSC_DECIDE */
MatSetOptionsPrefix(A,"foo_");
MatSetFromOptions(A);
/* Use A */
MatView(A,PETSC_VIEWER_DRAW_WORLD);
MatDestroy(A);

Remarks
Mat is an opaque object (pointer to incomplete type)

Assignment, comparison, etc, are cheap
What’s up with this “Options” stuff?

We will discuss this later...

18

Basic PetscObject UsageBasic PetscObject Usage

Every object in PETSc supports a basic interface

Function Operation
Create() create the object

Get/SetName() name the object
Get/SetType() set the implementation type

Get/SetOptionsPrefix() set the prefix for all options
SetFromOptions() customize object from command line

SetUp() perform other initialization
View() view the object

Destroy() cleanup object allocation

Also, all objects support the -help option.

19

PETSc OptionsPETSc Options

Ways to set options

Command line

Filename in the third argument of PetscInitialize()

˜/.petscrc

$PWD/.petscrc

$PWD/petscrc

PetscOptionsInsertFile()

PetscOptionsInsertString()

PETSC_OPTIONS environment variable

command line option -options_file [file]

20

PETSc OptionsPETSc Options

Example of Command Line Control

$> ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7

-snes_monitor -{ksp,snes}_converged_reason

-snes_view

$> ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7

-snes_monitor -{ksp,snes}_converged_reason

-snes_view -mat_view_draw -draw_pause 0.5

$> ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7

-snes_monitor -{ksp,snes}_converged_reason

-snes_view -mat_view_draw -draw_pause 0.5

-pc_type lu -pc_factor_mat_ordering_type natural

Use -help to find other ordering types

21

PETScPETSc

Application Integration

22

Application IntegrationApplication Integration

Be willing to experiment with algorithms

No optimality without interplay between physics and algorithmics

Adopt flexible, extensible programming

Algorithms and data structures not hardwired

Be willing to play with the real code

Toy models have limited usefulness

But make test cases that run quickly

If possible, profile before integration

Automatic in PETSc

23

Incorporating PETSc into Existing CodesIncorporating PETSc into Existing Codes

PETSc does not seize main(), does not control output

Propogates errors from underlying packages, flexible

Nothing special about MPI_COMM_WORLD

Can wrap existing data structures/algorithms
MatShell, PCShell, full implementations

VecCreateMPIWithArray()

MatCreateSeqAIJWithArrays()

Use an existing semi-implicit solver as a preconditioner

Usually worthwhile to use native PETSc data structures
unless you have a good reason not to

Uniform interfaces across languages
C, C++, Fortran 77/90, Python, MATLAB

Do not have to use high level interfaces (e.g. SNES, TS, DM)
but PETSc can offer more if you do, like MFFD and SNES Test

24

Integration StagesIntegration Stages

Version Control
It is impossible to overemphasize

Initialization
Linking to PETSc

Profiling
Profile before changing

Also incorporate command line processing

Linear Algebra
First PETSc data structures

Solvers
Very easy after linear algebra is integrated

25

PETScPETSc

PETSc and Accelerators

26

Typical PETSc OperationsTypical PETSc Operations

“Sparse” Linear Algebra

Sparse Matrix-Vector Operations (on-node)

Vector Operations (on and across nodes)

Only on small patches: Dense Operations (small matrices)

← Look at FLOPs Look at Mem-BW→

27

GPUs: DisillusionGPUs: Disillusion

Computing Architecture Schematic

Memory

PCI Express

CPU GPU

Memory

28

GPUs: DisillusionGPUs: Disillusion

Computing Architecture Schematic

PCI Express

8x20 GB/s2x12 GB/s

CPU GPU

8 GB/s, ~1us Latency

1000 GFLOPs SP
 250 GFLOPs DP

100 GFLOPs SP
 50 GFLOPs DP

Good for large FLOP-intensive tasks, high memory bandwidth

PCI-Express can be a bottleneck

� 10-fold speedups (usually) not backed by hardware

30

GPU Programming ApproachesGPU Programming Approaches

CUDA

Almost no additional code required

Vendor-lock

Relies on nvcc being available

OpenCL

Additional boilerplate code required (low-level API)

Broad hardware support (separate SDKs)

No more development effort from NVIDIA

Directives

Annotate existing code with OpenMP-style Pragmas

OpenACC and others

31

PETSc GPU SupportPETSc GPU Support

NVIDIA Cusp/Thrust/CUSPARSE

Compile PETSc with CUDA support

Use command line options to enable types, e.g.

-vec_type cusp -mat_type aijcusp

ViennaCL (OpenCL)

Compile PETSc with OpenCL support

Use command line options to enable types, e.g.

-vec_type viennacl -mat_type aijviennacl

Used for subsequent benchmarks

No change in application code required!

32

Which Accelerator is Right for Me?Which Accelerator is Right for Me?

Available Accelerators (Rough Sketch)

Name TFLOP/s RAM (GB) GB/s TDP Price
NVIDIA GTX 580 1.5/∼0.2 1.5-3.0 192 244 $500
NVIDIA GTX Titan 4.5/1.3 6.0 288 250 $∼1k
NVIDIA Tesla 2050 1.3/0.5 3.0-6.0 150 225 $∼2k
NVIDIA K20 3.5/1.2 5.0 200 220 $∼3k
AMD HD 7970 3.5/∼0.9 3.0-6.0 264 250 $550
AMD FirePro W9k 4.0/1.0 6.0 264 274 $∼3k
Intel Xeon Phi ∼2.0/∼1.0 8 320 225 $∼3k
Intel Xeon E5-264x 0.2/0.1 ∼64 ∼48 100 $∼1k

PETSc Considerations

Single precision performance doesn’t matter

Essentially all kernels memory bandwidth limited

Memory access patterns rather irregular

33

BenchmarksBenchmarks

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Vector Size

Vector Addition x = y + z

NVIDIA GTX 285, CUDA
NVIDIA GTX 285, OpenCL

AMD Radeon HD 7970, OpenCL
Intel Xeon Phi Beta, OpenCL

Intel Xeon Phi Beta, native
Intel Xeon X5550, OpenMP

Intel Xeon X5550, single-threaded

34

BenchmarksBenchmarks

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Unknowns

50 CG Iterations (2D FD for Poisson)

NVIDIA GTX 285, CUDA
NVIDIA GTX 285, OpenCL

AMD Radeon HD 7970, OpenCL
Intel Xeon Phi Beta, OpenCL

Intel Xeon Phi Beta, native
Intel Xeon X5550, OpenMP

Intel Xeon X5550, single-threaded

35

PETSc can help You

solve algebraic and DAE problems in your application area

rapidly develop efficient parallel code, can start from examples

develop new solution methods and data structures

debug and analyze performance

advice on software design, solution algorithms, and performance

petsc-{users,dev,maint}@mcs.anl.gov

You can help PETSc

report bugs and inconsistencies, or if you think there is a better way

tell us if the documentation is inconsistent or unclear

consider developing new algebraic methods as plugins, contribute if
your idea works

	Application Integration

