Векторные алгоритмы метода Монте-Карло с конечной трудоемкостью ¹

И.Н. Медведев

Институт вычислительной математики и математической геофизики СО РАН (Новосибирск), Новосибирский государственный университет (Новосибирск) е-mail: min@osmf.sscc.ru

Аннотация.

В работе изучается вопрос конечности трудоемкости весовых алгоритмов метода Монте-Карло для оценки линейных функционалов от решения системы интегральных уравнений 2-го рода. Построена универсальная модификация весовой векторной оценки по столкновениям с ветвлением траектории цепи соответственно элементам матричного веса. Доказано, что трудоемкость построенного алгоритма ограничена, если ограничены базовые функционалы. Представлены результаты численных расчетов с использованием модифицированной весовой оценки для одной задачи теории переноса излучения с учетом поляризации.

Ключевые слова: система линейных интегральных уравнений 2-го рода, весовая векторная оценка, матричный вес, ветвление траектории в цепи Маркова, конечная трудоемкость алгоритма, перенос поляризованного излучения.

1. Вводная информация

Рассмотрим систему интегральных уравнений второго рода:

$$\varphi_i(x) = \sum_{j=1}^m \int_X k_{ij}(x, y)\varphi_j(y)dy + h_i(x)$$
(1.1)

или в векторном виде $\Phi = \mathbf{K}\Phi + H$, где $H^{\mathrm{T}} = (h_1, \dots, h_m)$,

$$\mathbf{K} \in [L_{\infty} \to L_{\infty}], \quad ||H||_{L_{\infty}} = \operatorname{vrai} \sup_{i,x} |h_i(x)|,$$

а интегрирование производится по мере Лебега в κ -мерном евклидовом пространстве X.

Предполагается, что спектральный радиус $\lambda(\mathbf{K}) < 1$. При этом имеет место разложение решения в ряд Неймана

$$\Phi = \sum_{n=0}^{\infty} \mathbf{K}^n H. \tag{1.2}$$

Поскольку здесь

$$\lambda(\mathbf{K}) = \underline{\lim} ||\mathbf{K}^n||_{L_{\infty}}^{1/n} = \inf ||\mathbf{K}^n||_{L_{\infty}}^{1/n},$$

то для сходимости ряда (1.2) достаточно выполнения неравенства $||\mathbf{K}^{n_0}|| < 1$ для некоторого $n_0 \ge 1$. Отметим, что здесь

 $^{^1}$ Работа выполнена при финансовой поддержке РФФИ (проекты 15-01-00894 a, 16-01-00530 a)) и программы фундаментальных исследований Президиума РАН I.33.

$$||\mathbf{K}|| = \sup_{x,i} \sum_{j=1}^{m} \int |k_{ij}(x,y)| dy.$$

Рассмотрим цепь Маркова $\{x_n\}, (n = 0, ..., N)$ с плотностью перехода p(x, y), причем величина

$$p(x) = 1 - \int_{X} p(x, y) dy \ge 0$$

рассматривается как вероятность обрыва (остановки) в точке x, N-случайный номер последнего состояния $x_0 \equiv x$. Известно [2], что такая цепь обрывается с вероятностью 1 и более того, $E(N) < +\infty$, если $\lambda(B_p) < 1$, где B_p – интегральный оператор с ядром p(x, y) (в частности, если $p(x) \ge \varepsilon > 0$).

Стандартная векторная оценка метода Монте-Карло "по столкновениям" для величины $\Phi(x)$ строится на основе соотношений

$$\Phi(x) = \mathbf{E}\boldsymbol{\xi}_x, \quad \boldsymbol{\xi}_x = H(x) + \sum_{n=1}^N Q_n H(x_n),$$
$$Q_0 = I, \quad Q_{n+1} = Q_n K(x_n, x_{n+1}) / p(x_n, x_{n+1}), \quad n = 0, 1, \dots$$

где *I*– единичная матрица, а K(x, y) – матрица ядер $\{k_{ij}(x, y)\}, (i, j = 1, ..., m)$. Заметим, что соотношение $\Phi(x) = E\boldsymbol{\xi}_x$ справедливо при выполнении аналогичных рассмотренным в [2] для случая m = 1 "условий несмещенности" и дополнительного условия $\lambda(\mathbf{K}_1) < 1$, где \mathbf{K}_1 – оператор, получаемый из оператора \mathbf{K} заменой ядер на их модули. Здесь условия несмещенности [2] преобразуются к виду:

$$p(x,y) > 0$$
, если $\sum_{i,j=1}^{m} |k_{ij}(x,y)| > 0$, (1.3)

а оценка $\boldsymbol{\xi}_x$ однозначно определяется рекурсией

$$\boldsymbol{\xi}_x = H(x) + \delta_y Q(x, y) \boldsymbol{\xi}_y, \tag{1.4}$$

где Q(x,y) = K(x,y)/p(x,y) - матричный вес, а δ_y – индикатор необрыва цепи при переходе $x \to y$.

В [2] приведено следующее уравнение для матрицы вторых моментов $\Psi(x) = \mathrm{E}(\boldsymbol{\xi}_x \boldsymbol{\xi}_x^{\mathrm{T}})$:

$$\Psi(x) = \chi(x) + \int_{X} \frac{K(x, y)\Psi(y)K^{\mathrm{T}}(x, y)}{p(x, y)} dy, \qquad (1.5)$$

или $\Psi = \chi + \mathbf{K}_p \Psi$, где

$$\chi = H \Phi^{\rm T} + \Phi H^{\rm T} - H H^{\rm T}$$

Это уравнение рассматривается в пространстве \mathbf{L}_{∞} матричнозначных функций с нормой

$$||\Psi|| = \operatorname{vrai}\sup_{i,j,x} |\Psi_{i,j}(x)|.$$

и имеет место [2] следующее выражение:

$$||\mathbf{K}_p||_{\mathbf{L}_{\infty}} = \sup_{i,x} \int \frac{\left(\sum_{j=1}^m |k_{ij}(x,y)|\right)^2}{p(x,y)} dy.$$
(1.6)

Оператор, получаемый из \mathbf{K}_p заменой ядер на их модули, обозначим $\mathbf{K}_{p,1}$. Предполагается, что $\mathbf{K}_{p,1} \in [\mathbf{L}_{\infty} \to \mathbf{L}_{\infty}]$ и, следовательно, \mathbf{K}_p обладает тем же свойством.

В работе [6], с использованием разработанного авторами метода рекуррентного "частичного" осреднения [3], было доказано следующее утверждение.

Теорема 1. Если $\lambda(\mathbf{K}_1) < 1$ и $\lambda(\mathbf{K}_{p,1}) < 1$, то $\Psi(x) = E(\boldsymbol{\xi}_x \boldsymbol{\xi}_x^T)$ является решением уравнения (1.5) и $\Psi \in \mathbf{L}_{\infty}$.

Методом Монте-Карло обычно оценивают линейные функционалы вида [1]

$$I = (F, \Phi) = \int_{X} F^{\mathrm{T}}(x)\Phi(x)dx, \qquad (1.7)$$

где $F^{\mathrm{T}}(x) = (f_1(x), \dots, f_m(x))$, причем

$$||F^{\mathrm{T}}||_{L_{1}} = \sum_{j=1}^{m} \int_{X} |f_{j}(x)| dx < \infty.$$

Пусть точка x_0 распределена с плотностью вероятностей $\pi(x)$ такой, что $\pi(x) \neq 0$, если $F^{\mathrm{T}}(x)\Phi(x) \neq 0$. Тогда, полагая $\boldsymbol{\xi} = F^{\mathrm{T}}(x_0)\boldsymbol{\xi}_{x_0}/\pi(x_0)$, имеем

$$I = \mathbf{E}\boldsymbol{\xi} = \mathbf{E}\left\{\frac{F^{\mathrm{T}}(x_{0})}{\pi(x_{0})}\boldsymbol{\xi}_{x_{0}}\right\},\$$
$$\mathbf{E}\boldsymbol{\xi}^{2} = \mathbf{E}\left\{\frac{F^{\mathrm{T}}(x_{0})\boldsymbol{\xi}_{x_{0}}\boldsymbol{\xi}_{x_{0}}^{\mathrm{T}}F(x_{0})}{\pi^{2}(x_{0})}\right\} = \mathbf{E}\left\{\frac{F^{\mathrm{T}}(x_{0})\Psi(x_{0})F(x_{0})}{\pi^{2}(x_{0})}\right\}.$$
(1.8)

Таким образом, дисперсия D $\boldsymbol{\xi}$ определяется матрицей вторых моментов $\Psi(x)$. В частности, D $\boldsymbol{\xi} < +\infty$, если $\lambda(\mathbf{K}_{p,1}) < 1$ и $F^{\mathrm{T}}(x)/\pi(x) \in L_1(X)$ [6]. Если спектральный радиус $\lambda(\mathbf{K}_{p,1}) > 1$, то величина D $\boldsymbol{\xi}$ может быть бесконечно большой и использование весовой оценки $\boldsymbol{\xi}$ для вычисления функционала I нецелесообразно.

2. Векторная оценка с ветвлением траектории

Рассмотрим систему уравнений (1.1) с неотрицательными компонентами $k_{ij}(x, y), h_i(x), (i, j = 1, ..., m)$. Введем целочисленную неотрицательную случайную величину (число "ветвей") ν_n с заданным распределением вероятностей. Определим случайную векторную оценку с ветвлением траектории следующей рекурсией:

$$\boldsymbol{\zeta}_{x_0} = H(x_0) + \delta_{x_1} \frac{Q(x_0, x_1)}{\mathrm{E}\nu_1} \sum_{i=1}^{\nu_1} \boldsymbol{\zeta}_{x_1}^{(i)}, \qquad (2.1)$$

$$\boldsymbol{\zeta}_{x_{n-1}} = H(x_{n-1}) + \delta_{x_n} \frac{Q(x_{n-1}, x_n)}{\mathrm{E}\nu_n} \sum_{i=1}^{\nu_n} \boldsymbol{\zeta}_{x_n}^{(i)}, \qquad (2.2)$$

где $\boldsymbol{\zeta}_{x_n}^{(\cdot)}$ – независимые реализации $\boldsymbol{\zeta}_{x_{n-1}}.$

Лемма 1. При выполнении условий несмещенности (1.3) и $\lambda(\mathbf{K}) < 1$, имеет место соотношение $\mathbf{E}\boldsymbol{\zeta}_x = \Phi(x)$.

Доказательство. Так как все элементы в выражениях (2.1), (2.2) неотрицательны, то $\forall n \geq 1$ в силу тождества Вальда имеем

$$\mathbf{E}\sum_{i=1}^{\nu_n}\boldsymbol{\zeta}_{x_n}^{(i)}=\mathbf{E}\nu_n\mathbf{E}\boldsymbol{\zeta}_{x_n}$$

Это равенство выполняется и в случае $\mathrm{E}\zeta_{x_n} = +\infty$, так как вследствие неотрицательности элементов задачи имеем:

$$\operatorname{E}\sum_{i=1}^{\nu_n} \boldsymbol{\zeta}_{x_n}^{(i)} = \operatorname{EE}\left(\sum_{n=1}^{\nu} \boldsymbol{\zeta}_{x_n}^{(i)} | \boldsymbol{\nu}\right).$$

Следовательно, для вычисления величины $E\zeta_{x_0}$ можно последовательно применять рекурсию вида (1.4).

Согласно рекурсии (2.2), после успешного перехода $x_{n-1} \to x_n$ из фиксированной вершины "дерева" в *n*-ом поколении "испускаются" ν_n независимых траекторий с "полным" матричным весом

$$\tilde{Q}_n = \frac{Q(x_0, x_1)Q(x_1, x_2)...Q(x_{n-1}, x_n)}{E\nu_1...E\nu_n} = \frac{Q_{n-1}Q(x_{n-1}, x_n)}{E\nu_1...E\nu_{n-1}E\nu_n} \quad (n \ge 1).$$
(2.3)

Введем обозначение для произвольного элемента $\{A\}_{ij} = a_{ij}$ матрицы A, определим последовательность среднего числа ветвей $E\nu_n$

$$E\nu_{1} = \sup_{i} \sum_{j=1}^{m} \{Q(x_{0}, x_{1})\}_{ij}, \quad E\nu_{n} = \sup_{i} \sum_{j=1}^{m} \left\{\frac{Q_{n-1}Q(x_{n-1}, x_{n})}{E\nu_{1}...E\nu_{n-1}}\right\}_{ij}, \quad (n \ge 2), \quad (2.4)$$

и прямой подстановкой проверим, что

$$E\nu_1 E\nu_2 \dots E\nu_n = \sup_i \sum_{j=1}^m \{Q_{n-1}Q(x_{n-1}, x_n)\}_{ij}.$$
 (2.5)

Здесь и далее будем полагать, что величина ν_n имеет следующее распределение вероятностей

$$P(\nu_n = [\mathrm{E}\nu_n]) = 1 - (\mathrm{E}\nu_n - [\mathrm{E}\nu_n]), \quad P(\nu_n = [\mathrm{E}\nu_n] + 1) = \mathrm{E}\nu_n - [\mathrm{E}\nu_n].$$
(2.6)

Нетрудно проверить, что распределение (2.6) определяет минимальное значение $D\nu$ в классе случайных целочисленных величин с фиксированным значением $E\nu_n$ [3] и

$$E\nu_n^2 = [E\nu_n]^2 + (2[E\nu_n] + 1)(E\nu_n - [E\nu_n]).$$
(2.7)

Теорема 2. Если выполняются условия леммы 1, то $\tilde{\Psi}(x) = \mathrm{E}(\boldsymbol{\zeta}_x \boldsymbol{\zeta}_x^{\mathrm{T}}) \in \mathbf{L}_{\infty}(X).$

Доказательство. Как и в работе [7], можно проверить, что для любого $n \ge 1$

$$\boldsymbol{\zeta}_{x_{n-1}} \boldsymbol{\zeta}_{x_{n-1}}^{\mathrm{T}} =$$

$$H(x_{n-1})H^{\mathrm{T}}(x_{n-1}) + \delta_{x_{n}} \frac{Q(x_{n-1}, x_{n})}{\mathrm{E}\nu_{n}} \sum_{i=1}^{\nu_{n}} \boldsymbol{\zeta}_{x_{n}}^{(i)} H^{\mathrm{T}}(x_{n}) + \delta_{x_{n}} H(x_{n}) \Big(\sum_{i=1}^{\nu_{n}} \boldsymbol{\zeta}_{x_{n}}^{(i)}\Big)^{\mathrm{T}} \frac{Q^{\mathrm{T}}(x_{n-1}, x_{n})}{\mathrm{E}\nu_{n}} + \delta_{x_{n}} \frac{Q(x_{n-1}, x_{n})}{\mathrm{E}\nu_{n}} \sum_{i=1}^{\nu_{n}} \boldsymbol{\zeta}_{x_{n}}^{(i)} \Big(\sum_{i=1}^{\nu_{n}} \boldsymbol{\zeta}_{x_{n}}^{(i)}\Big)^{\mathrm{T}} \frac{Q^{\mathrm{T}}(x_{n-1}, x_{n})}{\mathrm{E}\nu_{n}}.$$

Так как по определению компоненты $\boldsymbol{\zeta}_{x_n}^{(i)}$ независимы, следовательно, в силу тождества Вальда имеем v.

$$\mathbf{E}\Big(\sum_{i=1}^{\nu_n} \boldsymbol{\zeta}_{x_n}^{(i)}\Big) = \mathbf{E}\nu_n \mathbf{E}\boldsymbol{\zeta}_{x_n},$$
$$\mathbf{E}\Big(\sum_{i=1}^{\nu_n} \boldsymbol{\zeta}_{x_n}^{(i)}\Big)\Big(\sum_{i=1}^{\nu_n} \boldsymbol{\zeta}_{x_n}^{(i)}\Big)^{\mathrm{T}} = \mathbf{E}\nu_n \mathbf{E}\boldsymbol{\zeta}_{x_n} \boldsymbol{\zeta}_{x_n}^{\mathrm{T}} + \mathbf{E}(\nu_n(\nu_n-1))\Phi(x_n)\Phi^{\mathrm{T}}(x_n).$$

С учетом последних равенств для математических ожиданий получаем, что величина $\tilde{\Psi}(x_n) = \mathrm{E}(\boldsymbol{\zeta}_{x_n} \boldsymbol{\zeta}_{x_n}^{\mathrm{T}})$ для любого $n \geq 1$ удовлетворяет интегральному уравнению:

$$\tilde{\Psi}(x_{n-1}) = \tilde{\chi}_{\nu_n}(x_{n-1}) + \int\limits_X \frac{K(x_{n-1}, x_n)\Psi(x_n)K^{\mathrm{T}}(x_{n-1}, x_n)}{\mathrm{E}\nu_n \ p(x_{n-1}, x_n)} dx_n,$$

или

$$\tilde{\Psi}(x_{n-1}) = \tilde{\chi}_{\nu_n}(x_{n-1}) + [\mathbf{K}_{p,\nu_n}\tilde{\Psi}](x_{n-1}).$$
(2.8)

где

$$\tilde{\chi}_{\nu_n}(x_{n-1}) = \chi(x_{n-1}) + \int_X \frac{K(x_{n-1}, x_n) \mathbb{E} \big(\nu_n(\nu_n - 1)\big) \Phi(x_n) \Phi^{\mathrm{T}}(x_n) K^{\mathrm{T}}(x_{n-1}, x_n)}{\big(\mathbb{E}\nu_n\big)^2 p(x_{n-1}, x_n)} dx_n.$$

Заметим, что второе слагаемое в выражении для $\tilde{\chi}_{\nu_n}$ имеет место только когда $\mathrm{E}\nu_n>$ 1. Учитывая последнее замечание и выражение (2.7), легко проверить, что $\forall n \ge 1$

$$\frac{\mathrm{E}(\nu_n(\nu_n-1))}{(\mathrm{E}\nu_n)^2} \le \frac{[\mathrm{E}\nu_n]^2 + 2([\mathrm{E}\nu_n]+1)}{[\mathrm{E}\nu_n]^2} \le \frac{([\mathrm{E}\nu_n]+1)^2 + 1}{[\mathrm{E}\nu_n]^2} \le 3,$$

и, согласно (1.5),

$$||\tilde{\chi}_{\nu_n}|| \le ||H\Phi^{\mathrm{T}} + \Phi H^{\mathrm{T}} - HH^{\mathrm{T}}|| + 3||\mathbf{K}_p \Phi \Phi^{\mathrm{T}}|| < \infty$$
(2.9)

в силу того, что $\lambda(\mathbf{K}_1) < 1$ и $\mathbf{K}_p \in [\mathbf{L}_{\infty} \to \mathbf{L}_{\infty}].$ Пусть $\psi_{n-1}(x_{n-1}) = \tilde{\Psi}(x_{n-1}).$ Тогда, для любого $n \geq 1$, соотношение (2.8) можно представить в операторном виде

$$\psi_{n-1} = \tilde{\chi}_{\nu_n} + \mathbf{K}_{p,\nu_n}\psi_n \quad (n \ge 1),$$

и прямой подстановкой можно проверить, что

$$\psi_{n-1} = \tilde{\chi}_{\nu_n} + \sum_{i=0}^{\infty} \mathbf{K}_{p,\nu_n} \mathbf{K}_{p,\nu_{n+1}} \dots \mathbf{K}_{p,\nu_{n+i}} \tilde{\chi}_{\nu_{n+i+1}}$$
$$= \tilde{\chi}_{\nu_n} + \mathbf{K}_{p,\nu_n} (\tilde{\chi}_{\nu_{n+1}} + \sum_{i=0}^{\infty} \mathbf{K}_{p,\nu_{n+1}} \mathbf{K}_{p,\nu_{n+2}} \dots \mathbf{K}_{p,\nu_{n+1+i}} \tilde{\chi}_{\nu_{n+1+i+1}}) = \tilde{\chi}_{\nu_n} + \mathbf{K}_{p,\nu_n} \psi_n$$

Следовательно,

$$\tilde{\Psi}(x_0) = \psi_0(x_0) = \tilde{\chi}_{\nu_1}(x_0) + \sum_{i=0}^{\infty} [\mathbf{K}_{p,\nu_1} \mathbf{K}_{p,\nu_2} \dots \mathbf{K}_{p,\nu_{1+i}} \tilde{\chi}_{\nu_{1+i+1}}](x_0)$$
(2.10)
$$= \tilde{\chi}_{\nu_1}(x_0) + \sum_{n=1}^{\infty} [\mathbf{K}_{p,\nu_1} \mathbf{K}_{p,\nu_2} \dots \mathbf{K}_{p,\nu_n} \tilde{\chi}_{\nu_{n+1}}](x_0),$$

где оператор $\mathbf{K}_{p,\nu_1}\mathbf{K}_{p,\nu_2}\dots\mathbf{K}_{p,\nu_n}$ для произвольной $D \in \mathbf{L}_{\infty}$ и $n \geq 1$ определяется выражением:

$$[\mathbf{K}_{p,\nu_{1}}\mathbf{K}_{p,\nu_{2}}\dots\mathbf{K}_{p,\nu_{n}}D](x_{0})$$

= $\int_{X}\dots\int_{X}\frac{K(x_{0},x_{1})\dots K(x_{n-1},x_{n})D(x_{n})K^{\mathrm{T}}(x_{n-1},x_{n})\dots K^{\mathrm{T}}(x_{0},x_{1})}{\mathrm{E}\nu_{1}\mathrm{E}\nu_{2}\dots\mathrm{E}\nu_{n}\ p(x_{0},x_{1})\dots p(x_{n-1},x_{n})}dx_{1}\dots dx_{n}.$

Согласно выражениям (1.6), (2.5), справедливо следующее неравенство:

$$||\mathbf{K}_{p,\nu_{1}}\mathbf{K}_{p,\nu_{2}}\dots\mathbf{K}_{p,\nu_{n}}||$$

$$= \sup_{i,x_{0}} \int_{X} \dots \int_{X} \frac{\left(\sum_{j=1}^{m} \{K(x_{0},x_{1})\dots K(x_{n-1},x_{n})\}_{ij}\right)^{2}}{\mathrm{E}\nu_{1}\dots\mathrm{E}\nu_{n} \ p(x_{0},x_{1})\dots p(x_{n-1},x_{n})} dx_{1}\dots dx_{n}$$

$$\leq \sup_{i,x_{0}} \int_{X} \dots \int_{X} \sum_{j=1}^{m} \{K(x_{0},x_{1})\dots K(x_{n-1},x_{n})\}_{ij} dx_{1}\dots dx_{n} = ||\mathbf{K}_{1}^{n}||.$$

Из последнего неравенства и условий $\lambda(\mathbf{K}) < 1$, (2.9), следует, что ряд Неймана (2.10) для матрицы вторых моментов $\tilde{\Psi}(x) = \mathrm{E}(\boldsymbol{\zeta}_x \boldsymbol{\zeta}_x^{\mathrm{T}})$ сходится.

Известно, что трудоемкость методов Монте-Карло определяется величиной $S_{\eta} = T_{\eta} D\eta$, где T_{η} - среднее время моделирования на ЭВМ для получения одного выборочного значения η [5], [2]. В свою очередь, величина T_{η} пропорциональна среднему числу EN_{η} столкновений в цепи Маркова для получения одного выборочного значения η . Для векторной оценки (2.2) с ветвлением траектории согласно (2.4), число N_{ζ} определяется следующей рекурсией:

$$N_{\boldsymbol{\zeta}} = N_{\boldsymbol{\zeta}_{x_0}}, \quad N_{\boldsymbol{\zeta}_{x_0}} = 1 + \delta_{x_1} \sum_{i=1}^{\nu_1} N_{\boldsymbol{\zeta}_{x_1}}^{(i)}, \quad N_{\boldsymbol{\zeta}_{x_{n-1}}} = 1 + \delta_{x_n} \sum_{i=1}^{\nu_n} N_{\boldsymbol{\zeta}_{x_n}}^{(i)}, \tag{2.11}$$

где $N_{\boldsymbol{\zeta}_{x_n}}^{(\cdot)}$ – независимые реализации $N_{\boldsymbol{\zeta}_{x_n}}$.

Теорема 3. Величина EN_{ζ} ограничена, если $\lambda(\mathbf{K}) < 1$.

Доказательство. Методом "частичного" осреднения [3] рекурсии (2.11) можно проверить, что неотрицательная величина $EN_{\zeta_{x_n}} = g(x_n)$ для любого $n \ge 1$ удовлетворяет интегральному соотношению:

$$g(x_{n-1}) = 1 + \int_{X} p(x_{n-1}, x_n) E \nu_n g(x_n) dx_n$$
, или $g(x_{n-1}) = 1 + [B_{p_n, \nu_n} g](x_{n-1}).$

Пусть $G_{n-1}(x_{n-1}) = g(x_{n-1})$. Тогда, для любого $n \ge 1$, последнее интегральное соотношение (2.8) можно представить в операторном виде

$$G_{n-1} = 1 + B_{p,\nu_n} G_n \quad (n \ge 1),$$

и прямой подстановкой можно проверить, что

$$G_{n-1} = 1 + \sum_{i=0}^{\infty} B_{p,\nu_n} B_{p,\nu_{n+1}} \dots B_{p,\nu_{n+i}} 1$$
$$= 1 + B_{p,\nu_n} (1 + \sum_{i=0}^{\infty} B_{p,\nu_{n+1}} B_{p,\nu_{n+2}} \dots B_{p,\nu_{n+1+i}} 1) = 1 + B_{p,\nu_n} G_n.$$

Следовательно,

$$g(x_0) = G_0(x_0) = 1 + \sum_{i=0}^{\infty} [B_{p,\nu_1} B_{p,\nu_2} \dots B_{p,\nu_{1+i}}](x_0)$$
(2.12)
$$= 1 + \sum_{n=1}^{\infty} [B_{p,\nu_1} B_{p,\nu_2} \dots B_{p,\nu_n} 1](x_0),$$

где оператор $B_{p,\nu_1}B_{p,\nu_2}\ldots B_{p,\nu_n}$ для произвольной $u \in L_{\infty}$ при $n \ge 1$ с учетом (2.4), (2.5), определяется следующим выражением

$$[B_{p,\nu_1}B_{p,\nu_2}\dots B_{p,\nu_n}u](x_0)$$

= $\int_X \dots \int_X p(x_0, x_1) \mathbb{E}\nu_1 \dots p(x_{n-1}, x_n) \mathbb{E}\nu_n \ u(x_n) dx_1 \dots dx_n$
= $\int_X \dots \int_X p(x_0, x_1) \dots p(x_{n-1}, x_n) \mathbb{E}\nu_1 \dots \mathbb{E}\nu_n \ u(x_n) dx_1 \dots dx_n$
= $\int_X \dots \int_X \sup_{x_{0,i}} \sum_{j=1}^m |\{K(x_0, x_1) \dots K(x_{n-1}, x_n)\}_{ij}|u(x_n) dx_1 \dots dx_n$

причем

$$\begin{split} ||B_{p,\nu_1}B_{p,\nu_2}\dots B_{p,\nu_n}|| &= \int_X \dots \int_X \sup_{x_{0,i}} \sum_{j=1}^m |\{K(x_0,x_1)\dots K(x_{n-1},x_n)\}_{ij}| dx_1\dots dx_n \\ &\leq \int_X \dots \int_X \sum_{i=1}^m \sum_{j=1}^m |\{K(x_0,x_1)\dots K(x_{n-1},x_n)\}_{ij}| dx_1\dots dx_n \\ &\leq \sum_{i=1}^m \int_X \dots \int_X \sum_{j=1}^m |\{K(x_0,x_1)\dots K(x_{n-1},x_n)\}_{ij}| dx_1\dots dx_n \\ &\leq m \sup_{x_{0,i}} \int_X \dots \int_X \sum_{j=1}^m |\{K(x_0,x_1)\dots K(x_{n-1},x_n)\}_{ij}| dx_1\dots dx_n = m ||\mathbf{K}_1^n|| \end{split}$$

Из последнего неравенства и условия $\lambda({\bf K})<1,$ следует, что ряд Неймана (2.12) для величины Е $N_{\pmb{\zeta}}$ сходится. $\hfill \Box$

В конце раздела 1 было отмечено, что существенным ограничением на использование стандартной векторной оценки $\boldsymbol{\xi} = F^{\mathrm{T}}(x_0)\boldsymbol{\xi}_{x_0}/\pi(x_0)$ для вычисления функционала $I = (F, \Phi)$ является условие $\lambda(\mathbf{K}_{p,1}) < 1$. Для построенной векторной оценки с ветвлением траектории $\boldsymbol{\zeta} = F^{\mathrm{T}}(x_0)\boldsymbol{\zeta}_{x_0}/\pi(x_0)$, в силу теорем 2, 3, справедливо более слабое ограничение.

Утверждение 1 Трудоемкость S_{ζ} ограничена, если ограничен исходный функционал I ($\lambda(\mathbf{K}) < 1$ и $F^{\mathrm{T}}(x)/\pi(x) \in L_1$).

3. Приложение в теории переноса излучения с учетом поляризации

Известно, что для описания поляризационных свойств света удобно использовать вектор Стокса [1, 2]

$$\tilde{\Phi}(x) = (\tilde{\varphi}_1(x), \tilde{\varphi}_2(x), \tilde{\varphi}_3(x), \tilde{\varphi}_4(x))^T,$$

причем, вектор функции $\tilde{\Phi}$ образуют конус S_t , определяемый соотношениями:

$$\tilde{\varphi}_1(x) \ge 0, \quad \tilde{\varphi}_2^2(x) + \tilde{\varphi}_3^2(x) + \tilde{\varphi}_4^2(x) \le \tilde{\varphi}_1^2(x), \tag{3.1}$$

а компоненты вектора $\tilde{\Phi}$ удовлетворяют системе интегральных уравнений переноса с учетом поляризации вида (1.1):

$$\tilde{\varphi}_i(x) = \int \sum_{j=1}^4 k_{ij}(x, x') \tilde{\varphi}_j(x') \, dx' + h_i(x), \quad i = 1, \dots, 4, \quad \text{или} \quad \tilde{\Phi} = \mathbf{K}\tilde{\Phi} + H \tag{3.2}$$

Здесь $x = (\mathbf{r}, \omega)$, где \mathbf{r} – точка физического пространства $R, \omega \in \Omega$ – единичный вектор направления пробега частицы и $\mathbf{K} \in [S_t \to S_t]$ [2]. Введем следующие обозначения: $\mu = (\omega, \omega')$ - косинус угла рассеяния, θ - азимутальный угол рассеяния, $p_2(\mu)$ - индикатриса рассеяния, $\sigma(\mathbf{r}) = \sigma_s(\mathbf{r}) + \sigma_c(\mathbf{r})$ – полное сечение, $\sigma_s(\mathbf{r})$ и $\sigma_c(\mathbf{r})$ - сечения рассеяния и поглощения соответственно, $q(\mathbf{r}) = \sigma_c(\mathbf{r})/\sigma(\mathbf{r})$ - вероятность рассеяния, l - длина свободного пробега, $p_{\chi}(l; \mathbf{r}, \omega')$ - субстохастическая плотность распределения длины пробега из точки \mathbf{r} в направлении ω' . Известно, что

$$p_{\chi}(l;\mathbf{r},\omega') = \sigma(\mathbf{r}+\omega'l)exp\bigg(-\int_{0}^{l}\sigma(\mathbf{r}+s\omega')ds\bigg), \quad l \leq l^{*}(l\mathbf{r},\omega')$$

где $l^*(\mathbf{r}, \omega')$ - расстояние от точки **r** вдоль направления ω' до границы среды, которую можно считать выпуклой. С учетом введенных вспомогательных переменных μ, θ, l , матрица ядер для системы (3.2) задается соотношением [1],[4]:

$$K(x,y) = qp_{\chi}(l;\mathbf{r},\omega')P^{T}(\mu,\theta)\delta(\omega'-\omega'(\omega,\mu,\theta))\delta(\mathbf{r}'-\mathbf{r}-\omega'l), \qquad (3.3)$$

где $y = (\mathbf{t}', x') = (\mu, \theta, l, x'), \ P^T(\mu, \theta) = L(i_1)R^T(\mu)L(-\pi + i_2)/2\pi,$

$$R(\mu) = \begin{pmatrix} r_{11} & r_{12} & 0 & 0\\ r_{21} & r_{22} & 0 & 0\\ 0 & 0 & r_{33} & r_{34}\\ 0 & 0 & -r_{43} & r_{44} \end{pmatrix}, \quad L(i) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos 2i & \sin 2i & 0\\ 0 & -\sin 2i & \cos 2i & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

где $i_k = i_k(\omega, \mu, \theta)$; k = 1, 2; $\theta \in U(0, 2\pi)$; $r_{ij} = r_{ij}(\mu)$; $r_{11} \ge 0$; $\int_{-1}^{+1} r_{11}(\mu) d\mu = 1$. Предполагается, что среда изотропна и P не зависит от **r**. Если рассеивающие частицы сами являются однородными сферами, то $r_{11} = r_{22}, r_{12} = r_{21}, r_{33} = r_{44}, r_{34} = r_{43}$ [1],[2].

Известно [1],[2], что для оценки линейных функционалов от решения системы (3.2) методом Монте-Карло можно построить весовую векторную оценку по столкновениям $\boldsymbol{\xi}_x$ вида (1.4). Несмотря на знакопеременность ядер матрицы K(x, y), в работах [1],[2] было доказано, что, в силу свойств вектор-функций Стокса (3.1) и оператора $\mathbf{K} \in [S_t \to S_t]$ из (3.2), для выполнения равенства $\mathbf{E} \boldsymbol{\xi}_x = \tilde{\Phi}(x)$ достаточно, чтобы выполнялось условие $\lambda(\mathbf{K}) < 1$ - более слабое, чем в разделе 1. Если используется переходная плотность вида

$$p(x,y) = q_1 p_{\chi}^{(1)}(l;\mathbf{r},\omega') p_2(\mu) \,\delta(\omega' - \omega'(\omega,\mu,\varphi) \,\delta(\mathbf{r}' - \mathbf{r} - \omega' l)/(2\pi), \tag{3.4}$$

то, по сравнению с условиями теоремы 1, здесь для ограниченности элементов матрицы вторых моментов $E(\boldsymbol{\xi}_x \boldsymbol{\xi}_x^T)$ достаточно потребовать, чтобы выполнялось условие: $\lambda(\mathbf{K}_p) < 1$ ([2], [4]). В работе [2] было получено следующее неравенство:

$$\lambda(\mathbf{K}_p) \le q_0 \lambda(S_p), \quad \text{где} \quad q_0 = \sup_{\mathbf{r},\omega} \int_0^\infty \frac{q^2}{q_1} \frac{p_{\chi}^2(l;\mathbf{r},\omega)}{p_{\chi}^{(1)}(l;\mathbf{r},\omega)} \, dl, \tag{3.5}$$

а S_p – оператор, получаемый из \mathbf{K}_p подстановкой $x \to \omega, y \to \omega', p \to p_2/2\pi, K \to P^T$ (S_p соответствует "чистому" рассеянию в бесконечно однородной среде).

Таким образом, если $q_0 < 1/\lambda(S_p)$, то обычно используемые оценки вида $\boldsymbol{\xi} = F^{\mathrm{T}}(x_0)\boldsymbol{\xi}_{x_0}/\pi(x_0)$ имеют конечную дисперсию при надлежащем выборе $\pi(x)[2]$. В частности, для молекулярного рассеяния [1]

$$r_{11}(\mu) = \frac{3(1+\mu^2)}{8}, \ r_{12}(\mu) = -\frac{3(1-\mu^2)}{8}, \ r_{33}(\mu) = \frac{3\mu}{4}, \ r_{34}(\mu) = 0, \ \mu \in [-1,1], \quad (3.6)$$

при $p_2 \equiv r_{11}$ было вычислено значение $\lambda(S_p) = 1 + (3\pi - 8)/8 \approx 1.178$ [4], а следовательно, дисперсия оценки $\boldsymbol{\xi}$ в реальной среде конечна только при достаточно большом поглощении. Например, при "физическом" моделировании ($q_1 \equiv q, p_{\chi}^{(1)} = p_{\chi}$) в бесконечно однородной среде из (3.5) легко получить неравенство

$$\lambda(\mathbf{K}_p) \le (1 - \sigma_c/\sigma)\lambda(S_p)$$

и $\lambda(\mathbf{K}_p) < 1$ при $\sigma_c/\sigma > 0.151$. Существенно уменьшить величину σ_c/σ можно модификацией процесса переноса путем замены $\sigma \to \sigma_s, \sigma_c \to 0$ ([1]). В этой модификации поглощение учитывается соответствующим весовым множителем [1] и из неравенства (3.5) следует, что

$$\lambda(\mathbf{K}_p) \le \frac{1 - \sigma_c / \sigma}{1 + \sigma_c / \sigma} \lambda(S_p)$$

и $\lambda({\bf K}_p)<1$ при $\sigma_c/\sigma>0.082.$ Даже при моделировании "без поглощения" [1],[5] ($q_1\equiv 1, p_\chi^{(1)}=p_\chi)$ получаем, что

$$\lambda(\mathbf{K}_p) \le (1 - \sigma_c/\sigma)^2 \lambda(S_p)$$

и $\lambda(\mathbf{K}_p) < 1$ при $\sigma_c/\sigma > 0.0787$.

Таким образом при $\sigma_c/\sigma < 0.0787$ дисперсия векторной оценки может быть бесконечно большой величиной и вопрос об обоснованности применения векторного алгоритма Монте-Карло для оценки решения системы (3.2) в случае молекулярного рассеяния остаётся открытым. В этом случае для оценки линейных функционалов от решения системы (3.2) целесообразно использовать векторную весовую оценку $\boldsymbol{\zeta}$ с ветвлением траектории (см. раздел 2), для которой среднее количество ветвей после каждого перехода

$$E\nu_n = \sup_{x_{0,i}} \sum_{j=1}^m |\{\frac{Q_{n-1}}{E\tilde{\nu}_{n-1}}Q(x_{n-1}, x_n)\}_{ij}|$$
(3.7)

будет определяться уже знакопеременным элементами оператора **K**. Используя свойства вектор-функций Стокса (3.1) и оператора $\mathbf{K} \in [S_t \to S_t]$, можно проверить, что утверждения леммы 1 и теорем 2, 3 для оценки $\boldsymbol{\zeta}$ также имеют место при условии $\lambda(\mathbf{K}) < 1$, т.е. величина D $\boldsymbol{\zeta}$ и трудоемкость векторного алгоритма с ветвлением траектории конечны.

4. Тестовая задача

Рассмотрим бесконечную однородную среду, заполненную рассеивающим и поглощающим свет веществом, с источником излучения в точке $x_0 = (\mathbf{r}_0, \omega_0) = ((0, 0, 0), (1, 0, 0))$ и $\sigma(\mathbf{r}) = \sigma \equiv 1$. Введем функционал $I_1 = (F, \tilde{\Phi})$, где $\tilde{\Phi}$ - решение системы (3.2) при $H^T = (1, 0, 0, 0)$, а $F = (\delta(x - x_0), 0, 0, 0)$. Данный функционал I_1 определяет среднее количество столкновений частицы до момента обрыва траектории от источника единичной мощности и, для бесконечной однородной среды, его точное значение известно: $I_1 = 1/\sigma_c$.

В таблице 1 представлены результаты расчетов функционала I_1 для молекулярного рассеяния (3.6) с использованием векторной оценки ζ с ветвлением траектории (см. раздел 2, (3.7)) и переходной плотности

$$p(x,y) = (1 - \sigma_c) e^{-l} r_{11}(\mu) \,\delta(\omega' - \omega'(\omega,\mu,\varphi) \,\delta(\mathbf{r}' - \mathbf{r} - \omega' l)/(2\pi).$$

Использованы следующие обозначения: EI_1 - статистическая оценка функционала I_1, VI_1 - статистическая оценка величины $D\boldsymbol{\zeta}, \sigma_M = \sqrt{VI_1/M}$ - оценка среднеквадратической погрешности, где M - количество моделируемых "деревьев" траекторий. В каждом варианте расчетов вычислялось среднее количество полного числа столкновений N_1 до обрыва траектории и статистическая оценка среднеквадратической погрешности $\sigma_{N_1} = \sqrt{VN_1/M}$. Каждое "дерево" траекторий моделировалось с использованием "метода поколений" [5], причем размер максимального поколения в процессе расчета при $M = 10^8$ для $I_1 = 12.5$ составил 42, а для $I_1 = 100$ был меньше 281.

Таблица 1. Оценка функционала I_1 при молекулярном рассеянии для различных значений коэффициентов поглощения. Критическое значение $\sigma_c = 0.0787$

М	$\sigma_c = 0.078$ $I_1 = 12.8205$			$\sigma_c = 0.04$ $I_1 = 25$		
	$EI_1 \pm \sigma_M$	VI_1	$EN_1 \pm \sigma_{N_1}$	$EI_1 \pm \sigma_M$	VI_1	$EN_1 \pm \sigma_{N_1}$
10^{6}	12.8195 ± 0.0181	327	24.9621 ± 0.0393	25.0315 ± 0.0482	2326	53.3291 ± 0.1094
10^{7}	12.8209 ± 0.0057	328	25.7019 ± 0.0129	25.0287 ± 0.0152	2316	53.3240 ± 0.0345
10^{8}	12.8215 ± 0.0018	328	25.7034 ± 0.0040	25.0045 ± 0.0048	2315	53.2685 ± 0.0109

	$\sigma_c = 0.02$			$\sigma_c = 0.01$		
M	$I_1 = 50$			$I_1 = 100$		
	$EI_1 \pm \sigma_M$	VI_1	$EN_1 \pm \sigma_{N_1}$	$EI_1 \pm \sigma_M$	VI_1	$EN_1 \pm \sigma_{N_1}$
10^{6}	50.1854 ± 0.1356	18399	110.4323 ± 0.3082	100.3426 ± 0.3803	144659	224.4130 ± 0.8644
10^{7}	49.9485 ± 0.0425	18093	109.8955 ± 0.0966	100.0448 ± 0.1199	143890	223.7361 ± 0.2726
10^{8}	50.0104 ± 0.0134	18121	100.0051 ± 0.0378	100.0051 ± 0.0378	143443	223.6458 ± 0.0861

Автор выражает благодарность члену-корреспонденту РАН Г.А. Михайлову и д.ф.-м.н. Ухинову С.А. за полезные советы и замечания.

Список литературы

- [1] Марчук Г.И., Михайлов Г.А., Назаралиев М.А. и др. Метод Монте-Карло в атмосферной оптике. Новосибирск: Наука, 1976 [Engl.transl.: Springer-Verlag, 1980]
- [2] Михайлов Г.А. Оптимизация весовых методов Монте-Карло. М.: Наука, 1987 [Engl.transl.: Springer-Verlag, 1992].
- [3] Михайлов Г.А., Медведев И.Н. Оптимизация весовых алгоритмов статистического моделирования. Новосибирск: Омега Принт, 2011. – 304 с.
- [4] Г. А. Михайлов, С. А. Ухинов, А. С. Чимаева Дисперсия стандартной векторной оценки метода Монте-Карло в теории переноса поляризованного излучения// Ж. вычисл. матем. и матем. физ., Т.46, № 11, 2006, 2099–2113
- [5] Ермаков С.М., Михайлов Г.А. Статистическое моделирование. М. Наука, 1982.
- [6] I.N.Medvedev, G.A.Mikhailov. Probabilistic-algebraic algorithms of Monte Carlo methods // Russian Journal of Numerical Analysis and Mathematical Modelling. – 2011. - Vol. 26, № 3. – P. 323-336
- [7] I.N. Medvedev, Vector estimators of the Monte Carlo method with a finite variance //Russian Journal of Numerical Analysis and Mathematical Modelling, 2013, Vol. 28, No. 3, P. 231–244.