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Goal of the project

We consider sewing machinery between finite difference and
analytical solutions defined at different scale: far away and near
source of the perturbation of the of the flow. One of the essences of
the approach is that coarse problem and boundary value problem in
the proxy of the source model two different flows. We are proposing
method to glue solution via total fluxes, which is predefined on coarse
grid. It is important to mention that the coarse solution "does not see"
boundary.
From industrial point of view our report can be considered as a
mathematical "shirt" on famous Peaceman well-block radius formula
for Darcy radial flow but can be applied in much more general
scenario.
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Peaceman Problem
Let U = Ū \ B0 be domain of flow generated by well-source
Bw = B(0, rw ) ⊂ B0,0 ⊂ Rd , d = 1, 2.
Let UN = ∪Bi,j be discreet domain, of characteristic size∆, and
uN(s) = (u(i, j, s)) , i, j = · · · − 1, 0,+1 · · · be the numerical solution as a
matrix.
It is natural to assume that the block which doesn’t contains source numerical
value associate(close to) to average value of analytical solution.

Problem 1

How numerical value of u(0, 0, s) in the box B0,0 associate to value of
analytical solution of corresponding BVP on the well Bw .

To solve this problem we use sewing machinery based on the Material
Balance (MB) equation.

Figure 1: Domain Discretization and Numerical Solution 3 / 32



Material Balance(MB), From Einstein Paradigm of Brownian Motion

Bi,j , i , j = −1, 0, ,pi,j characterise density in each box Bi,j i = j 6= 0.

τ · K−x · (p−r0,0(s)− p−1,0(s)) = τ · q−x (s) + Q−x (p−r0,0(s + τ)− p−r0,0(s))

τ · K +
x · (pr0,0 − p1,0) = τ · q+

x (s) + Q+
x (p−r0,0(s + τ)− p−r0,0(s))

τ · K−y · (p0,−r0 − p0,−1) = τ · q−y (s) + Q−y (p−r0,0(s + τ)− p−r0,0(s))

τ · K +
y · (p0,r0 − p0,1) = τ · q+

y (s) + Q+
y (p0,r0 (s + τ)− p0,r0 (s))

Figure 2: Material Balance Generic Einstein Model of Random Jumps
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Geometrical Interpretation of Classical MB
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Figure 3: Einstein Mat balance equation on the 5 spots grid
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Symmetric Flows in All

Denote:

qx = q−x + q+
x qy = q−y + q+

y , Qx = Q−x + Q+
x Qy = q−y + Q+

y , (1.1)

and
q = qx + qy ,Q = Qx + Qy , (1.2)

Assume symmetry and anisotropy assumptions w.r.t. + and −.

K−x = K +
x = Kx ; K−y = K +

y = Ky (1.3)

q−x = q+
x =

qx

2
q−y = q+

y =
qy

2
cdots, and (1.4)

p−r0,0 = pr0,0 = px
r0

p−1,0 = p1,0 = px
1 (1.5)

p0,−r0 = p0,r0 = py
r0 p0,−1 = p0,1 = py

1
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Material Balance, From Einstein Paradigm, Symmetric and Isotropic Case

The goal of the project is to find R0 which can be assigned to match
calculated pressure in the block containing well to actual pressure at
each point of the flow near well. Material Balance in general for
transient flow has a form

4K · (p0(s)− p1(s)) = −q + ϕCp
V0

V
· p0(s + τ)− p0(s)

τ
(1.6)

We consider three scenario
1 Steady State(SS)(This case was considered for Linear Darcy flow by

Peaceman)
2 Pseudo State(PSS)
3 Boundary Dominated (BDD)
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One dimensional and Two Dimensional Precursor for
Material Balance

If one will assume that (py
r0 (s)− py

1 (s) = 0,(
py

r0 (s + τ)− py
r0 (s)

)
, andqy (s) = 0 then we will get a precursor for 1-D MB

which in the case of symmetry in x - direction will take a form

τ · 2 · Kx ·
(
px

r0 (s)− px
1 (s)

)
= τ · qx (s) + Qx · 2

(
px

r0 (s + τ)− px
r0 (s)

)
. (1.7)

As a precursor for 2-D MB which in case of symmetry and anisotropy(
pr0 = px

r0 = py
r0 , · · · and anisotropy: Kx = Ky letting q(s) = qx (s) + qy (s) and

Q(s) = Qx (s) + Qy (s) we will take a form

τ · 4 · K · (pr0 (s)− p1(s)) = τ · q(s) + Q(s) · 4 (pr0 (s + τ)− pr0 (s)) . (1.8)
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Finite Difference Motivation

L · (∆x · ∆y · h) ·
(

pi,j (t + τ) − pi,j (t)
)

= (1.9)

τ ·

Jh

∆y

∆x
(pi−1,j (t) − 2pi,j (t) + pi+1,j (t)) +

∆x

∆y
(pi,j−1(t) − 2pi,j (t) + pi,j+1(t))

 + Iδi,j

 ,
p = 0 on ∂Ω × (−∞,∞).

Here δi,j is Kronecker symbol. Equation above is basic and can be applied in 1 − D and 2 − D cases, although has in both cases many
similarities but it differ due to differences in the geometry of flow. Let thicknessh = 1 of the reservoir is constant and

I = q . (1.10)

then
1 Radial Material Balance Equation

Under assumption of 2 − D symmetry let

∆ = ∆x = ∆y . (1.11)

Then equation (1.9) can be simplified as

L · ∆2 (p0(t + τ) − pi,i (t)
)

= τ
(

4 · J ·
(
p1(t) − p0(t)

)
+ qδi,j

)
, (1.12)

B(p) = 0 on ∂Ω × (−∞,∞), B(·) − boundary operator.

2 1-D Material Balance
Under assumption 1-D Symmetry let ∆y = const , and ∆ = ∆x then MB takes form

L · ∆ · ∆y
(

p0(t + τ) − pi,i (t)
)

= τ

(
2 · (J · ∆y ) ·

(
p1(t) − p0(t)

)
∆

+ qδi,j

)
, (1.13)

B(p) = 0 on ∂Ω × (−∞,∞), B(·) − boundary operator.
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2-D Steady State (SS), and Geometry of the Flow
Under symmetry and isotropic condition follows Basic Linear Balance
Equation of the form

4K · (p0 − p1) = q (1.14)

Figure 4: Domain of the Flow with source at 0
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Back to Material Balance as Sewing Machinery
Under symmetry and isotropic condition follows Basic Linear Balance
Equation of the form

4K · (p0 − p1) = q (1.15)

Δ

Δ3

4

2

1𝑅!

Δ = 𝑅1

𝜃

𝑟"

Figure 5: Five spot Grid of size ∆ and well at a center, and auxiliary U(0,Rw ,R1) and U(0,Rw ,R0)
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Peaceman as Inverse Problem .

p1 − p0 = α
1
4

q, here α =
µ

kh
. (1.16)

Analytical solution

p(r) = α
q

2π
ln

r
R1

+ p(R1). here α =
µ

kh
. (1.17)

Peaceman Well-Posedness in can be stated as

Problem 2
Let value of p1 and p0 relate by material balance (1.16).Let
θ < R0 < ∆. Find R0 s.t.

p(θ) = α
q

2π
ln

θ

R0
+ p0, (1.18)

and
p(θ) = α

q
2π

ln
θ

∆
+ p1. (1.19)

12 / 32



Peaceman’s Well Block Radius

Theorem 3

Assume that total rate of the production q and size of the grid ∆ are
given. Assume that single fully penetrated well located at the center

of the numerical block [−∆

2
,

∆

2
]2. Let Rw is such that ln

∆

θ
>
π

2
Then

necessary and sufficient conditions that guarantee Peaceman well
posedness is

ln
∆

R0
=
π

2
.

Interpretation in this section of the Peaceman paper is made directly
without significant modification. But it is already clear that main aim is
to sew numerical and analytical solutions formulated on the different
scale to provide needed information for tuning procedure between
numerical solution and observed Data throw relation

p(r) = α
q

2π
ln

r
R0

+ p0
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Another view on the problem

p1 − p0 =
α

4
q (1.20)

p1 − pw =
α

2π
q ln

∆

Rw
(1.21)

p0 − pw =
α

2π
q ln

R0

Rw
(1.22)

Theorem 4

Assume that q and pw solve equation for given p1

q =
2πk
µ

p1 − pw

ln ∆
Rw

= 2πα−1 p1 − pw

ln ∆
Rw

. (1.23)

Then, if R0 satisfy equation

R0 = ∆ · e−π2 (1.24)

system (1.20)-(1.22) has a solution for any mutually related
p1, p0,and pw
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Two Terms Forchheimer Peaceman

− ∂p
∂r

= α1vr + βvr |vr | (1.25)

In (1.25) if β = 0 one can get classical Darcy equation. Due to 1− D
continuity equation radial velocity

vr = − q
2πr

(1.26)

for any r > 0 if total rate (over well) q is fixed. From (1.25) and(1.26)
follows

∂p
∂r

= α1
q

2πr
+ β

q
4π2r2 (1.27)

p
∣∣
r=R2
− p

∣∣
r=R1

= f2 − f1 =
α1q
2π

ln
R2

R1
+ β

q
4π2

(
1

R1
− 1

R2

)
(1.28)

Figure 6: General Annual Domain U

I

Theorem 5

Assume that q and pw solves quadratic equation

p1 − pw =
α

2π
q ln

∆

Rw
+ β

q2

4π2

(
1

Rw
− 1

∆

)
(1.29)

Then, if R0 satisfy equation

R0 = ∆ · e−δ π2 (1.30)

system (1.34)-(1.36) has a solution for any mutually related
p1, p0,and pw if δ satisfies equation

δ + β
q
απ2

(
eδ

π
2

∆
− 1

∆

)
= 1 (1.31)
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Forchheimer Continue

Consider flow from ∂B(0,R2) to ∂B(0,R1) in the annular domain
U(see Fig. 6):

U = B(0,R2) \ B(0,R1), with fixed total rate q =

∫
S

v(r)ds, ,

Given pressure on one of the boundaries ∂B(0,Ri ) :

p(r)
∣∣
r=Ri

= fi for i = 1 or 2.
(1.32)

From basic integration follows explicit formula for generic solution for
two terms Forchheimer law:

p(r) =
α1q
2π

ln r − β q
4π2

1
r

+ constant (1.33)

Then using boundary conditions in (1.32) one can get a generic
formula for pressure depletion between two contours(∂B(0,Ri )) of the
boundary of annular domain U(0,R1,R2) = B(0,R2) \ B(0,R1).
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Forcheimer Continue

We will hypothesise that on coarse greed material balance is still
linear, whether near well correction is due to Forchheimer type
of non-linearity. From Linear Material Balance Equation (1.20) and
(1.28) with β 6= 0 follows the system of 3 equations:

p1 − p0 =
α

4
q (1.34)

p1 − pw =
α

2π
q ln

∆

Rw
+ β

q2

4π2

(
1

Rw
− 1

∆

)
(1.35)

p0 − pw =
α

2π
q ln

R0

Rw
+ β

q2

4π2

(
1

Rw
− 1

R0

)
(1.36)
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Peaceman analogue of Well block radius for
Non-linear Flow

Theorem 6

Assume that q and pw solves quadratic equation

p1 − pw =
α

2π
q ln

∆

Rw
+ β

q2

4π2

(
1

Rw
− 1

∆

)
(1.37)

Then, if R0 satisfy equation

R0 = ∆ · e−δ π2 (1.38)

system (1.34)-(1.36) has a solution for any mutually related
p1, p0,and pw if δ satisfies equation

δ + β
q
απ2

(
eδ

π
2

∆
− 1

∆

)
= 1 (1.39)
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Engineering Findings for steady state (SS) case
Peaceman well block radius Rss

0 for Steady State (SS) MB, case
Cp = 0 Let pss

an(r) is pressure distribution of Steady state Problem in
the reservoir then Rss

0 explicitly can be obtained on ∆ geometric
characteristic size of the grid, such that function pss

an obey Steady
state material balance (SS-MB) namely

p1 = pss
an(r)

∣∣∣
|r |=∆

(1.40)

p0 = pss
an(r)

∣∣∣
|x|=Rss

0

(1.41)

. Here p1 and p0, obtained from numerical simulation of the process
on the grid of size ∆ and Rss

0 to be found. It was proven the that

Rss
0 = e−

π
2 ·∆ . (1.42)

Rss
0 does not depend on rate of the production and external radius of

the reservoir Re and well radius rw .
This Rss

0 can be used
1 to interpret numerically calculated P0 for inverse problem
2 forecast value of the well pressure for direct problem
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Fundamentals for reservoir engineering for compressible fluid ρt (P) = cpρ(P)Pt

We do not want in R0(t) for transient flows of slightly compressible
fluid to be time dependent. For that we revisited model of the flow. It is
engineering routine well classification consider flow which modeled in
terms of pressure function p(x , t) which in fact is subject to two IBVP

p(1,2)
t = ∆p(1,2) ;

∂p1,2

∂n

∣∣∣
Γe

= 0 (1.43)

a)p1|Γw = pw , b)
∂p2

∂n

∣∣∣
Γw

= q (1.44)

Productivity Index is functional

Ji (t) =

(
ln

∫
U

pi (x , t)dx − pi
w

∣∣∣
Γw

)
t
; i = 1,2 (1.45)

It is not difficult to prove that

J1, is time ind. if p1 = eλ0tφ0(x) φ0(x)− first eigenfunction,and
(1.46)

J2, is time ind if p2 = At + w0(x),∆w0(x) = A (1.47)
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Time dependent problem PSS regime, we do not want RPSS
0 to depend on time

− 4K · (p0(s)− p1(s)) +
q
h

= ∆2 · 1 · 1
τ

(p0(s + τ)− p0(s)) , (1.48)

Let the reservoir domain U with volume V, boundary ∂U = Γe ∪ Γw
and thickness h.

Assumption 1

PSS constrain for slightly compressible fluid of compressiblity cp.
1

(p0(s + τ)− p0(s)) = q · τ

1 · V
, (1.49)

2

p0(s)− p1(s) = constant (s) independent. (1.50)

Under above constrain MB will take a form

4K · (p0(s)− p1(s)) =
q
1
·
(

1− ∆2

V

)
, (1.51)

where q and is given constant and τ are time
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PSS-Peaceman Formula

1 Peaceman well block radius Rss
0 for Pseudo Steady State

(PSS) MB In order analytical PSS solution(??)to satisfy material
balance (1.6) with constant production rate q it is sufficient

−π +
R2

0

r2
e

= −2 ·
(

ln
∆

R0

)
(1.52)
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1 Peaceman well block radius Rss
0 for Boundary Dominated

Regime (BD) MB In order analytical PSS solution to satisfy
material balance with constant pressure value on the well and
non-permeable external boundary it is sufficient
Peaceman well block radius Rss

0 for Boundary Dominated
Regime (BD) MB In order analytical PSS solution to satisfy
material balance with constant pressure value on the well and
non-permeable external boundary it is sufficient

4 ·
(
ϕ0(λ0∆)− ϕ0(λ0Rbd

0 )
)

=

∂ϕ0(λ0r)

∂r

∣∣∣
r=rw

· 2πrw ·∆ + ϕ0(λ0 · Rbd
0 ) ·

φcp

K
· e−λ

2
0τ − 1
τ

These RBD
0 which deliver solution to transcendent equation

depend on re, ∆ and τ . Expectation is that for "small"τ, τ << 1,
and big re, re/rw >> 1 above formula can be well approximated
by equation (1.53).
This equation is analogue of Peaceman formula for boundary
dominated regime of the flow. By finding R0 from this equation
we provide correct value to calculate Peaceman well radius.
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Peaceman Radius for BDD Flow for τ << 1

1

4 ·
(
ϕ0(λ0∆)− ϕ0(λ0Rbd

0 )
)

=
∂ϕ0(λ0r)

∂r

∣∣∣
r=rw

· 2πrw ·∆ (1.53)

Here ϕ0 is eigenfunction based on Bessel composition

ϕ0(λ0r) = J0(λ0rw ) · N0(λ0r)− J0(λ0r) · N0(λ0rw ) , (1.54)

and λ0 root of the transcendent equation

0 = J0(λ0rw ) · ∂N0(λ0r)

∂r

∣∣∣
r=re

− ∂J0(λ0r)

∂r

∣∣∣
r=re

· N0(λ0rw ) (1.55)

and re, and rw are exterior reservoir and well radius
2 Very recent findings

RBD
0 → RPeaceman

0 as re →∞ (1.56)

Results above are generalised on Non-Linear flows
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Some Basic Theoretical Findings Material Balance on the Five Spot Grid

We divide all area of flow into M ×M blocks. For all blocks(see fig . 4)
, 0 ≤ i ≤ M, 0 ≤ j ≤ M. For the block of interest Qi,j For the Darcy
flow can be reduced to the form:

kh∆y
µ∆x

· (pi+1,j − 2pi,j + pi−1,j ) +

+
kh∆x
µ∆y

· (pi,j+1 − 2pi,j + pi,j−1) = qi,j (1.57)

In the above equation, qi,j = 0 if i 6= 0 or j 6= 0(qi,j = q · δi,j -Kronecker
symbol). Evidently size of the block in x and y direction are
correspondingly ∆x and ∆y and are converging to 0 as M →∞. Let
us denote 2M × 2M matrix PM

PM =
(

pi,j

)
((−M≤i≤M);(−M≤j≤M))

(1.58)
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PDE Formulation of Discreet Scheme(Material Balance in Term of Pressure p(x)

Consider BVP in the bounded domain U containing source point 0(
see fig . 4) :

−∇
(

kh
µ
· ∇p

)
= q0 · δ(x) in the domain U (1.59)

p(x) = 0 on the boundary ∂U (1.60)

Here x = (x , y) and h thickness of the domain of flow. Elements of
the matrix PM represent values of of the solution of the discreet
Poisson equation with RHS localised at center (0,0) stock/source.
Let upgrade system by boundary condition.
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Small Journey to Green function semi-classics

Using classical machinery for Green function construction using
Wieners approximation of the generalised solution I expect that
following Conjecture can be proved.

Conjecture 7

Let (x , y) 6= (0,0) fixed point of the domain U. This point belong to
one of the element of the grid UM which approximates domain U. Let
pM(x , y) is solution of the system 2M × 2M, extended to be
C2(U) ∩ C0(Ū). Then as M →∞ function pM(x , y)→ G(x , y), where

G(x , y) =
1

2π
ln

1
r

+ g(x , y), r =
√

x2 + y2. (1.61)

is Green function.

27 / 32



Another more constructive approach on Green
Function

The goal is is to compute the Green’s function for the Laplace
equation in the domain Ω for homogeneous Dirichlet boundary
conditions

−∆U(x , x0) = δ(x − x0) , x ∈ Ω , x0 ∈ Ω ;

U(x , x0) = 0 on Γ = ∂Ω
(1.62)

Setting
U(x , x0) = G(x − x0) + ϕ(x , x0). (1.63)

where G is the fundamental solution

G(x − x0) = − 1
2π

ln |x − x0| . (1.64)

It follows that the corrector ϕ is the solution of

−∆ϕ(x , x0) = 0 , x ∈ Ω , x0 ∈ Ω ;

ϕ(x , x0) = −G(x − x0) on Γ = ∂Ω
(1.65)

This equation is homogeneous, and hence ϕ(·, x0) ∈ C∞(Ω).
Moreover, since we assume that x0 ∈ Ω, the boundary data in (1.64)
is a smooth function. However, the regularity of the solution ϕ in the
closure Ω̄ depends on the smoothness of Γ. Here, we assume that
the domain is such that ϕ ∈ Cm(Ω̄), for some m ≥ 2.
If we set Uh(x , x0) = G(x , x0) + ϕ(x , x0), x ∈ Ωh, then from Theorems
12 and 9 it follows easily that

Theorem 8

Let r and r0 the same as in Theorem 11, and h < r0 then

4 ·
(
Uh(x , x0)|x∈∂B(x0,r) − Uh(y , x0)|y∈∂B(x0,r0)

)
= 1 + O(r). (1.66)
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Green Function approximation

The idea of singularity correction is to solve the corrector equation
with a standard numerical method, such as the usual five point finite
difference approximation of the Laplacian, see, e.g., We denote by
ϕh(x , x0) the approximation of ϕ(x , x0) at the grid points x ∈ Ωh,
where h is the spacing. Then the following convergence result is well
known

Theorem 9

If ϕ ∈ C4(Ω) and Rh is the restriction to the grid Ωh then

|ϕh − Rhϕ|∞ ≤
h2

48
|ϕ|C4(Ω).

For a set A the oscillation of a function is defined as

oscAf = sup
x∈A

f − inf
x∈A

f .
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Property of the corrector and fundamental solution

Theorem 10

Suppose R > 0 is such that B(x0,R) ⊂ Ω, then there exist C > 0
depending on R only such that for any r < R

oscB(x0,r)ϕ(x , x0) ≤ C · r (1.67)

This follows from the smoothness of ϕ in the interior domain.

Theorem 11

For any r0 < r < R if
ln

r
r0

=
π

2
(1.68)

then

4 ·
(
G(x , x0)|x∈∂B(x0,r) −G(y , x0)|y∈∂B(x0,r0)

)
= 1 (1.69)
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Main qualitative property of the Green Function

From Theorems 1.67 and 11 follows

Theorem 12

Let r and r0 the same as in Theorem 11, then

4 ·
(
U(x , x0)|x∈∂B(x0,r) − U(y , x0)|y∈∂B(x0,r0)

)
= 1 + O(r) (1.70)
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End for To Day

THANK YOU!!!
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