27 февраля, Новосибирск

Моделирование режима диамагнитного удержания плазмы на суперЭВМ

Боронина М.А., Вшивков В.А., Генрих Е.А., Дудникова Г.И.

Институт вычислительной математики и математической геофизики СО РАН Новосибирск, Россия

Введение

MAGNETIC MIRRORS

Для удержания и нагрева плазмы с целью УТС широко распространены закрытые ловушки - токамаки. Но они дороги, технически сложны, отношение давление плазмы к давлению магнитного поля мало. В ИЯФ СО РАН сооружается установка САТ, которая позволит удерживать плазмы с β~1 в ловушке с мощной атомарной инжекцией.

Работа посвящена численному моделированию формирования диамагнитного «пузыря" в открытой магнитной ловушке, когда внешнее магнитное поле практически полностью вытесняется высокотемпературной плазмой.

https://cosmosmagazine.com/technology/lockheed-s-fusionproject-breaking-new-ground

A.D. Beklemishev. Diamagnetic Plasma Confinement in Linear Traps // TH/P3-39. Fec 16 preprints, 2017.

пробками Ловушка на краях имеет цилиндрическую форму радиуса Rmax и длины Zmax. Две коаксиальные катушки с током у краев цилиндра порождают магнитное поле. В начальный момент времени магнитное поле на оси в центре области Во, ловушка заполнена фоновой водородной плазмой плотности по. Источник нейтральных частиц расположен в центре области. Быстрая ионизация обеспечивает инжектированные ионы и электроны, и далее происходит взаимодействие плазмы с полями. Теоретически эволюция системы ведет К

образованию насыщенного частицами диамагнитного "пузыря", т.е. в этом режиме давление плазмы близко к теоретическому пределу ($\beta = 1$), магнитное поле в занятой плазмой области близко к нулю, а в тонком слое на границе плазмы быстро возрастает.

Кинетическое уравнение Власова

Уравнения Максвелла

$$\frac{\partial f_i}{\partial t} + \vec{v} \frac{\partial f_i}{\partial \vec{r}} + \frac{\vec{F}_i}{m_i} \frac{\partial f_i}{\partial \vec{v}} = 0$$
$$\vec{F}_i = e\left(\vec{E} + \frac{1}{c}\left[\vec{v}, \vec{B}\right]\right) + R_i$$
$$n_i(\vec{r}) = \int f_i(t, \vec{r}, \vec{v}) d\vec{v}$$
$$\vec{V}_i(\vec{r}) = \frac{1}{n_i(\vec{r})} \int \vec{v} f_i(t, \vec{r}, \vec{v}) d\vec{v}$$

МГД уравнения

$$-e\vec{E} - \frac{e}{c}\left[\vec{V_e}, \vec{B}\right] - \frac{\nabla p_e}{n_e} + \vec{R_e} = m_e \frac{d\vec{V}}{dt}$$
$$\vec{R_e} = -m_e \frac{\vec{V_e} - \vec{V_i}}{\tau_{ei}}$$

 $\frac{1}{c}\frac{\partial \vec{E}}{\partial t} = rot\vec{B} - \frac{4\pi}{c}\vec{j}$ $\frac{1}{c}\frac{\partial \vec{B}}{\partial t} = -rot\vec{E}$ $\frac{1}{c}\frac{\partial \vec{B}}{\partial t} = -rot\vec{E}$ $\vec{j} = e\left(n_i\vec{V}_i - n_e\vec{V}_e\right)$ $div\vec{E} = 4\pi\rho$ $\rho = e\left(n_i - n_e\right)$

Начальные и граничные условия

t=0

Сеточные функции на внешних границах имеют нулевые производные, на оси – нулевые значения или нулевые производные.

Отражение частиц от границ

$$\begin{aligned} V_{ir} \Big|_{z=0, z=Z \max} &= -V_{ir} \\ V_{iz} \Big|_{r=0, r=R \max} &= -V_{iz} \end{aligned}$$

 $0 \le r \le R_{\max}$ $0 \le z \le Z_{\max}$

✓Цилиндрическая система координат (аксиальная симметрия) ✓ Гибридная модель, ионы описываются кинетически, электроны - МГД ✓ Метод частиц-в-ячейках с ядром PIC ✓ Разнесенные на полшага сетки Схема Бориса для частиц Смешанная Эйлеро-Лагранжева декомпозиция

Метод частиц в ячейках

 $r_j^m z_j^m V_{jr}^m V_{j\varphi}^m V_{jz}^m$

РІ-Эдро

h

PIC

Покомпонентно

$$\frac{dV_{ir}}{dt} = E_r + V_{ij} B_z - V_{iz} B_j + \frac{V_{ij}^2}{r} - \frac{k}{n_e} j_r$$
$$\frac{dV_{ij}}{dt} = E_j + V_{iz} B_r - V_{ir} B_z - \frac{V_{ij} V_{ir}}{r} - \frac{k}{n_e} j_j$$
$$\frac{dV_{iz}}{dt} = E_z + V_{ir} B_j - V_{ij} B_r - \frac{k}{n_e} j_z$$

$$-\frac{\P B_j}{\P z} = j_r$$
$$\frac{\P B_r}{\P z} - \frac{\P B_z}{\P r} = j_j$$
$$\frac{1}{r} \frac{\P (rB_j)}{\P r} = j_z$$

$$j_r = n_i V_{ir} - n_e V_{er}$$

$$j_j = n_i V_{ij} - n_e V_{ej}$$

$$j_z = n_i V_{iz} - n_e V_{ez}$$

$$E_{r} = V_{ez}B_{j} - V_{ej}B_{z} - \frac{1}{2n_{e}}\frac{\P p_{e}}{\P r} + \frac{k}{n_{e}}j_{r}$$

$$E_{j} = V_{er}B_{z} - V_{ez}B_{r} + \frac{k}{n_{e}}j_{j}$$

$$E_{z} = V_{ej}B_{r} - V_{er}B_{j} - \frac{1}{2n_{e}}\frac{\P p_{e}}{\P z} + \frac{k}{n_{e}}j_{z}$$

$$\frac{\P B_{r}}{\P z} = -\frac{\P E_{j}}{\P z}$$

$$\frac{\P B_{j}}{\P t} = -\frac{\P E_{r}}{\P z} + \frac{\P E_{z}}{\P r}$$

$$\frac{\P B_{z}}{\P t} = -\frac{1}{r}\frac{\P (rE_{j})}{\P r}$$

 $n_{e}\left(\frac{\partial T_{e}}{\partial t} + \left(\vec{V}_{e}\nabla\right)T_{e}\right) = n_{e}\left(\gamma - 1\right)\left[2\kappa\frac{j_{r}^{2} + j_{\varphi}^{2} + j_{z}^{2}}{n_{e}^{2}} + \frac{k}{n_{e}}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T_{e}}{\partial r}\right) + \frac{\partial}{\partial z}\left(r\frac{\partial T_{e}}{\partial z}\right)\right) - T_{e}\left(\frac{1}{r}\frac{\partial(rV_{er})}{\partial r} + \frac{\partial V_{ez}}{\partial z}\right)\right]$

Магнитное поле

$$\frac{\partial \vec{B}}{\partial t} = -rot\vec{\mathcal{E}}^* - rot\vec{\mathcal{E}}_{\nabla} - rot\kappa\vec{U}$$

$$B_{r\ i-1/2,k}^{m+1} = B_{r\ i-1/2,k}^{m} + \frac{\tau}{h_z} \left(\mathcal{E}_{\varphi\ i-1/2,k+1/2}^{m+1} - \mathcal{E}_{\varphi\ i-1/2,k-1/2}^{m+1} \right) + \frac{\tau\kappa}{h_z} \left(U_{\varphi\ i-1/2,k+1/2}^m - U_{\varphi\ i-1/2,k-1/2}^m \right)$$

$$B_{\varphi \ i,k}^{m+1} = B_{\varphi \ i,k}^{m} + \tau G_{i,k} + \frac{\tau}{h_r} \left(\mathcal{E}_{z \ i+1/2,k}^* - \mathcal{E}_{z \ i-1/2,k}^* \right) + \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i-1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) - \frac{2\tau\kappa}{h_r} \left(U_{z \ i+1/2,k}^m - U_{z \ i+1/2,k}^m \right) \right)$$

$$-\frac{\tau}{h_z} \left(\mathcal{E}^*_{r\ i,k+1/2} - \mathcal{E}^*_{r\ i,k-1/2} \right) - \frac{2\tau\kappa}{h_z} \left(U^m_{r\ i,k+1/2} - U^m_{r\ i,k-1/2} \right)$$

$$\begin{split} B_{z\ i,k-1/2}^{m+1} &= B_{z\ i,k-1/2}^m - \frac{\tau}{h_r r_i} \left(r_{i+1/2} \mathcal{E}_{\varphi\ i+1/2,k-1/2}^{m+1} - r_{i-1/2} \mathcal{E}_{\varphi\ i-1/2,k-1/2}^{m+1} \right) - \\ &- \frac{\tau \kappa}{h_r r_i} \left(U_{\varphi\ i+1/2,k-1/2}^m - U_{i\varphi\ i-1/2,k-1/2}^m \right) \end{split}$$

$$\begin{aligned} G_{i,k} &= \frac{1}{4h_r h_z \bar{n}_{ik}} \left[\left(T_{i+1/2,k+1/2} - T_{i-1/2,k-1/2} \right) \left(n_{i+1/2,k-1/2} - n_{i-1/2,k+1/2} \right) + \left(T_{i-1/2,k+1/2} - T_{i+1/2,k-1/2} \right) \left(n_{i+1/2,k+1/2} - n_{i-1/2,k-1/2} \right) \right] \end{aligned}$$

Особенности задачи

- Размер "пузыря" ~ 10 х 100 см, радиус Лармора ~ 1 ст, минимальное разрешение сетки на один радиус Лармора 10 узлов, поэтому требуется сетка в 100 х 1000 узлов.
- Характерные времена ~ 10⁴ω_{ci}⁻¹, каждая единица времени ~10⁴ временных шагов, поэтому требуется ~10⁸ временных шагов.
- 3. Условная устойчивость определяет максимальный возможный временной шаг.
- 4. Постоянная инжекция ведет к увеличению числа частиц.
- 5. В каждой ячейке ј фоновых ионов. Сетка с NxNy узлами требует jNxNy фоновых ионов. Измельчение сетки обязательно ведет к увеличению числа фоновых ионов.
- 6. Неравномерное распределение частиц в области.

Декомпозиция

Область делится на подобласти, за каждую подобласть отвечает группа ядер. Частицы этой В подобласти распределены равномерно между ядрами. Каждое ядро группы обрабатывает свои частицы и посылает плотности и средние скорости главному ядру группы. Главные процессоры группы работают только с сеткой, а также рассылают сеточные значения по своей группе.

В начальный момент частицы фона распределяются по ядрам внутри группы. Инжектируемая частица записывается в следующее в своей группе ядро (mod Nc(j)).

При вылете из подобласти массив частиц пересылается одному из процессоров соседней группы (mod Nc(j+1)).

Цикл по времени

Численные эксперименты

Размер области Плотность фона Поле на оси 137 см х 684 см 10е12 см⁻³ 0.2кГс Плотность ионов Температура ионов Скорость ионов 10е14 см ⁻³ 10 эВ 4.4е6см/сек Единица длины 22.8 см Единица времени 5е-8 сек Скорость Альфвена 4.4е8 см/сек

Электропроводность	0.2
Теплопроводность	0.1

Сетка	200 x 600
Временной шаг	2e-4
Количество вр. ша	гов 5е5
Частицы	4.5e6
Фоновые ионы	4.8e5
Количество групп	30
Количество ядер	60
Время расчета	82 ч

В момент времени Т=100 количество частиц в центральных ядрах 240 000

Время вычислений

$np_0 - np$	10 - 10	10 - 30	15 - 30	30 - 30	30 - 72
Ion motion	46423	14261	17652	31585	15338
Currents	52639	11335	12380	32377	4290
Particle exchanges	17	17	24	19	17
MPLBcast + MPLReduce	7	17	22	6	15
Eulerian stage	164	300	204	40	65
Grid exchanges	54	56	70	46	43
Total time	99455	26071	30549	64238	19898

ССКЦ СО РАН

	однопроцессорная версия, сек	15-15, сек	15-32, сек
Intel Xeon Phi 7290 (KNL)	10300	4650	1070
Intel Xeon E5-2697A v4 (Broadwell)	2100	1100	боо
Intel Xeon Platinum 8268 (CascadeLake)	1720	875	370
Intel Xeon Platinum 8268 (CascadeLake) avx512	1500	770	367

Заключение

Реализована двумерная гибридная модель для изучения динамики плазмы в открытых магнитных ловушках. Код для цилиндрической системы координат на основе метода частиц сочетает в себе распараллеливание как по области, так и по частицам.

Проведенные численные эксперименты показали, что

- модель работоспособна
- смешанная декомпозиция и подходящий выбор конфигурации ядер в группах позволяет существенно ускорить расчеты

- требуется динамическая балансировка загрузки

Спасибо за внимание!