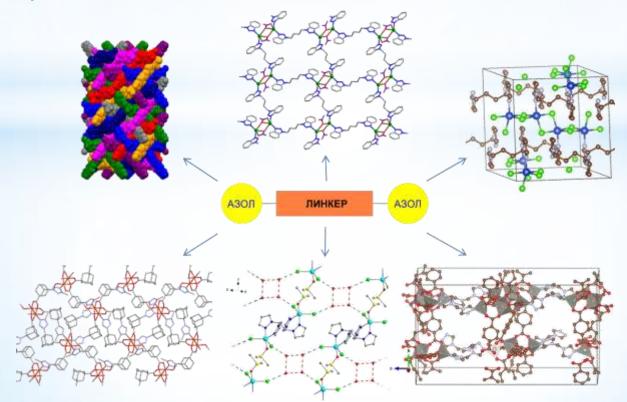
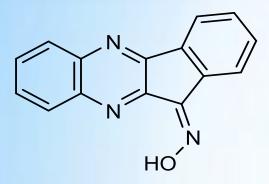


Потапов Андрей Сергеевич доктор химических наук, ведущий научный сотрудник Лаборатория металл-органических координационных полимеров Институт неорганической химии им. А.В. Николаева СО РАН

28 ноября 2019 г.

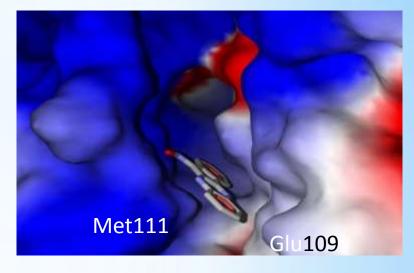

Потапов Андрей Сергеевич

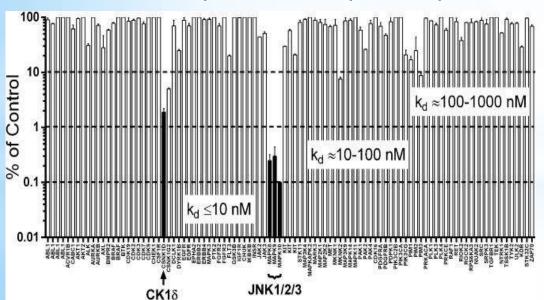
доктор химических наук, ведущий научный сотрудник

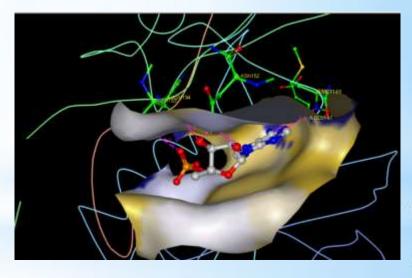

Алтайский государственный технический университет им. И.И. Ползунова (г. Барнаул), кафедра химической технологии, 2004-2014 гг.

Томский политехнический университет, кафедра биотехнологии и органической химии (НОЦ Н.М. Кижнера), 2014-2019 гг.


Институт неорганической химии им. А.В. Николаева СО РАН, лаборатория металл-органических координационных полимеров, 2019-н.в.


Синтез и установление структуры новых ингибиторов JNK3 киназы

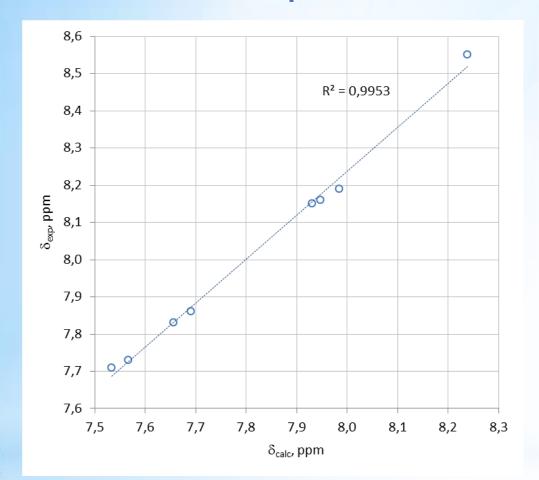

11H-индено[1,2-b]хиноксалин-11-он оксим (IQ-1)

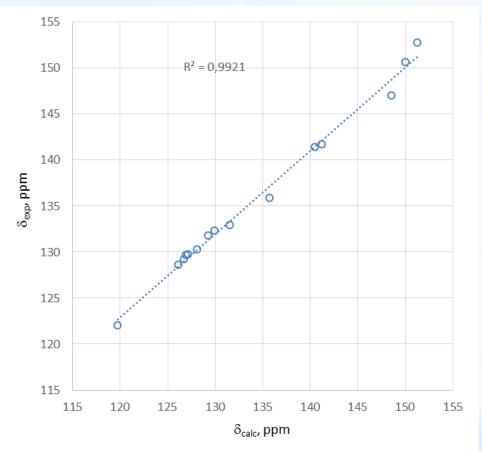

Нативный лиганд JNK3 аденозинмонофосфат

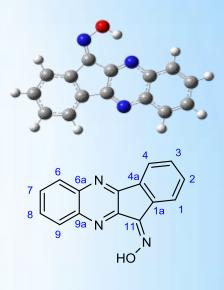
- плоская молекула
- доноры и акцепторы водородной связи

Ингибирование JNK3 снижает долю поврежденных в результате окислительного стресса клеток

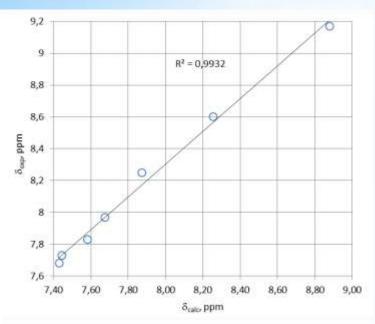
Синтез и установление структуры новых ингибиторов JNK3 киназы

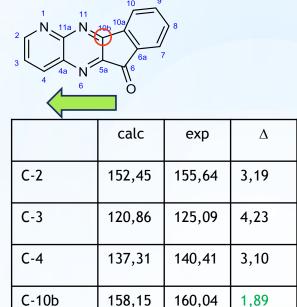

только один из изомеров!


10*H*-индено[1,2-*b*]пиридо[3,4-*e*]пиразин-10-он


90 : 10 (какой преобладает?) 6*H*-индено[1,2-*b*]пиридо[3,2-*e*]пиразин-6-он

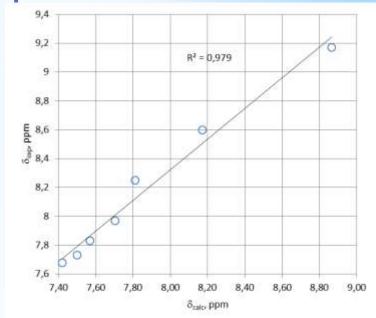
90:10

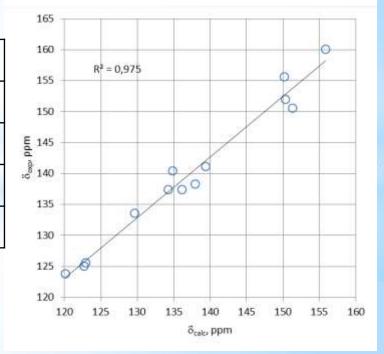

	G _{rel} , kJ/mol					
	B3LYP/ 6-31+G(d), gas	B3LYP/6- 311++g(2d,p) IEFPCM	M11/6- 311++g(2d,p) gas	M11/6- 311++g(2d,p) IEFPCM	M11/6- 311++g(2d,p) SMD	CBS-4M, IEFPCM
IQ1-Z0	0	0	0	1,25	1,84	8,57
IQ1-Z180	9,17	0,0022	10,05	6,27	23,88	9,79
IQ1-E180	3,65	3,2·10 ⁻⁵	4,23	0	0	0

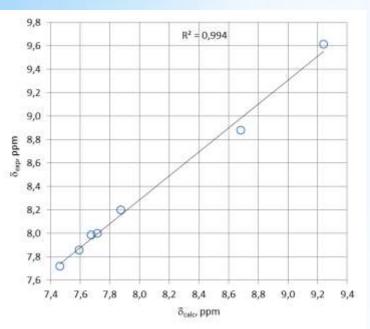


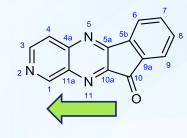


Расчет констант магнитного экранирования B3LYP/6-311+G(2d,p) // GIAO WP04/6-311+G(2d,p) // IEFPCM (DMSO) Коэффициенты для пересчета констант в химические сдвиги 1H и 13C относительно TMC: E. Benassi // J. Comp. Chem. **2017**. *38*. 87

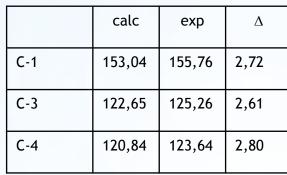


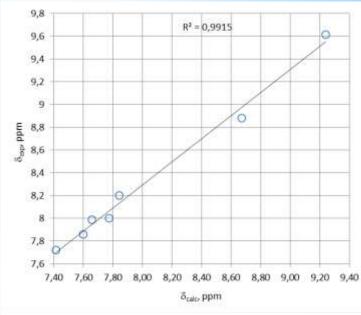

	165				1				
	160 —			-				-	9
	155		+	+	R2 =	0,994		9/	
	150		+	+		,,,,,	ø)	
mdo	145		+	+		/		-	-
S _{exp} , ppm	140		+		200	6		-	
	135				90			-	-
	130		/	1				-	
	125 —	86	-						
	120 -	120	125	130	135 1	40 14	15 150	155	16

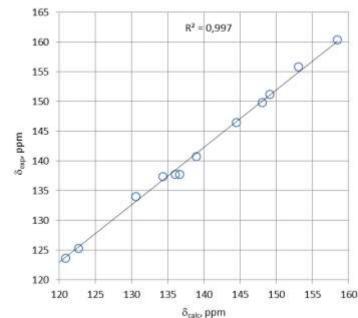

S_{calo}, ppm

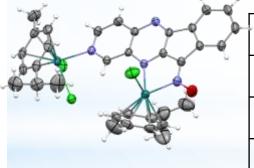

	calc	exp	Δ
C-1	134,89	140,41	5,52
C-2	122,89	125,56	2,67
C-3	150,17	155,64	5,47
C-10b	155,82	160,04	4,22

B3LYP/6-311+G(2d,p) // GIAO WP04/6-311+G(2d,p) / IEFPCM (CHCl₃)E. Benassi // J. Comp. Chem. 2017. 38. 87

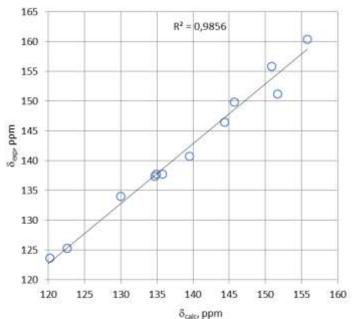








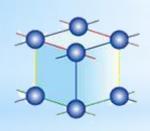
3 N	5 1a N 5a	5b 8
2 1	1a N 10a	9a 9
	11	•



*	calc	ехр	Δ
C-1	119,90	122,37	2,47
C-2	145,74	149,84	4,10
C-4	150,92	155,76	4,84

B3LYP/6-311+G(2d,p) // GIAO WP04/6-311+G(2d,p) / IEFPCM (CHCl₃) E. Benassi // J. Comp. Chem. **2017**. *38*. 87

Благодарности


Томский политехнический университет к.х.н. Кузнецова А.С.

ИНХ СО РАН

к.х.н. Сухих Т.С.

Shihezi University

Dr. Enrico Benassi

Сибирский СуперКомпьютерный Центр ИВМиМГ СО РАН

