Разработка численных методов и алгоритмов расчета волновых сейсмических полей в средах с локальными осложняющими факторами

Лисица Вадим Викторович

Диссертация на соискание ученой степени доктора физико-математических наук по специальности 05.13.18 – Математическое моделирование, численные методы и комплексы программ

Объект исследования

Объект исследования - численные методы и алгоритмы на предмет их комплексирования для расчета волновых сейсмических полей с учетом локальных осложняющих факторов среды (скоплений мелкомасштабных неоднородностей, анизотропных формаций, вязкоупругих включений, топографии свободной поверхности).

Актуальность

Анизотропия + вязкоупругость

Ś	Шаг сетки	6.25 м
3	Число точек	10 ⁹
	RAM/одну задачу	0.5 Тб
	Машинное время	5·10 ³ ядро-ч
	Число источников	$4 \cdot 10^4$
	Общее время	2·10 ⁸ ядро-ч

Гибридные алгоритмы

Топография свободной поверхности или дна

Вязкоупругость

Анизотропия

Мелкомасштабные

неоднородности

Научные задачи

- На основе локального измельчения сеток для конечно-разностных схем разработать численный метод и алгоритмы расчета волновых сейсмических полей в средах со <u>скоплениями мелкомасшатабных</u> <u>неоднородностей (с системами каверн и трещин).</u>
- 2. Комбинированием схемы Лебедева и стандартной схемы на сдвинутых сетках разработать конечно-разностный метод и алгоритм расчета волновых сейсмических полей в средах с анизотропными формациями.
- Разработать конечно-разностный алгоритм моделирования волновых процессов в средах с <u>вязкоупругими включениями</u> на основе комбинирования обобщенной стандартной линейной модели твердого тела и модели идеально упругой среды.
- 4. Комбинированием разрывного метода Галеркина и метода конечных разностей разработать метод расчета волновых сейсмических полей в моделях <u>с резкоконтрастными границами со сложной геометрией</u>.

Содержание

- Мелкомасштабные неоднородности
- Анизотропные включения
- Среды с поглощением
- Аппроксимация резкоконтрастных границ со сложной геометрией

Содержание

- Мелкомасштабные неоднородности
 - Стандартная схема на сдвинутых сетках
 - Локальное измельчение сеток:
- Анизотропные включения
- Среды с поглощением
- Аппроксимация резкоконтрастных границ со сложной геометрией

Постановка задачи

В полупространстве z>0, определена система уравнений динамической теории упругости

$$\rho \frac{\partial u}{\partial t} = \nabla \cdot \sigma,$$
$$\frac{\partial \varepsilon}{\partial t} = \frac{1}{2} \left(\nabla u + \nabla u^T \right),$$
$$\sigma = C\varepsilon$$

Начальные условия – нулевые.

Граничные условия – свободной поверхности при z=0 и условия предельного поглощения на бесконечности (аппроксимируется введением идеально согласованных слоев или PML).

Конечно-разностная аппроксимация

$$\rho \frac{\partial u}{\partial t} = \nabla \cdot \sigma, \quad \frac{\partial \varepsilon}{\partial t} = \frac{1}{2} \left(\nabla u + \nabla u^T \right), \quad \sigma = C\varepsilon$$

Мелкомасштабные неоднородности

Локальное измельчение сеток

Сетка с шагом, сравнимым с длиной волны – 1 – 5 м.

В ограниченной подобласти.

Сетка с шагом, достаточным для дискретизации неоднородностей – 0.01 – 0.1 м

Параболические задачи:

- Кнауб Л. В., Лаевский Ю. М., Новиков Е. А. 2007, Лаевский Ю. М., Банушкина П. В. 2000; Гиперболические задачи:

- Метод конечных объемов: М. Berger et al. 1984, 1985, 1998; Calhoun D. A., Helzel C., LeVeque R. J. 2008.

- Метод конечных разностей: P. Joly, F. Collino et al. 1998, 2003,2005; J. Berenger 2006, 2009, 2011;

- Разрывный метод Галеркина: M. Dumser, M. Kaser et al. 2007; M. Grote, J. Diaz et al. 2007,2009,2010;

Измельчение сеток

пространство

Измельчение шага по времени

h

n+1

n+1/2

n

Устойчивость

Локальное измельчение сеток

Измельчение шага по пространству

Измельчение шага по пространству

Проявление флюидонасыщения

Вертикальная компонента поля

Вертикальная компонента поля

Разность сейсмограмм

Многократное рассеяние

Модельные данные

Полевые данные

Многократное рассеяние

Интенсивность рассеянной

компоненты

Анализ многократного рассеяния

• Результаты обработки предоставлены ООО "РН-КрасноярскНИПИнефть"

Образцы керна

- Конечно-разностный метод и алгоритмы расчета волновых сейсмических полей в разномасштабных средах, основанные на <u>локальном пространственно-временном измельчении шагов</u> сетки, для численного моделирования процесса рассеяния сейсмической энергии на скоплениях неоднородностей субсейсмического масштаба (коридоры трещиноватости, скопления каверн).
- Выгодным отличием предложенного метода является:
 - проведение <u>измельчения сеток по пространству и по времени на разных поверхностях</u>, что обеспечивает устойчивость;
 - применение <u>техники вложенных шаблонов</u> для расчета решения при измельчении сеток по времени, что позволяет избежать интерполяции, обеспечивает малость нефизичных отражений от границы раздела сеток (порядка 0.001 от амплитуды падающей волны) и стремление этих отражений к нулю со вторым порядком;
 - применение преобразования Фурье с фильтрацией высоких частот как для пролонгации, так и для сужения решения при измельчении пространственных шагов сетки обеспечивает устойчивость решения и низкий уровень нефизичных отражений (порядка 0.001 от амплитуды падающей волны).

Содержание

- Мелкомасштабные неоднородности
- Анизотропные включения
 - схема Лебедева
 - слабоотражающие граничные условия МРМL
 - комбинирование схемы Лебедева и стандартной схемы на сдвинутых сетках
- Среды с поглощением
- Аппроксимация резкоконтрастных границ со сложной геометрией

Уравнения упругости $\rho \frac{\partial u}{\partial t} = \nabla \cdot \sigma, \quad \frac{\partial \varepsilon}{\partial t} = \frac{1}{2} \left(\nabla u + \nabla u^T \right), \quad \sigma = C\varepsilon$

Анизотропная упругая среда $\rho \frac{\partial u}{\partial t} = \nabla \cdot \sigma, \quad \frac{\partial \varepsilon}{\partial t} = \frac{1}{2} (\nabla u + \nabla u^T), \quad \sigma = C\varepsilon$

Анизотропная упругая среда

 $\rho \frac{\partial u}{\partial t} = \nabla \cdot \sigma, \quad \frac{\partial \varepsilon}{\partial t} = \frac{1}{2} \left(\nabla u + \nabla u^T \right), \quad \sigma = C\varepsilon$ $\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\ c_{12} & c_{22} & c_{23} & c_{24} & c_{25} & c_{26} \\ c_{13} & c_{23} & c_{33} & c_{34} & c_{35} & c_{36} \\ c_{14} & c_{24} & c_{34} & c_{44} & c_{45} & c_{46} \\ c_{15} & c_{25} & c_{35} & c_{45} & c_{55} & c_{56} \\ c_{16} & c_{26} & c_{36} & c_{46} & c_{56} & c_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{xy} \end{pmatrix}$

Х

Соотношение на число точек на длину волны $\sqrt{2}N^{L} \le N^{R} \le \sqrt{3}N^{L}$

Ограничение расчетной области

M-PML – комплексная замена переменных:

$$\frac{\partial u}{\partial t} - A_1 \frac{\partial u}{\partial x_1} - A_2 \frac{\partial u}{\partial x_2} = 0 + \frac{d}{dx_1} = \left(1 + \frac{d_1}{i\omega}\right) \frac{d}{dx_1}, \quad \frac{d}{dx_2} = \left(1 + \frac{d_2}{i\omega}\right) \frac{d}{dx_2},$$
$$d_1 = d_1(x_1) > 0, \quad d_2 = \beta d_1(x_1), \quad \beta \in [0,1].$$

M-PML во временной области:

$$\frac{\partial u^{1}}{\partial t} + d_{1}u^{1} - A_{1}\frac{\partial u}{\partial x_{1}} = 0,$$

$$\frac{\partial u^{2}}{\partial t} + d_{2}u^{2} - A_{2}\frac{\partial u}{\partial x_{2}} = 0,$$

$$u^{1} + u^{2} = u.$$

Численный эксперимент

 $\frac{\varepsilon_2}{\varepsilon_1} = 0.15$

Комбинирование схем, постановка задачи

Разработать метод расчета решения волновых полей, такой, что при z<0 применяется стандартная схема на сдвинутых сетках, а при z>0 – схема Лебедева

Комбинирование схем, постановка задачи

Нефизичные моды

Уравнения теории упругости

$$\begin{bmatrix} \begin{pmatrix} \rho I & 0 \\ 0 & S \end{pmatrix} \frac{\partial}{\partial t} - \begin{pmatrix} 0 & B_x \\ B_x^* & 0 \end{pmatrix} \frac{\partial}{\partial x} - \begin{pmatrix} 0 & B_z \\ B_z^* & 0 \end{pmatrix} \frac{\partial}{\partial z} \begin{bmatrix} u \\ \sigma \end{bmatrix} = \begin{pmatrix} 0 \\ f \end{bmatrix}$$

Дифф. приближение для схемы Лебедева

$$\begin{bmatrix} \rho I & 0 & 0 & 0 \\ 0 & \rho I & 0 & 0 \\ 0 & 0 & S & 0 \\ 0 & 0 & 0 & S \end{bmatrix} \xrightarrow{\partial} \frac{\partial}{\partial t} - \begin{bmatrix} 0 & 0 & B_x & 0 \\ 0 & 0 & 0 & B_x \\ B_x^* & 0 & 0 & 0 \\ 0 & B_x^* & 0 & 0 \end{bmatrix} \xrightarrow{\partial} \frac{\partial}{\partial x} - \begin{bmatrix} 0 & 0 & 0 & B_z \\ 0 & 0 & B_z & 0 \\ 0 & B_z^* & 0 & 0 \\ B_z^* & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\partial} \frac{\partial}{\partial z} \begin{bmatrix} u^1 \\ u^2 \\ \sigma^1 \\ \sigma^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ f^1 \\ f^2 \end{bmatrix}$$

Нефизичные моды

Упругость

$$\begin{bmatrix} \begin{pmatrix} \rho I & 0 \\ 0 & S \end{pmatrix} \frac{\partial}{\partial t} - \begin{pmatrix} 0 & B_x \\ B_x^* & 0 \end{pmatrix} \frac{\partial}{\partial x} - \begin{pmatrix} 0 & B_z \\ B_z^* & 0 \end{pmatrix} \frac{\partial}{\partial z} \begin{bmatrix} u^V \\ \sigma^V \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Расщепление системы, аппроксимируемой схемой Лебедева

$$\begin{bmatrix} \begin{pmatrix} \rho I & 0 \\ 0 & S \end{pmatrix} \frac{\partial}{\partial t} - \begin{pmatrix} 0 & B_x \\ B_x^* & 0 \end{pmatrix} \frac{\partial}{\partial x} - \begin{pmatrix} 0 & B_z \\ B_z^* & 0 \end{pmatrix} \frac{\partial}{\partial z} \end{bmatrix} \begin{pmatrix} u^+ \\ \sigma^+ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{bmatrix} \begin{pmatrix} \rho I & 0 \\ 0 & S \end{pmatrix} \frac{\partial}{\partial t} - \begin{pmatrix} 0 & B_x \\ B_x^* & 0 \end{pmatrix} \frac{\partial}{\partial x} + \begin{pmatrix} 0 & B_z \\ B_z^* & 0 \end{pmatrix} \frac{\partial}{\partial z} \end{bmatrix} \begin{pmatrix} u^- \\ \sigma^- \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Нефизичные моды 3D

Условия согласования

Скорость продольной волны

Параметр Томпсона

Комбинированная схема

Схема Лебедева

Упрощенная модель Юрубчено-Тохомской зоны

Упрощенная модель Юрубчено-Тохомской зоны

Упрощенная модель Юрубчено-Тохомской зоны,

сейсмограмма ВСП

 Конечно-разностный метод и алгоритмы расчета волновых сейсмических полей в моделях среды с анизотропными включениями, основанные на <u>локальном</u> применении схемы Лебедева с оптимальным выбором параметров идеально согласованного слоя

К особенностям метода относятся:

- комбинирование конечно-разностных схем на основе требования высокого порядка сходимости коэффициентов нефизичных отражений к нулю, что обеспечивает малость этих отражений;
- использование <u>многоосного идеально-согласованного слоя</u> с оптимальным стабилизирующим параметром, для обеспечения минимальность нефизичных отражений от границ расчетной области для заданной анизотропной модели;
- применение модификаций коэффициентов схемы, основанных на методе осреднения анизотропных тонкослоистых пропластков, обеспечивает второй порядок сходимости численного решения для моделей сред с резкоконтрастными границами.

Содержание

- Мелкомасштабные неоднородности
- Анизотропные включения
- Среды с поглощением
 - особенности аппроксимации
 - параллельная реализация гибридного алгоритма
- Аппроксимация резкоконтрастных границ со сложной геометрией

Теория упругости $\rho \frac{\partial u}{\partial t} = \nabla \cdot \sigma, \quad \frac{\partial \varepsilon}{\partial t} = \frac{1}{2} \left(\nabla u + \nabla u^T \right), \quad \sigma = C * \frac{\partial \varepsilon}{\partial t}.$

Идеально упругая среда

Вязкоупругая

$$\tau_{\sigma,l} \frac{\partial r^{l}}{\partial t} = -C_2 \frac{\partial \varepsilon}{\partial t} - r^{l}$$

Построение GSLS

Декомпозиция области

Упругость + вязкоупругость

СКО	р.	напр.	скор.	Н	апр.		скор.	напр.	скор.	напр.
20 MPApplication	Application		Application	Application	MPI 0	m	Monication	Monlication	-	Manication
1 MPApplication	Application	AUT	Application	application		P1	Application	Application	Application	Application
12 MPApplication	Application		Application	Application			Application	Application	Application	Application
24 MP Application	Confication	MPI	Upplication	Application	407	현	Application	Application	Application	Application
25 Millioplication	Inclication	4101	Upplication	application	197	- 5 N	Application	Application	Application	pplication
6 MPApplication	Indication	MPI	Application	Application	400 APP	Ŭ S 🛛	Application	Application	Application	Application
P7 MPApplication	Application	MPI	Application	Application	API API	P ⊮	Application	Application	Application	Application
28 094pplication	Application	MPI	Application	Application	Met		Application	Application	Application	Application
29 Application	Application	MPI	Application	Application	API		Papplication	Application	Application	Application
910 MPApplication	Application	MPI	application	Application	1PI	O ["	Application	Application	Application	Application
P11 MPApplication	Application	MPI	Application	Application	MPI / / / / /		U Application	Application	Application	Application
912 MPApplication	Application	MPMPI	application	Application	MP MPI		1 - Application	Mit topication	a application	T application
P13 MPApplication	Application	MPMPI	Application	Application	MPMPI	P1	3 Manication	ME contration		M Application
914 MPApplication	Application	1997-199	Application	Application	4F-41P1	P1	4 Application	MR Application MP	4pplication	W Application
915 MBApplication	Application	INPART	Application	Application	VIP.VIPI	91	5 Application	M6 Application MP	Application	Application
P16 Ap Application	Application		Application	Application		P1	6 Application MPI	Application	MI Application MPI	Application
P17 Ap Application	Application		Application	Application		P1	7 Papplication MP1	Application	4E Application MPI	Application
P18 An Application	Application		Application	Application		P1	8 Mapplication MPI	Application	APPLication MPX	Application
P19 Ap Application	Application		Application	Application		•1	9 <mark>Y opplication MPX</mark>	Application	16 Application VP1	Application
20 AZ Application	Application		Spplication	Application		0	0 Application MPX	Application	Application MPX	oplication
221 AV Application	Application		Application	Application			1 Application MPI	Application	Application MPI	Application
222 A Application	Application		Application	Application			2 Application MPI	Application	Application (49)	Application
223 As Application	Application		Application	Application	1		3 Auguication MP1	Application	Autoplication (494	Application
224 Areapplication	Application		Application	Application		O [5 Application MPI	Application	Mit Application MPA	Application
25 Are Application	Application		Application	Application		× ,	6 Application APi	Application	W splication MPI	Application
26 Al Application	Application		Application	Application		ຕ ຼ	7 (Application (MP)	Application	AV Application MPI	Application
227 Ar Application	Application		Application	Application		エ	8 Steplication MP1	Application	17 sppication VP1	application
228 At application	Application		Application	Application		ന 🛛	9 Application MPX	Application	Add Application VPI	Application
229 A. Application	Application		Application	Application			0 Hoplication MPA	Application	Application MPI	Application
230 Are Application	Application		Application	Application				· ·		· •

Gullfaks with viscoelastic layer, Ux, 2-4 scheme, t=1.25 s

Gullfaks with viscoelastic layer, Ux, 2-4 scheme, t=1.75 s

- Конечно-разностный алгоритм расчета волновых сейсмических полей в моделях среды с вязкоупругими включениями, основанный на <u>локальном применении</u> обобщенной стандартной линейной модели твердого тела с адаптивной декомпозицией по пространственным подобластям для минимизации расчетного времени.
- Разработанный алгоритм позволяет
 - локально использовать вычислительно сложную обобщенную <u>стандартную линейную модель твердого тела</u> в области, охватывающей вязкоупругие включения;
 - оптимизировать декомпозицию расчетной области минимизацией общего вычислительного времени в зависимости от числа переменных памяти в обобщенной стандартной линейной модели твердого тела и порядка аппроксимации схемы.

Содержание

- Мелкомасштабные неоднородности
- Анизотропные включения
- Среды с поглощением
- Аппроксимация резкоконтрастных границ со сложной геометрией
 - Разрывный метод Галеркина
 - Комбинирование метода Галеркина и метода конечных разностей

Актуальность

v_s (m/s)

Актуальность

Актуальность

Актуальность

Актуальность

Разрывный метод Галеркина

Система уравнений динамической теории упругости:

$$\begin{pmatrix} \rho I & 0 \\ 0 & S \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \vec{u} \\ \vec{\sigma} \end{pmatrix} - \sum_{j=1}^{\dim} \begin{pmatrix} 0 & B_j^* \\ B_j & 0 \end{pmatrix} \frac{\partial}{\partial x_j} \begin{pmatrix} \vec{u} \\ \vec{\sigma} \end{pmatrix} = \begin{pmatrix} \vec{f}_u \\ \vec{f}_\sigma \end{pmatrix}$$

 $A\frac{\partial \vec{V}}{\partial t} - \nabla \cdot G(\vec{V}) = \vec{F}$

Постановка задачи

При z<0 система уравнений дин. теории упругости аппроксимируется разрывным методом Галеркина

При z>0 модель – конечно-разностной схемой на разнесенных сетках

Схема

Переходная зона + SSGS

Метод Галеркина на регулярной сетке с константами в качестве базисных функций эквивалентен методу конечных разностей на несдвинутых сетках.

-750 -700 -650 (m) Z -600 -550 -500^[] 2000 12000 4000 6000 8000 10000 14000 16000 X (m)

5000

₄₀₀₀ Xs=4500, Zs= 5 метров под

поверхностью,

3000 Источник типа центра

- 2000 объемного расширения с частотой 20Гц
 - Zr=5 метров под поверхностью

Конечные разности

• 66

15 000

x (m)

25 000

500

600

5 000

Постановка задачи

NRMS (ранние вступления): 60% NRMS (целевые отражения): 140+%

 Свободная поверхность представляется как суперпозиция плавноменяющегося тренда и быстроосцилирующего возмущения;

Полная численная модель среды

Полная модель

Результаты

- Численный метод и алгоритм расчета волновых сейсмических полей в моделях со сложной геометрией резкоконтрастных границ, включая топографию свободной поверхности, основанный на комбинировании метода конечных разностей и разрывного метода Галеркина
- Особенностями метода являются:
 - в качестве метода расчета волновых полей в моделях с резкоконтрастными границами используется разрывный метод Галеркина с центральной аппроксимацией потоков;
 - комбинирование разрывного метода Галеркина на треугольной сетке и <u>стандартной схемы на сдвинутых сетках</u> проводится в два этапа с введением "переходного" слоя, в котором применяется классическая схема на несдвинутых сетках, совмещающая в себе свойства метода конечных разностей и метода Галеркина с базисными функциями - константами, что обеспечивает низкий уровень нефизичных отражений.

Пример - модель SEAM

17 % изотропный вязкоупругий слой

21 % анизотропный упругий слой

	Анизотропное вязкоупругое моделирование	Гибридный алгоритм
Шаг сетки	6.25 м	6.25 м
Число точек	10^{9}	10^{9}
RAM/один источник	500 Гб	90 Гб
Машинное время	5·10 ³ ядро/часов	800 ядро/часов
Число источников	$4 \cdot 10^4$	$4 \cdot 10^{4}$
Машинное время	2·10 ⁸ ядро/часов	3.2·10 ⁷ ядро/часов
Защищаемые результаты

- Конечно-разностный метод и алгоритмы расчета волновых сейсмических полей в разномасштабных средах, основанные на <u>локальном пространственно-временном измельчении шагов</u> сетки, для численного моделирования процесса рассеяния сейсмической энергии на скоплениях неоднородностей субсейсмического масштаба (коридоры трещиноватости, скопления каверн).
- Конечно-разностный метод и алгоритмы расчета волновых сейсмических полей в моделях среды с анизотропными включениями, основанные на <u>локальном применении схемы Лебедева</u> с оптимальным выбором параметров идеально согласованного слоя.
- 3. Конечно-разностный алгоритм расчета волновых сейсмических полей в моделях среды с вязкоупругими включениями, основанный на локальном применении обобщенной стандартной линейной модели <u>твердого тела</u> с адаптивной декомпозицией по пространственным подобластям для минимизации расчетного времени.
- 4. Численный метод и алгоритм расчета волновых сейсмических полей в моделях со сложной геометрией резкоконтрастных границ, включая топографию свободной поверхности, основанный на комбинировании метода конечных разностей и разрывного метода Галеркина.

- С использованием несогласованных <u>сеток с локальным</u> пространственно-временным измельчением шага разработан, теоретически и экспериментально обоснован и протестирован новый метод численного моделирования волновых процессов в средах со скоплениями неоднородностей субсейсмического масштаба, который включает в себя:
- разработку оригинального способа "вложенных шаблонов" для измельчения шага сетки по времени во избежание интерполяции решения на границе раздела сеток;
- теоретический и численный <u>анализ нефизичных отражений</u> от границы раздела сеток при разных способах измельчения сеток: одновременном по пространству и времени, последовательном и др.;
- <u>анализ корректности</u> получаемой начально-краевой конечно-разностной задачи;

2. На основе комбинирования схемы Лебедева и стандартной схемы на сдвинутых сетках разработан, теоретически и экспериментально обоснован и протестирован новый метод численного моделирования волновых процессов в средах, содержащих локальные анизотропные включения. Метод базируется на совокупности следующих оригинальных решений:

- <u>выбрана и обоснована схема Лебедева</u>для аппроксимации системы уравнений динамической теории упругости для анизотропной среды;
- на основе теории корректности начально-краевых задач <u>сформулирован</u> необходимый признак устойчивости многоосного идеально <u>согласованного слоя</u>, или MPML (совместно с Дмитриевым М.Н.);
- комбинирование схемы Лебедева со стандартной схемой на сдвинутых сетках, применяемой в изотропной части модели, основано на минимизации коэффициентов отражений, возникающих при прохождении волн через границу раздела сеток;
- на основе разработанного метода <u>создан научно-исследовательский</u> вариант проблемно-ориентированного параллельного программного <u>обеспечения</u> для расчета волновых сейсмических полей в средах с анизотропными включениями (совместно с Вишневским Д.М.), с помощью которого <u>исследовано проявление анизотропии верхней части</u> <u>разреза</u> в данных вертикального сейсмического профилирования

- 3. Разработан, обоснован и реализован в виде научно-исследовательской версии программного продукта, ориентированного на вычислительные ресурсы с распределенной памятью, алгоритм моделирования волновых процессов в средах с вязкоупругими включениями, основанный на локальном использовании обобощенной стандартной линейной модели твердого тела с оптимизированным разбиением расчетной области, который включает в себя:
- выбор и обоснование обобщенной стандартной линейной модели твердого тела для корректного описания волновых полей в средах с поглощением сейсмической энергии;
- построение оптимальной декомпозиции расчетной области, основанной на минимизации машинного времени, при организации вычислений с использованием библиотеки MPI (от английского message passing interface).

4. Разработан, теоретически и экспериментально обоснован новый метод расчета волновых полей в моделях с резкоконтрастными границами со сложной геометрией, включая топографию свободной поверхности, основанный на комбинировании метода конечных разностей и разрывного метода Галеркина, который включает ряд оригинальных решений:

- по результатам теоретического и численного исследования в качестве метода расчета волновых полей в моделях с резкоконтранстными границами выбирается разрывный <u>метод Галеркина с центральной</u> <u>аппроксимацией потоков</u>;
- результатами дисперсионного анализа показано, что для расчета волновых сейсмических полей <u>оптимальным является метод Галеркина с</u> <u>базисными и пробными функциями - полиномами не выше второй</u> <u>степени</u>;
- разработанный и реализованный в виде научно-исследовательского проблемно-ориентированного программного продукта <u>алгоритм</u> <u>моделирования волновых полей использован для анализа влияния</u> <u>изменчивости профиля свободной</u> поверхности на повторяемость данных наблюдений при сейсмическом мониторинге резервуаров углеводородов;

Публикации

- Всего по теме диссертации соискателем лично и в соавторстве опубликовано более 70 работ, в том числе
 - о 24 статьи, из которых
 - 19 из списка ВАК,
 - 8 индексируются в базе данных Web of Science,
 - 13 индексируются в базе данных Scopus.
- Результаты диссертационной работы обсуждались на более чем 50 ведущих международных и российских конференциях, в том числе:
 - EAGE Conference and Exhibition 2008 2016
 - SEG Annual Meeting 2010 2016
 - o Waves 2007 2015
 - EAGE Siant-Petersburg 2018 2016
 - o PARA 2010, 2012
 - о «Суперкомпьютерные вычисления в нефтегазовой отрасли».

Список публикаций WoS

- 1. Lisitsa V., Tcheverda V., and Botter C. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation // Journal of Computational Physics. 2016. V. 311. pp. 142-157.
- 2. Lisitsa V. Dispersion analysis of discontinuous Galerkin method on triangular mesh for elastic wave equation // Applied Mathematical Modelling. 2016. V. 40. N. 7–8. pp. 5077-5095.
- 3. Kostin V., Lisitsa V., Reshetova G., and Tcheverda V. Local time–space mesh refinement for simulation of elastic wave propagation in multi-scale media // Journal of Computational Physics. 2015. V. 281. N. 0. pp. 669-689.
- 4. Vishnevsky D., Lisitsa V., Tcheverda V., and Reshetova G. Numerical study of the interface errors of finite-difference simulations of seismic waves // Geophysics. 2014. V. 79. N. 4. pp. T219-T232.
- Lisitsa V., Tcheverda V., and Vishnevsky D. Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes // Computational Geosciences. - 2012. - V. 16. - N. 4. - pp. 1135-1152.
- 6. Lisitsa V., Reshetova G., and Tcheverda V. Finite-difference algorithm with local time-space grid refinement for simulation of waves // Computational Geosciences. 2012. V. 16. N. 1. pp. 39-54.
- 7. Lisitsa V., and Vishnevskiy D. Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity // Geophysical Prospecting. 2010. V. 58. N. 4. pp. 619-635.
- 8. Lisitsa V., Podgornova O., and Tcheverda V. On the interface error analysis for finite difference wave simulation // Computational Geosciences. 2010. V. 14. N. 4. pp. 769-778.

Список публикаций

- 1. Колюхин, Д.Р., **В.В. Лисица**, Г.В. Решетова Влияние изменчивости свободной поверхности на повторяемость данных сейсмического мониторинга // **Технологии сейсморазведки.** 2016. №1. с.69-76
- **2.** Лисица, В.В. Дисперсионный анализ разрывного метода Галеркина в применении к уравнениям динамической теории упругости // Вычислительные методы и программирование. 2015. Т. 15. С. 387-406.
- 3. Лисица, В.В., , В.А. Чеверда Комбинирование разрывного метода Галеркина и метода конечных разностей для учета сложного строения верхней части разреза при численном моделировании сейсмических полей // Технологии сейсморазведки. -2014. № 4. С. 60-67.
- 4. Лисица В. В., Поздняков В. А., Решетова Г. В., Хайдуков В. Г., Чеверда В. А., Шиликов В. В. Рассеянные волны: численное моделирование и построение изображений (Часть 1. Двумерные среды) // Технологии сейсморазведки. 2013. N. 1. pp. 46-58.
- 5. Костин В. И., **Лисица В. В.**, Решетова Г. В., Чеверда В. А. Локальное пространственно-временное измельчение сеток для конечно-разностного моделирования упругих волн в трёхмерно-неоднородных разномасштабных средах // Сиб. журн. вычисл. математики. 2013. V. 16. N. 1. pp. 45-55.
- 6. Вишневский Д. М., Лисица В. В., Решетова Г. В. Численное моделирование распространения сейсмических волн в средах с вязкоупругими включениями // Вычислительные методы и программирование. 2013. V. 14. pp. 155-165.
- 7. Дмитриев М. Н., **Лисица В. В.** Применимость слабоотражающих граничных условий M-PML при моделировании волновых процессов в анизотропных средах. Часть II: Устойчивость // **Сиб. журн. вычисл.** математики. 2012. V. 15. N. 1. pp. 45-55.
- 8. Вишневский Д. М., Лисица В. В., Чеверда В. А. Комбинирование конечно-разностных схем для моделирования волновых процессов в упругих средах, содержащих анизотропные слои // Сиб. журн. вычисл. математики. 2012. V. 15. N. 2. pp. 175-181.
- 9. Лисица В. В., Вишневский Д. М. Об особенностях схемы Лебедева при моделировании упругих волн в анизотропных средах // Сиб. журн. вычисл. математики. 2011. V. 14. N. 2. pp. 155-167.
- 10. Костин В. И., **Лисица В. В.**, Решетова Г. В., Чеверда В. А. Конечно-разностный метод численного моделирования распространения сейсмических волн в трехмерно-неоднородных разномасштабных средах // **Вычислительные методы и программирование. - 2011**. - V. 12. - pp. 321-329.
- 11. Дмитриев М. Н., Лисица В. В. Применимость слабоотражающих граничных условий М-РМL при моделировании волновых процессов в анизотропных средах. Часть I: Уровень отражений // Сиб. журн. вычисл. математики. 2011. V. 14. N. 4. pp. 333-344.

Спасибо за внимание

Пункты паспорта специальности

05.13.18 -

«математическое моделирование, численные методы и комплексы программ»

- п. 1 «Разработка новых математических методов моделирования объектов и явлений, перечисленных в формуле специальности»
- п. 4 «Разработка, обоснование и тестирование эффективных численных методов с применением ЭВМ»
- п. 5 «Реализация эффективных численных методов и алгоритмов в виде комплексов проблемноориентированных программ»