
 

МИНОБРНАУКИ РОССИИ 

Федеральное государственное автономное образовательное учреждение высшего 

образования «Санкт-Петербургский государственный электротехнический 

университет «ЛЭТИ» им. В.И. Ульянова (Ленина)» (СПбГЭТУ «ЛЭТИ») 

 

На правах рукописи 

 

 

 

 

Бутусов Денис Николаевич 

 

ЧИСЛЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ХАОТИЧЕСКОЙ 

ДИНАМИКИ 

 

Специальность 1.2.2 – «Математическое моделирование, численные методы и 

комплексы программ» 

 

 

 

Диссертация на соискание ученой степени 

доктора физико-математических наук 

 

 

Научный консультант 

д.т.н., доц. Богачев М.И. 

 

 

Санкт-Петербург – 2024 



2 

ОГЛАВЛЕНИЕ 

 

ВВЕДЕНИЕ .................................................................................................................. 6 

ГЛАВА 1. ПОЛУЯВНЫЕ МЕТОДЫ ЧИСЛЕННОГО 

ИНТЕГРИРОВАНИЯ ..................................................................................................... 24 

1.1 Одношаговые полуявные методы численного интегрирования .... 26 

1.2 Математические модели тестовых задач ............................................. 41 

1.3 Композиционные методы численного решения ОДУ на основе 

полуявных опорных интеграторов .............................................................................. 51 

1.4 Исследование численной устойчивости полуявных методов 

интегрирования ............................................................................................................... 69 

1.5 Увеличение периода хаотических колебаний в дискретных 

нелинейных системах с использованием полуявного интегрирования ............ 102 

1.6 Многошаговые экстраполяционные полуявные методы 

интегрирования ............................................................................................................. 116 

1.7 Управление шагом в многошаговых полуявных схемах................ 127 

1.8 Выводы по главе...................................................................................... 142 

ГЛАВА 2. ДИСКРЕТНЫЕ ХАОТИЧЕСКИЕ ОТОБРАЖЕНИЯ С 

УПРАВЛЯЕМОЙ СИММЕТРИЕЙ ........................................................................... 147 

2.1. Управляемая симметрия в конечно-разностных моделях 

динамических систем .................................................................................................... 147 

2.2. Синтез хаотических отображений с управляемой симметрией ..... 158 

2.3. Статистические свойства симметричных и несимметричных 

хаотических отображений............................................................................................ 170 

2.4. Создание хэш-функций с увеличенным диапазоном ключей на 

основе адаптивных отображений ............................................................................... 178 

2.5. Хэш-функция на основе генератора хаотических колебаний ........ 187 



3 

2.6. Выводы по главе...................................................................................... 192 

ГЛАВА 3. НОВЫЕ СПОСОБЫ ОБОБЩЕННОЙ И АДАПТИВНОЙ 

СИНХРОНИЗАЦИИ ХАОТИЧЕСКИХ СИСТЕМ ................................................. 195 

3.1. Адаптивная синхронизация хаотических отображений ................. 197 

3.2. Адаптивная синхронизация на основе управления коэффициентом 

симметрии конечно-разностной схемы ..................................................................... 200 

3.3. Адаптивная синхронизация конечно-разностных моделей 

непрерывных систем .................................................................................................... 211 

3.4. Быстрая синхронизация хаотических осцилляторов, основанная на 

свойстве обратимости решения во времени ............................................................ 222 

3.5. Выводы по главе...................................................................................... 244 

ГЛАВА 4. КОМПЛЕКС ПРОГРАММНЫХ СРЕДСТВ 

ВЫСОКОТОЧНОГО МОДЕЛИРОВАНИЯ НЕЛИНЕЙНЫХ СИСТЕМ ......... 246 

4.1. Современные инструменты моделирования нелинейных систем 247 

4.2. Выявление скрытых особенностей хаотических систем с помощью 

высокопроизводительных инструментов бифуркационного анализа ............... 250 

4.3. Экспериментальные результаты исследования хаотических систем 

с применением разработанного комплекса программ .......................................... 263 

4.4. Выводы по главе...................................................................................... 273 

ЗАКЛЮЧЕНИЕ ...................................................................................................... 275 

СПИСОК ЛИТЕРАТУРЫ .................................................................................... 279 

Приложение А ......................................................................................................... 318 

Приложение Б ......................................................................................................... 323 

 



4 

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ 

В настоящей диссертации применяются следующие термины с 

соответствующими определениями: 

МПИ – метод последовательного интегрирования 

Д-метод (D) – полуявный метод численного интегрирования с диагональной 

коррекцией 

ЛММ – линейные многошаговые методы 

ФПЧ – функция правой части 

ПД – параллельный Д-метод  

КД (CD) – композиционный полуявный метод второго порядка 

OCDM (англ. One Composition for Different Methods) – одинаковая 

композиция различных опорных методов интегрирования 

DCOM (англ. Different Compositions for One Method) – способ оценки 

погрешности как разности решения разных композиционных схем на основе 

одного метода 

BEE (англ. Blanes Error Estimator) – вложенный метод оценки локальной 

погрешности по способу Блейнса  

ECDM (англ. Embedded Composition for Different Methods) – метод оценки на 

основе вложенной композиции различных опорных методов 

ЭКД или ECD (англ. Extrapolation Composition D-method) – 

экстраполяционная схема на основе метода КД 

ГБШ – метод Грэгга-Булирша-Штёра, экстраполяционный метод явной 

средней точки со сглаживающим шагом Грэгга. 

LFSR (англ. Linear feedback shift register) – линейный регистр сдвига с 

обратной связью 

PRBG (англ. Pseudo-random bit generator) – генератор псевдослучайных битов  

РК2 – явный метод Рунге-Кутты 2 порядка 

BDF (англ. Backward differentiation formula) – многошаговый метод 

интегрирования на основе формулы дифференцирования назад 
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ESIMM (англ. Extrapolation symmetric integration multistep method) – 

многошаговый экстраполяционный метод численного интегрирования  

DOPRI8 – явный численный метод интегрирования Дормана-Принса 8 

порядка 

LTE (англ. local truncation error) – локальная погрешность метода 

AB (англ. Adams-Bashforth method) – метод Адамса-Башфорта 

AM (англ. Adams-Moulton method) – метод Адамса-Мултона 

CBD (англ. continuation bifurcation diagrams) – бифуркационные диаграммы с 

продолжением решения 

LLE (англ. largest Lyapunov exponent) – наибольший показатель Ляпунова 

PDF (англ. probability density function) – функция плотности вероятности 

RMS (англ. root mean square) – среднее квадратическое 

IMP (англ. implicit midpoint method) – неявный метод средней точки 

EMP (англ. explicit midpoint method) – явный метод средней точки 

RK4 – явный метод Рунге-Кутты 4 порядка 

DBSCAN (англ. Density-based spatial clustering of applications with noise) – 

плотностного алгоритма пространственной кластеризации с присутствием шума  

API (англ. Application programming interface) – интерфейс прикладного 

программирования 

GPU (англ. Graphics Processing Unit) – вычислительный процессор, 

ориентированный на графические вычисления 

CUDA (англ. Compute Unified Device Architecture) – программно-аппаратная 

архитектура параллельных вычислений на GPU от компании Nvidia. 

SHA (англ. Secure Hash Algorithm) – алгоритм безопасного хэширования. 
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ВВЕДЕНИЕ 

 

Актуальность темы.  

Развитие нелинейной динамики, в частности, теории хаотических колебаний, 

не только привело к появлению целого ряда перспективных приложений 

динамического хаоса, таких как криптографические алгоритмы, системы 

защищенной связи, гидро- и радиолокационные системы на основе хаотических 

сигналов, генераторы сердечного ритма, высокочувствительные мультисенсорные 

датчики и мн. др., но также выявило ряд проблем в области математического и 

компьютерного моделирования нелинейных систем. Так, классические подходы к 

численному интегрированию дифференциальных уравнений столкнулись с 

существенными ограничениями при моделировании хаотических систем на ЭВМ с 

конечной длиной разрядной сетки. Опыт моделирования таких перспективных 

вычислителей, как нейроморфные системы, также показывает, что выбор численного 

метода оказывает решающее влияние на свойства дискретной модели 

нейроподобного объекта, где могут как отсутствовать режимы, свойственные 

прототипу, так и возникать новые типы динамики. При переходе к нелинейным 

моделям объектов природы и техники особое значение приобрели адекватность 

компьютерных моделей, т.е. степень соответствия их динамики непрерывному 

прототипу на всем интервале моделирования, устойчивость дискретных нелинейных 

моделей к выходу из заданного режима колебаний, управляемость фазовых и 

статистических характеристик хаотических осцилляторов, а также способы их 

синхронизации. Таким образом, существует потребность в создании 

специализированного математического и методического аппарата, а также 

программного обеспечения для моделирования хаотических систем, что 

обосновывает актуальность настоящего исследования. 

Объектом диссертационного исследования являются инструменты 

математического и компьютерного моделирования нелинейных динамических 

систем с хаотической динамикой. Предметом исследования выступают численные 

методы интегрирования обыкновенных дифференциальных уравнений, а также 
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компьютерные модели хаотических систем и способы синхронизации хаотических 

осцилляторов на их основе. 

Степень изученности и разработанности проблемы.  

Впервые вопросы предсказательного моделирования систем с динамическим 

хаосом были подняты в 1981 году в коллективной монографии “Хаос и порядок в 

природе” под редакцией Эрманна Хакена [1]. Авторы указывали, что при 

ограниченной точности представления данных в памяти ЭВМ долгосрочное 

моделирование и предсказание динамики хаотических процессов оказывается 

невозможным. С развитием вычислительной техники и ростом точности 

представления данных на первый план вышли вопросы влияния применяемых 

дискретных операторов интегрирования на динамику порождаемой ими конечно-

разностной модели. Так, Богосян и Ковени показали невозможность точного 

моделирования хаотических процессов на дискретных ЭВМ на длительном времени 

моделирования [2]. В известной работе Роберта М. Корлесса «Численные методы 

подавляют хаос» [3] показан факт затухания хаотических колебаний в дискретной 

модели консервативной динамической системы, полученной неявным А-устойчивым 

методом численного интегрирования. Эти идеи нашли свое продолжение в 

следующей работе того же автора [4], посвященной анализу влияния ошибок 

округления в арифметике с плавающей запятой на динамику дискретного 

отображения Гаусса. Таким образом, Р.М. Корлесс одним из первых поднял вопрос 

адекватности дискретного моделирования хаотических систем c применением 

классических численных методов интегрирования, ключевыми характеристиками 

которых долгое время до этого оставались вычислительная эффективность и 

численная устойчивость. Последний факт отмечали в своих работах известные 

отечественные и зарубежные математики Э. Хайрер, Г. Ваннер, Э. Непомусену, Н.С. 

Бахвалов, А.В. Лапин, Е.В. Чижонков и мн. др. [5-9]. Стоит отметить, что повышенное 

внимание математиков к вопросам численной устойчивости методов интегрирования 

связано с существенной практической значимостью численного решения так 

называемых жестких систем дифференциальных уравнений [10]. При этом сочетание 

двух упомянутых проблем – невозможности адекватного долгосрочного 
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моделирования хаотических систем на ЭВМ с конечной точностью представления 

данных и существенного искажения динамики исходного непрерывного прототипа 

при его дискретизации численным методом с избыточной устойчивостью, породило 

новые требования к математическому аппарату численного интегрирования, 

используемому при решении нелинейных ОДУ с хаотической динамикой. Эти 

требования можно сформулировать следующим образом: 

1. Высокая адекватность моделирования в виде качественного соответствия 

режимов конечно-разностной модели режимам исходной непрерывной системы, а 

также совпадения особых точек, структуры аттракторов, бассейнов притяжения, 

показателей Ляпунова, энтропии и других метрик. 

2. Минимизация числа арифметических операций как на одном шаге 

интегрирования, так и на всем интервале решения с целью упрощения программной 

реализации и снижению влияния машинного шума.  

3. Численная устойчивость метода должна быть достаточной, чтобы 

обеспечивать выполнение критерия 1 на всем интервале шага дискретизации. При 

этом А-устойчивость и L-устойчивость не только являются избыточными при 

моделировании хаотических систем, но и могут быть вредными с точки зрения 

адекватности дискретной модели прототипу. 

4. Возможность использовать параметры метода для управления 

свойствами синтезируемой конечно-разностной модели – геометрией фазового 

пространства, диссипативностью и т.д. 

5. Обратимость решения во времени (симметричность) для использования в 

составе композиционных решателей дифференциальных уравнений и реализации 

новых способов синхронизации хаотических осцилляторов. 

6. Высокая производительность (вычислительная эффективность) метода, 

способствующая эффективной реализации алгоритмов многомерного анализа всего 

пространства параметров нелинейных систем, в т.ч. за счет применения адаптивного 

шага интегрирования. 

Перспективным направлением в методах численного решения ОДУ с 

хаотической динамикой могут стать полуявные интеграторы [11,12], изначально 
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созданные как специализированный математический аппарат для моделирования 

гамильтоновых систем в задачах классической матфизики [5,13]. 

Основоположниками данного класса т.н. «геометрических интеграторов» являются 

Л. Верле, Б. Леймкулер, С. Райх, К. Дж. Бадд, М.Д. Пигготт, Р.И. МакКаллахан и др. 

Среди отечественных ученых, работавших в данной области, можно отметить К.Г. 

Жукова, предложившего в 1979 году свой вариант т.н. «метода последовательного 

интегрирования» (МПИ), представлявшего собой авторскую модификацию метода с 

расщеплением правой части уравнения по Стрэнгу (англ. Strang splitting). В то же 

время, гамильтоновы системы с хаотической динамикой представляют собой лишь 

узкий подкласс хаотических систем, что ограничивает практическую ценность 

существующих полуявных методов. Основной идеей диссертационного исследования 

выступает распространение области применения полуявных методов интегрирования 

на задачи в виде обыкновенных дифференциальных уравнений с гладкой и 

интегрируемой функцией правой части, демонстрирующие хаотическую динамику, 

путем создания новых классов полуявных численных методов интегрирования c 

управляемой симметрией. Отметим, что, используя полуявные опорные 

симметричные методы, можно легко конструировать композиционные и 

экстраполяционные схемы заданного порядка алгебраической точности, добиваясь 

требуемой численной устойчивости и сходимости и в нехаотических задачах. Таким 

образом, область применения предлагаемых в диссертационном исследовании 

численных методов простирается далеко за пределы задач нелинейной динамики. 

 Под геометрическими свойствами, которые сохраняют при компьютерном 

моделировании непрерывных систем геометрические методы интегрирования, как 

правило, понимают симплектическую структуру, первые интегралы, геометрическую 

симметрию и объем фазового пространства исходной системы [14]. Можно выделить 

несколько ключевых направлений в разработке геометрических методов 

интегрирования.  

1. Композиционные (англ. composition) методы и методы с расщеплением 

по Стренгу используются для решения систем дифференциальных уравнений, 

которые могут быть разделены на отдельные системы уравнений по каждой фазовой 
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переменной [15]. Яркими представителями исследователей, работающих в данном 

направлении науки, являются С. Блейнс, Э. Хайрер и Х. Рамос. 

2. Диагонально-неявные Д-методы, являющиеся обобщением методов 

Эйлера-Кромера на общий случай системы обыкновенных дифференциальных 

уравнений, и являющиеся предметом исследования в настоящей работе. 

3. Геометрические методы Рунге-Кутты, отличающиеся специально 

подобранными коэффициентами для сохранения геометрических свойств исходной 

системы. Такие методы представлены в работах Х.М. Санс-Серна [16], М.П. Кальво 

и др. 

4. Проекционные и вариационные методы [17]. Один шаг проекционного 

метода представляет собой шаг обычного метода, спроецированный на некоторое 

множество с заданными свойствами. Вариационные методы основаны на 

приближенном решении уравнений Эйлера-Лагранжа. В области проекционных и 

вариационных методов активно работает научная группа В. Фридмана, а также Дж. 

Сармавуори, Т. Сакураи, Х. Сигиура и др. 

5. Симметричные линейные многошаговые методы (ЛММ) для 

гамильтоновых систем ОДУ второго порядка. Для разделяемых гамильтоновых 

систем ОДУ первого порядка используются разделенные (англ. partitioned) ЛММ, 

когда каждая часть ОДУ интегрируется собственным ЛММ, как показано в работах 

Э. Хайрера и П. Консоле [18].  

В настоящее время разработкой геометрических методов занимается ряд 

крупных исследователей, таких как Эндре Ковач (университет г. Мишкольц, 

Венгрия), Х.М. Санс-Серна (университет г. Вальядолид, Испания), Э. Хайрер 

(университет г. Женева, Швейцария), Ф. Касас (университет Хайме I, Испания) и ряд 

других авторов. Несмотря на значительные успехи в области решения задач с 

сохранением первых интегралов и создание эффективных схем высокого порядка 

точности для численного интегрирования консервативных систем, численное 

решение хаотических задач симметричными методами практически не описано в 

литературе, за исключением конформных гамильтоновых систем, таких, как 

известная задача N тел. В большинстве работ для моделирования хаотических 
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осцилляторов применяются неявные интеграторы, вносящие в дискретную модель 

искусственную диссипативность и тем самым подавляющие такие свойства 

хаотических систем, как энтропия и диффузия, или явные методы Рунге-Кутты, не 

обеспечивающие сохранение фазового объема и энергии системы при долгосрочном 

моделировании. 

Обобщая все вышесказанное, можно прийти к выводу, что для эффективного и 

адекватного моделирования динамических систем с детерминированным хаосом, 

необходим численный решатель ОДУ с промежуточной относительно явных и 

неявных методов численной устойчивостью, что позволит сохранить требуемую 

сходимость при моделировании жестких хаотических систем и не вносить 

избыточную диссипацию и нелинейные дискретные искажения в порождаемую 

конечно-разностную модель. Популярные и широко представленные в 

инструментальных пакетах (MATLAB, Wolfram Mathematica, NI LabVIEW и др.) 

одношаговые явные методы удовлетворительны с точки зрения требований 

вычислительной эффективности, а также обладают приемлемой численной 

устойчивостью, однако не относятся к классу симплектических интеграторов, не 

обладают свойством симметрии конечно-разностной схемы и обратимости решения 

во времени, и, следовательно, не способны сохранять энергию осциллятора при 

долгосрочном моделировании нелинейных систем. Явные многошаговые методы, 

например, методы Адамса-Башфорта, также обладают высокой вычислительной 

эффективностью, однако не удовлетворяют требованию к обратимости решения, 

сохранению первых интегралов и их численная устойчивость снижается с ростом 

порядка алгебраической точности. При этом для многошаговых методов программная 

реализация с переменным шагом и порядком точности является более сложной, чем 

для одношаговых явных методов. Неявные методы Рунге-Кутты, такие как методы 

Лобатто или широко применяемый в схемотехнических САПР метод трапеций, могут 

обладать свойством симметрии и сохранения энергии, но требуют существенных 

вычислительных затрат при реализации за счет наличия итераций метода Ньютона 

для разрешения неявности конечно-разностной схемы. Этот недостаток становится 

особенно очевидным при решении систем ОДУ высокой размерности, долгосрочном 



12 

моделировании и мультипараметрическом анализе хаотических систем, когда 

требуется многократный расчет правой части уравнения с различными параметрами. 

Таким образом, существующее противоречие в практике связано с широким 

распространением в инженерных расчетах численных методов, не предназначенных 

для моделирования хаотических систем, недооценкой степени влияния метода на 

динамику проектируемой системы и соответствующим снижением характеристик 

устройств, принцип действия которых основан на динамическом хаосе [375]. Часто 

исследователями применяются самые простые в реализации методы – явный метод 

Эйлера, явные методы Рунге-Кутты, точность и численная устойчивость которых не 

позволяют достичь высокой степени адекватности конечно-разностной модели в 

вычислительном эксперименте. Другой крайностью выступает применение неявных 

численных методов, входящих в состав схемотехнических САПР, которые могут 

приводить к искажению динамики хаотической системы при ее дискретизации вплоть 

до подавления хаотических режимов колебаний за счет избыточной устойчивости. 

Для разрешения данного противоречия необходимо создать и программно 

реализовать специализированный математический аппарат численного 

интегрирования, ориентированный на решение ОДУ с хаотической динамикой. 

Существующее противоречие в науке заключается в несоответствии 

сложившейся методологии математического и компьютерного моделирования 

динамических систем запросам современной нелинейной динамики, что приводит не 

только к снижению повторяемости и проверяемости данных вычислительного 

эксперимента, но иногда и к ложным результатам, когда свойства использованного 

численного метода настолько влияют на свойства дискретной модели при 

компьютерном анализе, что их сложно разделить при анализе результатов. 

Разрешение данного противоречия возможно путем создания специализированного 

математического обеспечения численного моделирования хаотических систем, 

учитывающего особенности дискретизации при построении конечно-разностных 

моделей нелинейных систем. С целью снятия сформулированных выше 

противоречий поставлена основная научная проблема исследования – создание 

специализированных средств математического и компьютерного моделирования 
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хаотических систем за счет развития математического аппарата полуявных 

численных методов интегрирования обыкновенных дифференциальных уравнений. 

Цель диссертационного исследования – создание комплекса математических 

методов и программных средств моделирования, анализа и синхронизации 

хаотических динамических систем.  

Основные задачи исследования: 

1. Разработка одношаговых полуявных методов численного 

интегрирования, обладающих свойством управляемой симметрии и обратимости 

решения во времени. Исследование основных свойств полуявных одношаговых 

методов и композиционных схем на их основе, таких как численная устойчивость и 

вычислительная эффективность. Оценка адекватности моделей хаотических систем, 

получаемых с помощью полуявных численных методов. 

2. Создание многошаговых полуявных методов численного 

интегрирования, объединяющих полезные свойства геометрических интеграторов с 

высокой вычислительной эффективностью многошаговых схем решения ОДУ. 

Оценка вычислительной эффективности таких методов по сравнению с 

существующими многошаговыми алгоритмами. Разработка способов управления 

шагом интегрирования и оценки локальной погрешности для многошаговых 

экстраполяционных методов. 

3. Разработка методов синтеза, создание и экспериментальное исследование 

новых математических моделей – дискретных хаотических отображений с 

управляемой симметрией фазового пространства. Формирование набора тестовых 

задач для оценки характеристик численных методов, подлежащих исследованию. 

4. Разработка новых способов быстрой обобщенной и адаптивной 

синхронизации хаотических систем на основе свойства обратимости решения 

полуявных конечно-разностных моделей во времени, а также с применением 

управления параметром симметрии.  

5. Создание комплекса программ для высокоточного моделирования 

хаотических динамических систем с применением разработанных методов, моделей 

и способов их синхронизации. Оценка характеристик разработанного ПО с точки 
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зрения повышения вычислительной эффективности моделирования хаотических 

систем. 

Методология и методы исследования, используемые в работе: 

Методология диссертационного исследования опирается на теорию численного 

интегрирования дифференциальных уравнений, топологию, положения теории 

подобия и моделирования, методы синтеза конечно-разностных моделей 

непрерывных систем с применением дискретных сжимающих операторов 

интегрирования. В работе используется алгоритм экстраполяции Ричардсона с 

расчетом выходных значений по формуле Эйткена-Невилла, фрактальные правила 

расчета коэффициентов Йошиды и Судзуки для синтеза композиционных численных 

методов высокого порядка алгебраической точности, модифицированный регулятор 

шага интегрирования по Зодерлинду, метод построения областей устойчивости на 

основе модифицированной задачи Дальквиста. В основе предложенных численных 

методов интегрирования лежит полуявный принцип вычислений, при котором 

значения переменных состояния, рассчитанные ранее на текущем шаге 

интегрирования, используются при расчете последующих переменных на этом же 

шаге с одномерной неявностью. В экспериментальной части диссертационное 

исследование опирается на методы компьютерного моделирования нелинейных 

динамических систем, методы статистического анализа, подходы теории 

виртуализации, включая технологии виртуальных инструментов. Для синтеза новых 

методов синхронизации хаотических осцилляторов использованы авторские 

модификации способа однонаправленной синхронизации по Пекоре и Кэрроллу и 

способа адаптивной синхронизации с управляемым параметром.  

Научная новизна работы заключается в том, что:  

1. Впервые получено симметричное обобщение методов Стёрмера-Верле 

для решения обыкновенного дифференциального уравнения в нормальной форме 

Коши с гладкой неразрывной функцией правой части и хаотической динамикой. 

Продемонстрировано, что полуявные методы нового типа позволяют лучше 

сохранить особенности хаотической динамики при долгосрочном моделировании. 

Введена новая концепция композиционного метода с управляемой симметрией. 
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Подтверждена гипотеза о возможности возникновения искусственных 

мультистабильных состояний в изначально моностабильных системах при 

дискретизации методами с переменной симметрией.  

2. Впервые сформулировано математическое описание полуявных 

экстраполяционных многошаговых численных методов интегрирования 

произвольного порядка точности. Предложены новые способы оценки локальной 

погрешности усечения таких методов – метод двойной экстраполяции и метод разных 

коммутаций – позволяющие существенно снизить время расчетов за счет применения 

адаптивного шага интегрирования. 

3. Предложен новый подход к построению многомерных областей 

устойчивости полуявных численных методов интегрирования, основанный на 

модифицированной тестовой задаче Дальквиста. Впервые получены оценки 

численной устойчивости полуявных алгоритмов интегрирования в форме 

многомерных областей устойчивости и областей предпочтительности.  

4. Предложен новый способ оценки локальной погрешности численного 

решения ОДУ на основе разности решений, полученных полуявными методами с 

различной коммутацией строк функции правой части. Предложен алгоритм 

управления шагом интегрирования решателей ОДУ, основанный на таком способе 

оценки. Разработан новый способ управления шагом, использующий оценку разности 

решения между двумя полуявными методами – методом КД и методом полуявной 

средней точки, превосходящий по эффективности известные подходы к управлению 

шагом в композиционных схемах численного решения ОДУ. 

5. Введен новый способ синтеза дискретных возвратных отображений с 

управляемыми свойствами фазового пространства, основанный на применении 

численного интегрирования с адаптивной симметрией. Впервые получены 

математические модели хаотических отображений с управляемой симметрией: 

симметричное отображение Эно, симметричное отображение Чирикова, 

симметричное изображение Богданова и др. Cформулирована и экспериментально 

подтверждена гипотеза об аффинности преобразования фазового пространства и 



16 

сохранении статистических свойств решения при изменении симметрии возвратного 

отображения. 

6. Описаны новые способы обобщенной и адаптивной синхронизации 

хаотических систем, основанные на особых свойствах полуявных симметричных 

численных методов с управляемой симметрией. Впервые показана возможность 

синхронизации хаотических осцилляторов при итеративном обращении численного 

решения во времени. Предложен новый итеративный метод синхронизации 

дискретных хаотических систем, основанный на симметричности конечно-

разностной схемы и обладающий сверхэкспоненциальной сходимостью. 

Положения, выносимые на защиту:  

1. Одношаговые полуявные методы численного интегрирования, 

являющиеся обобщением метода Стёрмера-Верле на класс обыкновенных 

дифференциальных уравнений в нормальной форме Коши, обладающие свойствами 

обратимости решения во времени и управляемой симметрии. 

2. Семейство многошаговых экстраполяционных полуявных методов 

численного интегрирования со встроенным регулятором шага интегрирования.  

3. Математические модели хаотических динамических систем в форме 

дискретных возвратных отображений c управляемой симметрией фазового 

пространства.  

4. Способы быстрой синхронизации хаотических систем, основанные на 

свойстве обратимости решения во времени и управлении коэффициентом симметрии.  

5. Комплекс программных средств моделирования и анализа хаотических 

динамических систем на основе предложенного математического и методического 

обеспечения. 

Соответствие диссертации паспорту научной специальности.  

Результаты диссертационного исследования соответствуют паспорту научной 

специальности 1.2.2. «Математическое моделирование, численные методы и 

комплексы программ» по следующим пунктам:  

1. «Разработка новых математических методов моделирования объектов и 

явлений», а именно: в диссертации предложен способ синтеза математических 
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моделей с хаотическим поведением – возвратных хаотических отображений, 

обладающих свойством управляемой геометрии фазового пространства. 

2. «Разработка, обоснование и тестирование эффективных вычислительных 

методов с применением современных компьютерных технологий», а именно: в 

диссертации разработано два новых семейства алгоритмов численного 

интегрирования, основанных на использовании принципа полуявного вычисления 

функции правой части при решении задач нелинейной динамики с помощью 

компьютерной технологии виртуальных инструментов; 

3. «Реализация эффективных численных методов и алгоритмов в виде 

комплексов проблемно-ориентированных программ для проведения 

вычислительного эксперимента», а именно: реализован комплекс программных 

средств компьютерного моделирования и анализа хаотических динамических систем 

с применением, разработанных в диссертации полуявных численных методов 

интегрирования и высокопроизводительной вычислительной платформы на основе 

GPU; 

5. «Разработка новых математических методов и алгоритмов валидации 

математических моделей объектов на основе данных натурного эксперимента или на 

основе анализа математических моделей», а именно: предложены способы быстрой 

синхронизации хаотических осцилляторов, включая адаптивную и обобщенную 

синхронизацию с управляемой симметрией, позволяющих анализировать модели 

нелинейных систем, в том числе методом гибридной синхронизации с разреженными 

данными натурного эксперимента; 

8. «Комплексные исследования научных и технических проблем с 

применением современной технологии математического моделирования и 

вычислительного эксперимента», а именно: проведено комплексное исследование 

устойчивости и вычислительной эффективности предложенных полуявных 

численных методов интегрирования, а также исследование проблемы синхронизации 

хаотических осцилляторов при передаче неполных или разреженных данных с 

применением математического моделирования и вычислительного эксперимента. 

Обоснованность и достоверность полученных результатов обеспечивается 
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строгостью доказательств порядка и симметричности предложенных численных 

методов и способов синхронизации, результатами компьютерного моделирования, 

практикой научных и инженерных расчетов с применением созданного 

математического аппарата, а также хорошим совпадением экспериментальных 

данных с теоретически предсказанными результатами. Справедливость выводов 

относительно эффективности предложенных методов интегрирования подтверждена 

результатами моделирования и экспериментального сравнения с распространенными 

решателями дифференциальных уравнений. Достоверность полученных результатов 

также подтверждается апробацией основных научных результатов на научно-

технических конференциях, опубликованием статей, содержащих результаты работы, 

в научных реферируемых журналах, в том числе международных. Результаты работы 

хорошо согласуются с результатами, известными из научной литературы в области 

прикладной математики, теории хаоса и нелинейной динамики.  

Теоретическая значимость работы связана с распространением 

перспективного математического аппарата полуявных симметричных методов на 

весь класс нелинейных динамических систем, описываемых ОДУ в нормальной 

форме Коши. Создан вычислительно эффективный и простой в реализации опорный 

метод для создания композиционных схем интегрирования произвольного порядка. 

Доказана и установлена зависимость вида области устойчивости полуявных методов 

от вида матрицы моделируемой системы. Предложенное семейство новых 

дискретных моделей с динамическим хаосом и управляемыми свойствами фазового 

пространства может быть использовано для более адекватного описания объектов 

физической реальности, создания моделей на основе решеток связанных 

осцилляторов с управляемыми свойствами, например, искусственных хаотических 

химер или структур с гетерогенной диссипативностью. Новое семейство 

многошаговых экстраполяционных методов с опорным полуявным интегратором 

открывает перспективы синтеза нового типа интеграторов, реализующих гибридный 

между одношаговыми и многошаговыми методами способ вычислений. Новые 

способы синхронизации позволяют создать быстродействующие модели процессов 

различной физической природы на основе структур связанных осцилляторов. В 
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исследовании выдвинут и экспериментально подтвержден ряд гипотез об особых 

свойствах математических моделей хаотических систем, полученных 

геометрическими методами интегрирования. Полученные в диссертационном 

исследовании результаты вносят вклад в теорию численного интегрирования, теорию 

динамического хаоса, теорию моделирования нелинейных систем, теорию 

дискретных систем, теорию управления нелинейными объектами, теорию 

устойчивости численных алгоритмов.  

Практическая значимость диссертационной работы обусловлена 

существенным эффектом от внедрения предложенных численных методов 

интегрирования, модифицированных дискретных отображений и способов 

синхронизации в теорию и практику моделирования динамических систем. 

Эксперименты показывают, что возможен прирост производительности 

моделирующих систем на несколько порядков относительно известных решений за 

счет применения комплекса программных средств высокопроизводительного 

моделирования на основе графических ускорителей и предложенного 

математического обеспечения. Внедрение предложенного способа быстрой 

синхронизации хаотических систем в сочетании с методами идентификации 

математического описания по измеренным данным позволит восстанавливать 

неполные и разреженные данные методом гибридной синхронизации, повысить 

скорость обучения структур синхронизированных нелинейных осцилляторов, 

проводить быструю идентификацию моделей нелинейных систем. Практическая 

значимость диссертационного исследования также подтверждается внедрением 

результатов работы в научную и практическую деятельность нескольких 

исследовательских, проектных и образовательных организаций. 

Моделирование и вычислительный эксперимент проводились на ЭВМ с 

процессором Intel Core i9 с 32GB RAM и графическим ускорителем NVidia RTX 4090 

с использованием операционной системы Windows 10, среды графического 

программирования National Instruments LabVIEW 2022, а также библиотеки функций 

СUDA для языка C++.  
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Апробация работы проводилась на следующих конференциях:  

IEEE NW Russia Young Researchers in Electrical and Electronic Engineering 

Conference, г. Санкт-Петербург, Россия (2015 г.) 

VIII International Conference on Soft Computing and Measurements (2016 г.) 

International forum АМО–SPITSE–NESEFF, г. Ильменау, Германия,  

2016 г. 

IEEE NW Russia Young Researchers in Electrical and Electronic Engineering 

Conference, г. Санкт-Петербург, Россия (2016 г.) 

IX International Conference on Soft Computing and Measurements. г. Санкт-

Петербург, Россия (2017 г.) 

IEEE NW Russia Young Researchers in Electrical and Electronic Engineering 

Conference, г. Санкт-Петербург, Россия (2017 г.) 

X International Conference on Soft Computing and Measurements. г. Санкт-

Петербург, Россия (2018 г.) 

IEEE NW Russia Young Researchers in Electrical and Electronic Engineering 

Conference, г. Санкт-Петербург, Россия (2018 г.) 

Moscow Workshop on Electronic and Networking Technologies), г. Москва, 2020 г. 

IEEE International Symposium on Circuits and Systems, г. Дэгу, Корея, 22-28 мая 

2021 г. 

2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability 

(WorldS4), Лондон, Великобритания, 29-30 июля 2021 г. 

The 9th International Conference on Nonlinear Science and Complexity, г. 

Салоники, Греция, 26-29 сентября 2022 г. 

Volga Neuroscience meeting 2023, Нижний Новгород, Россия, 26-30 июня 2023 г. 

7th IFAC Conference on Analysis and Control of Nonlinear Dynamics and Chaos  

г. Лондон, Великобритания, 5-7 июня 2024 г. 

Первая школа-конференция с международным участием «Нейроэлектроника и 

нейротехнологии будущего», Нижний Новгород, 25-29 ноября 2024 г. 
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Основные результаты работы получены при выполнении следующих 

НИР: 

Проект РНФ 22-19-00573 “Перспективные методы идентификации и 

моделирования динамических систем с нелинейными компонентами” (2022-2024 гг.) 

Проект РНФ 19-71-00087 “Высокоточное моделирование нелинейных 

динамических систем на основе геометрических методов интегрирования” (2019-

2020 гг.)  

Проект РНФ 19-19-00566 “Перспективные аппаратные средства с повышенной 

помехозащищённостью для задач обработки данных и моделирования динамических 

систем на основе векторных вычислителей” (2019-2021 гг.)  

Проект РФФИ 19-07-00496 “Основы исследовательского проектирования 

мемристивных систем” (2019-2020 гг.) 

Проект РФФИ 17-07-00862 “Теория и средства проектирования цифровых 

генераторов хаотических сигналов” (2017-2018 гг.)  

Проект РФФИ 16-31-00264 “Теоретические основы гибридного моделирования 

нелинейных динамических систем” (2016-2017 гг.)  

Проект РФФИ 14-01-31277 “Математические и алгоритмические основы 

построения высокоточных цифровых систем” (2014-2015 гг.)  

Реализация результатов работы.  

Результаты работы внедрены в инженерную практику компаний НПФ “Модем” 

и АО «Поликетон», производственную деятельность АО НПЦ «Аквамарин», а также 

образовательную деятельность кафедры систем автоматизированного 

проектирования и кафедры информационной безопасности СПбГЭТУ “ЛЭТИ”. На 

основе результатов, полученных при выполнении диссертационного исследования, 

решен ряд важных задач в области создания хеш-функций с расширенным 

пространством параметров, генераторов псевдослучайных последовательностей, 

устойчивых к деградации хаотических режимов, прототипов систем связи, 

разработано и зарегистрировано в реестре программ для ЭВМ программное 

обеспечение для высокоточного моделирования нелинейных динамических систем. 

Численные методы и способ синхронизации, предложенные в диссертации, 
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используются научными группами СПбГЭТУ “ЛЭТИ” при выполнении НИР РНФ 24-

71-10064 “Перспективные методы синхронизации и управления свойствами 

динамических систем” (2024-2026 гг.) и НИР РНФ 23-79-10151 “Методы и средства 

автоматизации исследовательского проектирования мемристивных систем” (2023-

2025 гг.).  

Публикации по теме диссертации.  

По теме диссертационного исследования опубликовано 87 работ в журналах и 

трудах конференций, из них: 48 статей в рецензируемых научных изданиях, 

рекомендованных ВАК при Министерстве науки и высшего образования Российской 

Федерации и приравниваемых к ним статей в изданиях, внесенных в 

библиографические и реферативные базы данных Scopus и Web of Science или 

относящихся к категории К1 «белого списка журналов»; 4 монографии и главы книги; 

35 тезисов докладов в конференциях. На разработанное в диссертационном 

исследовании программное обеспечение получено 17 свидетельств о 

государственной регистрации программы для ЭВМ.  

Структура и объем работы.  

Диссертация состоит из введения, четырёх глав, заключения и двух 

приложений. Полный объём диссертации составляет 317 страниц со 135 рисунками и 

20 таблицами. Список литературы содержит 390 наименований.  

Личный вклад автора.  

Все представленные в диссертационном исследовании результаты и выносимые 

на защиту положения получены автором лично. В опубликованных в соавторстве 

научных работах постановка научных задач и формулировка предлагаемых решений 

осуществлялись соискателем, проверка гипотез и проведение экспериментов 

осуществлялись при непосредственном участии соискателя. Соискатель является 

автором идеи обобщения полуявных методов численного интегрирования на весь 

класс дифференциальных уравнений в нормальной форме Коши, а также лично вывел 

математическое описание описанных в диссертации одно- и многошаговых 

полуявных методов интегрирования. Соискателем сформулирован принцип 

управляемой симметрии в дискретных хаотических отображениях непрерывных 
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нелинейных систем, предложен новый способ ускоренной синхронизации 

хаотических систем, основанный на свойстве обратимости численного решения во 

времени, а также адаптивной синхронизации дискретных моделей хаотических 

систем с управлением по коэффициенту симметрии. Автором предложены способы 

оценки локальной погрешности и алгоритмы управления шагом интегрирования в 

полуявных решателях ОДУ. Соискателем разработано новое семейство 

математических моделей хаотических процессов, обладающих свойствами 

управляемости геометрией фазового пространства нелинейных систем без нарушения 

его структуры. Автор диссертации является одним из основных разработчиков 

высокоточного программного обеспечения моделирования и анализа нелинейных 

динамических систем, основанного на предложенных в диссертационной работе 

численных методах, алгоритмах и способах синхронизации хаотических 

осцилляторов. 
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ГЛАВА 1. ПОЛУЯВНЫЕ МЕТОДЫ ЧИСЛЕННОГО ИНТЕГРИРОВАНИЯ  

 

История создания и изучения полуявных методов интегрирования восходит к 

работам Леонарда Эйлера и Исаака Ньютона, обращавших внимание на особое 

значение порядка расчета функции правой части (ФПЧ) дифференциальных 

уравнений. Данная группа методов численного интегрирования, включающая 

симплектический метод Эйлера (англ. symplectic Euler method) [19], метод Стёрмера-

Верле (англ. Störmer-Verlet) [20], метод интегрирования с перешагиванием (англ. 

Leapfrog method, Velocity Verlet) [21] и др. неоднократно заново открывалась и 

описывалась в литературе различными исследователями. В основе полуявных 

методов лежит достаточно очевидная идея использовать для нахождения решения на 

текущем шаге уже рассчитанные к этому моменту значения переменных состояния, 

которая напрямую связана с понятием расщепляемых (англ. Splitting) систем [22], 

правая часть уравнений которых может быть представлена в виде серии 

последовательно выполняемых операций при численном интегрировании [23]. 

Полуявные схемы обладают рядом известных преимуществ как над явными, так 

и над неявными численными методами. Известно, что ключевым недостатком явных 

интеграторов является их относительно низкая численная устойчивость, 

недостаточная для эффективного решения жестких систем, а также сложность 

получения симметричной и обратимой во времени конечно-разностной схемы. 

Неявные численные методы обладают высокой численной устойчивостью и могут 

быть симметричными, однако, как правило, включают в себя расчет следующей точки 

решения вычислительно затратным методом Ньютона, в нелинейных задачах 

влекущий за собой и регулярный пересчет матрицы Якоби системы. Полуявные 

интеграторы являются своего рода компромиссом между этими двумя классами 

численных методов, обладая одновременно относительно высокой численной 

устойчивостью, вычислительной простотой и, при некоторых условиях, свойствами 

симплектичности и симметричности. Особенно актуальным их применение является 

при моделировании хаотических систем, при котором избыточная численная 
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устойчивость метода интегрирования может привести к существенному искажению 

свойств дискретной модели по сравнению с непрерывным прототипом. 

Среди российских ученых существенный вклад в разработку полуявных 

методов численного интегрирования внес К.Г. Жуков [24], являющийся автором т.н. 

“метода последовательного интегрирования” – предельного случая разделения 

правой части моделируемой системы на простейшие мономы. МПИ ориентирован на 

аппаратную реализацию на ПЛИС, и обладает свойством вычислительного 

параллелизма [25], однако не является ни симплектическим, ни симметричным 

интегратором. Ключевым преимуществом МПИ является возможность получения 

второго порядка алгебраической точности за счет т.н. “коррекции диагональных 

коэффициентов” и ускорения вычислений путем разделения решения на два 

независимых параллельных потока. МПИ являлся в каком-то смысле первой 

попыткой обобщить полуявные численные методы на произвольную задачу Коши, не 

обладая, впрочем, свойствами симметричности и обратимости во времени. Стоит 

отметить, что автор настоящей работы, являясь учеником К.Г. Жукова, является и 

соавтором концепции МПИ, дальнейшим развитием которой являются полуявные 

методы КД, изложенные в настоящей работе. 

Потребность в разработке новых полуявных методов обусловлена тем, что 

несмотря на общую прогрессивность подхода, МПИ обладает рядом существенных 

недостатков. Прежде всего, к ним стоит отнести неуниверсальность диагональной 

коррекции, работающей лишь при линейных функциях-мономах в диагоналях 

матрицы моделируемой системы и лишь для случая полностью расщепляемых систем 

(англ. Completely splitting systems), а также несимметричность получаемой конечно-

разностной схемы, что препятствует ее эффективному применению в 

экстраполяционных и композиционных схемах решения ОДУ. 

Рассмотрим более общий случай полуявного композиционного метода, 

лишенного данных недостатков. 
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1.1 Одношаговые полуявные методы численного интегрирования 

 

В диссертации рассматриваются динамические системы 𝐱̇(𝑡) = 𝑓(𝐱(𝑡)), с 

начальным условием 𝐱(0) = 𝑥0, где 𝐱 ∈ ℝ𝑛, 𝑓(𝐱(𝑡)) – непрерывная функция, которая 

удовлетворяет локальному условию Липшица в ℝ𝑛, и для любого 𝑥0 ∈ ℝ
𝑛 на 

конечном интервале времени существует единственное решение системы, которое 

непрерывно зависит от 𝑥0. 

Как уже отмечалось, применение полуявных схем традиционно было связано с 

искомым свойством симплектичности методов, выраженном в форме сохранения 

полной энергии дискретной модели при моделировании, поэтому ограничено 

областью гамильтоновых систем и задач классической механики [26]. Тем не менее, 

реальный потенциал полуявных методов может быть раскрыт лишь в случае 

обобщения их до всего класса задач, описываемых ОДУ в нормальной форме Коши. 

Рассмотрим некоторые методы интегрирования, относящиеся к классу полуявных 

алгоритмов. 

 

Полуявный метод Эйлера-Кромера 

Одной из известных симплектических модификаций алгоритма Эйлера 

является полуявный метод Эйлера (англ. Semi-Implicit Euler), известный также как 

метод Эйлера-Кромера (англ. Euler-Cromer) или симплектический метод Эйлера 

(англ. Symplectic Euler) [20]. 

Рассмотрим линейную однородную систему ОДУ второго порядка: 

 𝑥̇ = [
𝑎11 𝑎12
𝑎21 𝑎22

] 𝑥 (1.1) 

Алгоритм Кромера использует при расчете одной переменной состояния уже 

вычисленные внутри одного шага значения других переменных. Если система (1.1) 

гамильтонова и диагональные коэффициенты матрицы (1.1) равны 

0 (𝑎11  =  𝑎22 =  0), такой прием порождает два сопряженных метода первого 

порядка, прямой 

 𝑥1[𝑛 + 1] = 𝑥1[𝑛] + ℎ𝑎12𝑥2[𝑛]; (1.2) 
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𝑥2[𝑛 + 1] = 𝑥2[𝑛] + ℎ𝑎21𝑥1[𝑛 + 1]. 

и обратный метод Эйлера-Кромера, соответственно.  

 𝑥2[𝑛 + 1] = 𝑥2[𝑛] + ℎ𝑎21𝑥1[𝑛]; 

𝑥1[𝑛 + 1] = 𝑥1[𝑛] + ℎ𝑎12𝑥2[𝑛 + 1] 
(1.3) 

Последовательная композиция выражений (1.2) и (1.3) дает формулу 

симметричного метода второго порядка алгебраической точности, называемую 

методом Верле (фр. Verlet) [20]. В случае моделирования диссипативной системы с 

ненулевыми диагональными коэффициентами, композиционный метод Верле теряет 

второй порядок точности и свойство симметричности, и не может быть использован 

в экстраполяционных или композиционных решателях ОДУ, требующих 

симметричности опорного метода. Этот факт служит главной причиной того, что 

основной областью применения метода Эйлера-Кромера до сих пор остается 

моделирование гамильтоновых задач. Данный метод популярен также при 

моделировании распределенных физических процессов без диссипации, в частности, 

задач в области физики плазмы [27]. Отметим, что кроме свойства симплектичности, 

полуявный метод Эйлера проще в программной реализации даже явного метода 

Эйлера, считающегося простейшим алгоритмом численного интегрирования ОДУ, 

т.к. не требует дополнительных операций записи в память для хранения 

промежуточных значений переменных состояния на шаге. В ряде работ отмечалась 

неудовлетворительная сходимость полуявного метода Эйлера, связанная с 

накоплением “мусорных” членов ряда при передаче значения переменных состояния 

между строками в рамках расчета одного шага при росте порядка моделируемой 

системы [28], однако данный недостаток нивелируется при использовании метода 

Эйлера-Кромера как опорного интегратора в составе композиционных или 

экстраполяционных решателей ОДУ за счет взаимного погашения погрешностей, 

связанных с избыточными членами ряда, при расчете итогового решения на основе 

совокупности стадий метода. 

Таким образом, метод Эйлера-Кромера представляет собой простейший 

симплектический алгоритм численного интегрирования, позволяющий в 

определенной степени сохранить энергию моделируемой системы на длительном 
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интервале моделирования в отличие от других численных методов первого 

порядка (рис. 1.1). 

 

Рисунок 1.1 – Сравнение фазовых портретов колебательного звена 2-го порядка при 

решении различными вариантами метода Эйлера.  

 

Из рисунка 1.1 видно, что явный метод Эйлера приводит к росту энергии 

дискретной системы и неустойчивости решения, неявный – к избыточной диссипации 

энергии и схождению решения в точку, в то время как полуявный метод Эйлера 

обеспечивает сохранение энергии в соответствии со свойствами непрерывного 

прототипа системы. 

С точки зрения вычислительных затрат симплектический алгоритм Кромера не 

отличается от явного метода Эйлера. Говоря о недостатках алгоритма Эйлера-

Кромера, существенно повлиявших на его распространенность в практических 

приложениях, можно отметить уже упомянутое ухудшение сходимости решения при 

увеличении размерности моделируемой системы, а также невозможность записать 

функцию приращения в матричном виде из-за рекуррентного характера вычисления 

функции правой части, что ограничивает его применение при реализации решателей 

ОДУ на матричных умножителях.  

Главным же недостатком симплектического метода Эйлера выступает тот факт, 

что метод теряет большую часть своих положительных качеств при моделировании 

диссипативных систем с ненулевыми диагональными коэффициентами и не 

полностью разделяемой правой частью, хотя и сохраняет при этом некоторое 
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превосходство в алгебраической точности над явным методом Эйлера. Чем ближе 

решаемая система ОДУ к консервативной, тем большее преимущество имеет 

симплектический алгоритм над классическим вариантом метода Эйлера. Ни один из 

представленных в главе методов Эйлера-Кромера не является полностью обратимым 

во времени, однако этим свойством – свойством симметрии - обладает метод, 

получаемый при последовательной композиции двух сопряженных методов Эйлера-

Кромера, который носит название метода Стёрмера-Верле (англ. Störmer-Verlet) [20]. 

Алгоритм Стёрмера-Верле 

Рассмотрим систему дифференциальных уравнений второго порядка вида 

 𝑞̈ = 𝑓(𝑞), (1.4) 

где правая часть 𝑓(𝑔) не зависит от второй производной переменной состояния q. 

Многие проблемы в астрономии, молекулярной динамике и других областях физики 

можно представить в подобной канонической форме. 

При заданном размере шага ℎ в точках решения 𝑡𝑛 =  𝑡0 +  𝑛ℎ, достаточно 

разумной дискретизацией уравнения (1.4) будет 

 𝑞𝑛+1 − 2𝑞𝑛 + 𝑞𝑛−1 = ℎ
2𝑓(𝑞𝑛). (1.5) 

Значение 𝑞 𝑛+ 1 легко находится в случае, когда 𝑞𝑛 − 1 и 𝑞𝑛 известны. С 

геометрической точки зрения это означает интерполяцию решения параболой, 

которая принимает значение второй производной (1.4), в своей центральной 

точке (рис. 1.2а). 

 

Рисунок 1.2 – Геометрическая интерпретация метода Стёрмера-Верле: а – в 

двухшаговой формулировке; б – в одношаговой формулировке [20] 

Одношаговая формулировка. Введем дополнительную переменную 

состояния 𝑞̇ = 𝑣 и представим уравнение (1.4) в нормальной форме Коши: 

 𝑞̇ = 𝑣, 𝑣̇ = 𝑓(𝑞), (1.6) 
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По аналогии с (1.5) введем дискретные аппроксимации 𝑣 и 𝑞 следующим 

образом:  

 
𝑣𝑛 =

𝑞𝑛+1 − 𝑞𝑛−1
2ℎ

, 𝑣𝑛−1/2 =
𝑞𝑛 − 𝑞𝑛−1

ℎ
, 𝑞𝑛−1/2 =

𝑞𝑛 + 𝑞𝑛−1
2

 (1.7) 

Подставив эти выражения в формулу (1.5), можно увидеть, что она может быть 

интерпретирована как одношаговый метод численного интегрирования 

Фℎ: (𝑞𝑛, 𝑣𝑛) ↦ (𝑞𝑛+1, 𝑣𝑛+1).  

 
𝑣𝑛 + 0.5 = 𝑣𝑛 +

ℎ

2
𝑓(𝑞𝑛), 

𝑞𝑛+1 = 𝑞𝑛 + ℎ𝑣𝑛 + 0.5, 

𝑣𝑛+1 = 𝑣𝑛+0.5 +
ℎ

2
𝑓(𝑞𝑛+1). 

(1.8) 

Двухшаговая формулировка. Существует еще один вариант алгоритма Верле, 

представляющий собой полуявный метод средней точки (semi-explicit midpoint 

method, SEMP) в формулировке (𝑣𝑛−0.5, 𝑞𝑛−0.5) ↦ (𝑣𝑛+0.5, 𝑞𝑛+0.5):  

 
𝑞𝑛 = 𝑞𝑛−0.5 +  

ℎ

2
𝑣𝑛−0.5, 

𝑣𝑛+0.5 = 𝑣𝑛−0.5 + ℎ𝑓(𝑞𝑛), 

𝑞𝑛+0.5 = 𝑞𝑛 +
ℎ

2
𝑣𝑛+0.5 

(1.9) 

Объединяя последовательно алгоритмы методов (1.8) и (1.9) в пошаговую 

процедуру, мы получаем новый метод, где значения 𝑞 вычисляются явным, а 

значения 𝑣 – полуявным образом:  

 𝑣𝑛+0.5 = 𝑣𝑛−0.5 + ℎ𝑓(𝑞𝑛), 

𝑞𝑛+1 = 𝑞𝑛 + ℎ𝑣𝑛+0.5 
(1.10) 

Подобная реализация метода вычислительно экономичнее и обладает большей 

численной устойчивостью, чем вариант (1.5) [5]. Тем не менее, любые модификации 

метода Верле также теряют свои свойства, включая порядок точности, при 

моделировании негамильтоновых систем с ненулевой главной диагональю. 

Рассмотрим подходы, позволяющие расширить область применения методов 

Эйлера-Кромера и методов Верле на все динамические системы, описываемые ОДУ 

и представимые в нормальной форме Коши. 
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Порядок точности и симметричность одношаговых полуявных методов 

Как уже говорилось ранее, несмотря на известные положительные свойства 

геометрических интеграторов, в настоящее время они используются в основном для 

численного моделирования гамильтоновых систем, которые составляют 

ограниченный объем от всего множества дифференциальных задач. Сформулируем 

обобщение полуявного метода Эйлера для случая негамильтоновых систем. 

Параллельный композиционный Д-метод 

Рассмотрим метод численного интегрирования, являющийся обобщением 

метода последовательного интегрирования до случая, когда решаемая система ОДУ 

имеет произвольный вид правой части. Метод является дальнейшим развитием 

метода МПИ и применим для численного решения задачи Коши второго и более 

порядков. Метод имеет второй порядок алгебраической точности, не являясь при этом 

симметричным интегратором [359, 361]. 

Пусть решается задача Коши, описывающая динамическую систему второго 

порядка: 

 𝑥̇ = 𝑓(𝑥, 𝑡); 

𝑥(0) = 𝑥0, 
(1.11) 

Запишем данную задачу в скалярном виде: 

 𝑥1̇ = 𝑓1(𝑥1, 𝑥2, 𝑡); 

𝑥2̇ = 𝑓2(𝑥1, 𝑥2, 𝑡). 
(1.12) 

Промежуточные значения интегрируемых величин xI и xII на очередном шаге 

алгоритма вычисляются независимо друг от друга: 

 𝑥1
𝑛+1 = 𝑥1

𝑛 + ℎ𝑓1(𝑥1
𝑛, 𝑥2

𝑛, 𝑡𝑛); 

𝑥2
𝑛+1 = 𝑥2

𝑛 + ℎ𝑓2(𝑥1
𝑛+1, 𝑥2

𝑛+1, 𝑡𝑛+1); 

𝑥𝐼 = (
𝑥1
𝑛+1

𝑥2
𝑛+1).  

(1.13а) 
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 𝑥2
𝑛+1 = 𝑥2

𝑛 + ℎ𝑓2(𝑥1
𝑛, 𝑥2

𝑛, 𝑡𝑛); 

𝑥1
𝑛+1 = 𝑥1

𝑛 + ℎ𝑓1(𝑥1
𝑛+1, 𝑥2

𝑛+1, 𝑡𝑛+1); 

𝑥𝐼𝐼 = (
𝑥1
𝑛+1

𝑥2
𝑛+1). 

(1. 13б) 

где 𝑥𝑖
𝑛+1 – значение фазовой переменной в точке n + 1;  

𝑡𝑛 =  𝑡(𝑛ℎ) – момент времени в точке 𝑛 (на 𝑛-ом шаге).  

Обратим внимание, что для расчета 𝑥2
𝑛+1 используется ранее вычисленное 

значение 𝑥1
𝑛+1. Промежуточное значение 𝑥𝐼𝐼 вычисляется в обратном порядке 

относительно схемы расчета 𝑥𝐼 . Назовем формулу (1.13а) методом Д1, (1.13б) – 

методом Д2 и будем обозначать их в формулах римскими цифрами 𝐼 и 𝐼𝐼, 

соответственно. 

Выходное значение переменной 𝑥𝑛+1 параллельного Д-метода (ПД) может быть 

найдено как среднее арифметическое между полученными величинами: 𝑥𝑛+1 =
𝑥𝐼+𝑥𝐼𝐼

2
. 

На следующей итерации метода происходит обмен значениями между 

процессорами, при этом усредненное значение не используется. Метод легко 

масштабируется на систему уравнений произвольного порядка путем дальнейшей 

подстановки рассчитанных переменных состояния в выражения для расчета 

последующих строк функции правой части. 

Достоинства метода ПД состоят, во-первых, в том, что выражения (1.13a) и 

(1.13б) могут быть рассчитаны независимо друг от друга на отдельных процессорах, 

то есть метод обладает естественным вычислительным параллелизмом, а во-вторых, 

в том что второй порядок алгебраической точности достигается за одно 

последовательное вычисление функции правой части для каждой переменной 

состояния. Метод является полуявным, и при наличии нелинейностей в диагонали 

исходной системы при его реализации необходимо выполнять итерации метода 

Ньютона или использовать численно-аналитический подход, достаточно простой в 

силу одномерности решаемого нелинейного уравнения. Хотя методы по типу Д не А-

устойчивы и дополнительные вычислительные трудности, связанные с их 

полуявностью, могут показаться неоправданными в сравнении с применением явных 

методов, на практике это не столь значительный недостаток, так как для каждой 
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переменной состояния приходится решать одномерную задачу по расчету неявности, 

что позволяет применять вместо метода Ньютона метод простых итераций, 

сходимость которого гарантируется одномерностью решаемой задачи [361].  

Доказательство порядка Д-методов. Рассмотрим разложение исходной 

системы в ряд Тейлора по первой фазовой переменной:  

 
𝑥1
𝑛+1 = 𝑥1

𝑛 + ℎ𝑓1
𝑛 +

ℎ2

2
(
𝜕𝑓1

𝑛

𝜕𝑥1
𝑥1
𝑛 +

𝜕𝑓1
𝑛

𝜕𝑥2
𝑥2
𝑛 +

𝜕𝑓1
𝑛

𝜕𝑡
) + 𝑂(ℎ3)

= 𝑥1
𝑛 + ℎ𝑓1

𝑛 +
ℎ2

2
(𝑓11
𝑛𝑓1

𝑛 + 𝑓12
𝑛𝑓2

𝑛 + 𝑓1𝑡
𝑛) 

 

(1.14) 

где 𝑓1
𝑛 = 𝑓1(𝑥1

𝑛, 𝑥2
𝑛, 𝑡𝑛); 

𝜕𝑓1
𝑛

𝜕𝑥1
= 𝑓11

𝑛 . 

Для метода Д1 (1.13а) получим:  

 𝑥𝐼1 = 𝑥1
𝑛 + ℎ𝑓1

𝑛 (1.15) 

Для метода Д2 (1.13б) также получим асимптотическое разложение f1:  

 𝑥𝐼𝐼1 = 𝑥1
𝑛 + ℎ𝑓1

𝑛(𝑥1
𝑛+1, 𝑥2

𝑛 + ℎ𝑓2
𝑛, 𝑡𝑛 + ℎ) =

= 𝑥1
𝑛 + ℎ(𝑓1

𝑛 + ℎ𝑓11
𝑛𝑓1

𝑛 + ℎ𝑓12
𝑛𝑓2

𝑛 + ℎ𝑓1𝑡
𝑛) + 𝑂(ℎ3) 

(1.16) 

Нетрудно видеть, что после усреднения искомое значение (𝑥𝐼1 +  𝑥𝐼𝐼1) / 2 

равно разложению в ряд Тейлора (1.14) с точностью до члена погрешности 𝑂(ℎ3). 

Таким образом, доказано, что метод имеет третий порядок локальной и второй 

порядок глобальной погрешности. 

Доказательство симметричности. Рассмотрим функцию приращения методов 

Д. Напомним, что функция приращения численного метода Ф(𝑥, 𝑡, ℎ) может быть 

найдена из формулы метода, если записать ее в виде:  

 𝑥(𝑡 + ℎ) = 𝑥(𝑡) + ℎФ(𝑥, 𝑡, ℎ). (1.17) 

Подставим в (1.17) вместо ℎ значение – ℎ, а затем произведем сдвиг на один шаг 

вперед и выразим 𝑥(𝑡 +  ℎ) через остальные члены уравнения:  

 𝑥(𝑡 +  ℎ) = 𝑥(t) + ℎФ∗(𝑥, 𝑡, −ℎ), (1.18) 

где Ф∗(𝑥, 𝑡, – ℎ) – функция приращения присоединенного метода. 
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Известно, что метод является симметричным по определению, если Ф∗ =  Ф 

[5]. В векторном виде функция приращения метода Д1 (1.13а) имеет вид:  

 
Ф𝐼(𝑥, 𝑡, ℎ) = (

𝑓1(𝑥1
𝑛, 𝑥2

𝑛, 𝑡𝑛)

𝑓2(𝑥1
𝑛+1, 𝑥2

𝑛+1, 𝑡𝑛+1)
) (1.19) 

Формула (1.19), становящаяся громоздкой при росте размерности системы, 

может быть записана компактно, если ввести понятие матрицы переключений 𝑆, 

определяющей дискретные моменты времени, в которых берется значение 

переменной состояния при расчете функции правой части. Выражение (1.20) 

представляет собой формулу (1.19), записанную с использованием матрицы 

переключений:  

 
Ф𝐼(𝑥, 𝑡, ℎ) = 𝑓(𝑆𝐼) = 𝑓 (( 

0 0
1 1

|
0
1
 )) (1.20) 

Нулю в матрице 𝑆 соответствует момент времени 𝑛, единице – момент времени 

𝑛 +  1. Правый столбец отвечает за переменную времени, остальные – за фазовые 

переменные. Таким образом, матрица переключений вида 

 
𝑆𝐼 = ( 

0 0
1 1̃

|
0
1
 ). (1.21) 

означает следующее: первая переменная состояния рассчитывается полуявным 

образом. Тильдой над единицей обозначен тот факт, что при расчете правой части 

вторая переменная состояния в точке 𝑛 +  1 зависит сама от себя. В случае 

нелинейной функции правой части ее потребуется находить методом Ньютона, или 

же решать нелинейное неявное уравнение относительно одной переменной 

состояния, что представляется относительно тривиальной задачей. В таком случае, 

алгоритм Д становится численно-аналитическим методом. Вернемся к доказательству 

симметричности композиционного метода Д.  

Найдя дополнение к 𝑆𝐼 вида  𝑆𝑖̅𝑗 = 1 − 𝑆𝑖𝑗, получим: 

 
𝑆𝐼𝐼 = ( 

1̃ 1
0 0

|
1
0
 ) = 𝑆𝐼̅ (1.22) 

Докажем, что если 𝑆𝐼𝐼 = 𝑆𝐼̅ , то Ф𝐼
∗ = Ф𝐼𝐼 . В самом деле, для двумерной системы 

уравнений выражения метода Д2 имеют вид:  
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𝑥𝑛+1 = 𝑥𝑛 + ℎФ( 
1 1
0 0

|
1
0
 ). 

Заменим ℎ на – ℎ: 

𝑥𝑛−1 = 𝑥𝑛 − ℎФ( 
−1 −1
0 0

|
−1
0
 ). 

Осуществим сдвиг на один шаг вперед: 

𝑥𝑛 = 𝑥𝑛+1 − ℎФ( 
0 0
1 1

|
0
1
 ), 

Откуда следует 

𝑥𝑛+1 = 𝑥𝑛 + ℎФ( 
0 0
1 1

|
0
1
 ), 

что совпадает с выражением метода Д1. Таким образом, Ф𝐼
∗ = Ф𝐼𝐼, что и требовалось 

доказать. Отсюда следует, что численный метод, представляющий собой 

последовательную композицию методов Д1 и Д2, обладает вторым порядком 

точности и симметричен. Назовем этот полуявный метод методом КД - 

композиционным диагонально-неявным методом второго порядка.  

Не обладая, в отличие от ранее описанного в диссертации метода ПД, свойством 

вычислительного параллелизма, метод КД, как будет показано далее, является весьма 

эффективным опорным интегратором для построения на его основе 

экстраполяционных и композиционных схем численного решения ОДУ высокого 

порядка алгебраической точности.  

Применение полуявных Д-методов при численном решении систем 

дифференциальных уравнений размерности более двух.  

Методы типа Д для систем уравнений с размерностью более двух удобно 

описывать в форме матрицы коммутаций 𝑆𝐼, однозначно определяющей и матрицу 𝑆𝐼𝐼  

вследствие сопряженности методов Д1 и Д2. 

Так, матрицы 𝑆 для систем третьего и четвертого порядка имеют вид: 

𝑆𝐼 = (
0 0 0
1 0 0
1 1 1̃

|
0
0
1
) , 𝑆𝐼 = (

0 0 0 0
1 0 0 0
1 1 1̃ 0
1 1 1 1̃

|

0
0
1
1

). 

С точки зрения синтеза конечно-разностной схемы метода не принципиально, 

сколько единичных элементов находится на главной диагонали 𝑆𝐼, так как это не 
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влияет на симметричность метода. Логично предположить, что наиболее 

эффективной версией алгоритма является комбинация методов, один из которых 

содержит все диагональные неявности, а другой является полуявным интегратором 

по типу Эйлера-Кромера, однако на практике для некоторых задач можно повысить 

качество решения, применив метод с иной матрицей 𝑆. Вопрос нахождения 

оптимальной коммутации полуявных алгоритмов численного интегрирования для 

конкретной дифференциальной задачи является открытым и лежит за пределами 

настоящего диссертационного исследования. 

Так как для фазовой переменной 𝑥𝑖
𝑛+1 функция 𝑓𝑖 в правой части неявно зависит 

только от нее самой, а значения остальных фазовых переменных уже вычислены, то 

алгоритм Ньютона для методов Д одномерен и может быть записан псевдокодом в 

следующем виде: 

 Алгоритм 1.1 – Одномерный метод Ньютона для ПД 

𝒛𝒊
𝒌 = 𝒙𝒊

𝒏; 

do 

𝒛𝒊
𝒌+𝟏 = 𝒛𝒊

𝒌 − 
𝒛𝒊
𝒌 − 𝒙𝒊

𝒏 − 𝒉𝒇𝒊(𝒛𝒊
𝒌)

𝟏 − 𝒉𝒇𝒊
′(𝒛𝒊

𝒌)
 

𝒛𝒊
𝒌 = 𝒛𝒊

𝒌+𝟏 

while |𝒛𝒊
𝒌−𝟏 − 𝒛𝒊

𝒌| ≥ 𝜺 

𝒙𝒊
𝒏+𝟏 = 𝒛𝒊

𝒌 
 

где 𝑓𝑖(𝑧𝑖
𝑘) = 𝑓𝑖(𝑥1

𝑛+1, 𝑥2
𝑛+1, … , 𝑧𝑖

𝑘, 𝑥𝑖+1
𝑛+1, … , 𝑥𝑁

𝑛) для метода Д1, при этом фазовые 

переменные с младшими номерами вычисляются раньше,  

𝜀 – заранее заданное малое число, обеспечивающее конечное число итераций. 

Композиционный Д-метод (КД) 

Для системы (1.1) диагональные коэффициенты матрицы, которой не равны 

нулю, метод КД можно записать в виде композиции двух сопряженных методов 

первого порядка:  

 𝑥1[𝑛 + 0.5] = 𝑥1[𝑛] + 0.5ℎ(𝑎11𝑥1[𝑛 + 0.5] + 𝑎12𝑥2[𝑛]); 

𝑥2[𝑛 + 0.5] = 𝑥2[𝑛] + 0.5ℎ(𝑎21𝑥1[𝑛 + 0.5] + 𝑎22𝑥2[𝑛 + 0.5]); 
(1.23) 
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и сопряженного ему метода с обратным порядком вычислений: 

 𝑥2[𝑛 + 1] = 𝑥2[𝑛 + 0.5] + 0.5ℎ(𝑎21𝑥1[𝑛 + 0.5] + 𝑎22𝑥2[𝑛 + 0.5]); 

𝑥1[𝑛 + 1] = 𝑥1[𝑛 + 0.5] + 0.5ℎ(𝑎11𝑥1[𝑛 + 0.5] + 𝑎12𝑥2[𝑛 + 1]); 
(1.24) 

В случае первого сопряженного метода присутствует диагональная неявность, 

которая в данном случае может быть разрешена аналитически. Финальная запись 

конечно-разностной схемы для метода КД имеет следующий вид: 

 𝑥1[𝑛 + 0.5] = (𝑥1[𝑛] + 0.5ℎ𝑎12𝑥2[𝑛])/(1 − 0.5ℎ𝑎11); 

𝑥2[𝑛 + 0.5] = (𝑥2[𝑛] + 0.5ℎ𝑎21𝑥1[𝑛 + 0.5])/(1 − 0.5ℎ𝑎22); 

𝑥2[𝑛 + 1] = 𝑥2[𝑛 + 0.5] + 0.5ℎ(𝑎21𝑥1[𝑛 + 0.5] + 𝑎22𝑥2[𝑛 + 0.5]); 

𝑥1[𝑛 + 1] = 𝑥1[𝑛 + 0.5] + 0.5ℎ(𝑎11𝑥1[𝑛 + 0.5] + 𝑎12𝑥2[𝑛 + 1]); 

(1.25) 

Рассмотрим получение конечно-разностной схемы с использованием метода 

КД в случае квадратичной нелинейности на главной диагонали. Рассмотрим 

следующую систему ОДУ второго порядка: 

𝑥 = [
𝑎11𝑥1 𝑎12
𝑎21 𝑎22

] 𝑥; 

Для такой системы КРС, полученная методом КД, выглядит следующим 

образом: 

𝑥1[𝑛 + 0.5] = 𝑥1[𝑛] + 0.5ℎ(𝑎11𝑥1
2[𝑛 + 0.5]+𝑎12𝑥2[𝑛]); 

𝑥2[𝑛 + 0.5] = 𝑥2[𝑛] + 0.5ℎ(𝑎21𝑥1[𝑛 + 0.5] + 𝑎22𝑥2[𝑛 + 0.5]); 

𝑥2[𝑛 + 1] = 𝑥2[𝑛 + 0.5] + 0.5ℎ(𝑎21𝑥1[𝑛 + 0.5] + 𝑎22𝑥2[𝑛 + 0.5]); 

𝑥1[𝑛 + 1] = 𝑥1[𝑛 + 0.5] + 0.5ℎ(𝑎11𝑥1
2[𝑛 + 0.5] + 𝑎12𝑥2[𝑛 + 1]); 

Для разрешения неявности в первом уравнении сопряженного Д-метода 

необходимо решить квадратное уравнение:  

𝑥1[𝑛 + 0.5] = 𝑥1[𝑛] + 0.5ℎ(𝑎11𝑥1
2[𝑛 + 0.5]+𝑎12𝑥2[𝑛]) →

→ 0.5ℎ𝑎11𝑥1
2[𝑛 + 0.5] − 𝑥1[𝑛 + 0.5] + 𝑥1[𝑛] + 0.5ℎ𝑎12𝑥2[𝑛] = 0; 

𝐴𝑋2 + 𝐵𝑋 + 𝐶 = 0 

Коэффициенты квадратного уравнения, соответственно: 

𝐴 = 0.5ℎ𝑎11;   𝐵 = −1;   𝐶 = 𝑥1[𝑛] + 0.5ℎ𝑎12𝑥2[𝑛]; 

Корни квадратного уравнения находятся следующим образом: 
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𝑋1,2 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
→
1 ± √1 − 2ℎ𝑎11(𝑥1[𝑛] + 0.5ℎ𝑎12𝑥2[𝑛])

ℎ𝑎11
=

=
1

ℎ𝑎11
±

|ℎ𝑎11|√
1

ℎ2𝑎11
2 −

2(𝑥1[𝑛] + 0.5ℎ𝑎12𝑥2[𝑛])
ℎ𝑎11

ℎ𝑎11
=

=
1

ℎ𝑎11
+ 𝑠𝑖𝑔𝑛(ℎ𝑎11)√

1

ℎ2𝑎11
2 −

2(𝑥1[𝑛] + 0.5ℎ𝑎12𝑥2[𝑛])

ℎ𝑎11
; 

Неявность второго уравнения разрешается аналитически. Финальная запись 

конечно-разностной схемы имеет следующий вид: 

𝑥1[𝑛 + 0.5] =
1

ℎ𝑎11
+ 𝑠𝑖𝑔𝑛(ℎ𝑎11)√

1

ℎ2𝑎11
2 −

2(𝑥1[𝑛] + 0.5ℎ𝑎12𝑥2[𝑛])

ℎ𝑎11
; 

𝑥2[𝑛 + 0.5] = (𝑥2[𝑛] + 0.5ℎ𝑎21𝑥1[𝑛 + 0.5])/(1 − 0.5ℎ𝑎22); 

𝑥2[𝑛 + 1] = 𝑥2[𝑛 + 0.5] + 0.5ℎ(𝑎21𝑥1[𝑛 + 0.5] + 𝑎22𝑥2[𝑛 + 0.5]); 

𝑥1[𝑛 + 1] = 𝑥1[𝑛 + 0.5] + 0.5ℎ(𝑎11𝑥1
2[𝑛 + 0.5] + 𝑎12𝑥2[𝑛 + 1]); 

Если аналитическое разрешение диагональной неявности невозможно, а также 

в случае, когда реализация метода Ньютона вносит чрезмерные вычислительные 

затраты, например, в составе композиционных и экстраполяционных схем с большим 

числом стадий, неявность может быть разрешена методом фиксированной точки 

(методом простых итераций). Конечно-разностная схема при реализации метода 

простых итераций для рассматриваемой системы ОДУ 2 порядка будет выглядеть 

следующим образом: 

𝑥1,1[𝑛 + 0.5] = 𝑥1[𝑛] + 0.5ℎ(𝑎11𝑥1
2[𝑛]+𝑎12𝑥2[𝑛]); 

𝑥1[𝑛 + 0.5] = 𝑥1[𝑛] + 0.5ℎ(𝑎11𝑥1,1
2 [𝑛 + 0.5]+𝑎12𝑥2[𝑛]); 

При этом, как правило, для достижения второго порядка точности достаточно 

двух простых итераций, а для сохранения симметричности необходимо использовать 

четыре итерации. 

Доказательство порядка. Доказательство порядка метода КД в целом схоже с 

таковым для метода ПД. Рассмотрим систему ОДУ 2 порядка 
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{
𝑥̇ = 𝑓(𝑡, 𝑥, 𝑦)
𝑦̇ = 𝑔(𝑡, 𝑥, 𝑦)

. 

Применяя к этой системе полуявный метод Д, получаем 

{
 

 𝑥
𝑛+
1
2
= 𝑥𝑛 + 

ℎ

2
𝑓(𝑡𝑛, 𝑥𝑛, 𝑦𝑛)

𝑦
𝑛+
1
2
= 𝑦𝑛 +

ℎ

2
𝑔(𝑡

𝑛+
1
2
, 𝑥
𝑛+
1
2
, 𝑦𝑛)

. 

Применяя к ней же полуявный метод Д, стартующий из точки 𝑛 + 1/2, и имея 

в виду обратный порядок вычисления строк, получаем 

{
 

 𝑦𝑛+1 = 𝑦𝑛+1
2
+
ℎ

2
𝑔(𝑡

𝑛+
1
2
, 𝑥
𝑛+
1
2
, 𝑦𝑛+1)

𝑥𝑛+1 = 𝑥𝑛+1
2
+ 
ℎ

2
𝑓(𝑡𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1)

. 

Раскрывая функции правой части с помощью разложения до первого 

компонента ряда Тейлора, преобразуем выражение к виду: 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
𝑔 (𝑡

𝑛+
1
2
, 𝑥
𝑛+
1
2
, 𝑦𝑛) +

ℎ

2
𝑔 (𝑡

𝑛+
1
2
, 𝑥
𝑛+
1
2
, 𝑦𝑛+1)

= 𝑦𝑛 + ℎ𝑔(𝑡𝑛, 𝑥𝑛, 𝑦𝑛)

+
ℎ2

2
(
𝜕

𝜕𝑡
𝑔(𝑡𝑛, 𝑥𝑛, 𝑦𝑛) +

𝜕

𝜕𝑥
𝑔(𝑡𝑛, 𝑥𝑛, 𝑦𝑛) +

𝜕

𝜕𝑦
𝑔(𝑡𝑛, 𝑥𝑛, 𝑦𝑛)) + 𝑂(ℎ

3), 

𝑥𝑛+1 = 𝑥𝑛 +
ℎ

2
𝑓 (𝑡

𝑛+
1
2
, 𝑥
𝑛+
1
2
, 𝑦𝑛) +

ℎ

2
𝑓 (𝑡

𝑛+
1
2
, 𝑥
𝑛+
1
2
, 𝑦𝑛+1)

= 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑥𝑛, 𝑦𝑛)

+
ℎ2

2
(
𝜕

𝜕𝑡
𝑓(𝑡𝑛, 𝑥𝑛, 𝑦𝑛) +

𝜕

𝜕𝑥
𝑓(𝑡𝑛, 𝑥𝑛, 𝑦𝑛) +

𝜕

𝜕𝑦
𝑓(𝑡𝑛, 𝑥𝑛, 𝑦𝑛)) + 𝑂(ℎ

3), 

что с точностью до 𝑂(ℎ3) совпадает с разложением в ряд Тейлора для этих систем. 

Аналогично нетрудно показать, что и другой порядок расчета переменных или 

включения нелинейности приводит к таким же результатам. Таким образом, метод 

КД обладает вторым порядком точности. При этом в разложении его локальной 

погрешности присутствуют только нечетные степени ℎ, что позволяет предположить 

его симметричность, которая позволит строить на его основе эффективные 
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композиционные и экстраполяционные методы высокого порядка алгебраической 

точности. 

Доказательство симметричности. Доказательство симметричности метода 

КД имеет следующий вид. 

Запишем метод КД с шагом ℎ, при этом ℎ заменим на −ℎ: 

{
 
 
 
 

 
 
 
 𝑥

𝑛−
1
2
= 𝑥𝑛 − 

ℎ

2
𝑓(𝑡𝑛, 𝑥𝑛, 𝑦𝑛)

𝑦
𝑛−
1
2
= 𝑦𝑛 −

ℎ

2
𝑔(𝑡

𝑛−
1
2
, 𝑥
𝑛−
1
2
, 𝑦𝑛)

𝑦𝑛−1 = 𝑦𝑛−1
2
−
ℎ

2
𝑔(𝑡

𝑛−
1
2
, 𝑥
𝑛−
1
2
, 𝑦𝑛−1)

𝑥𝑛−1 = 𝑥𝑛−1
2
− 
ℎ

2
𝑓(𝑡𝑛−1, 𝑥𝑛−1, 𝑦𝑛−1)

 

Переносим слагаемые с −
ℎ

2
 в другую часть уравнения и совершаем 

перестановки: 𝑡𝑛 ↔ 𝑡𝑛+1, 𝑥𝑛 ↔ 𝑥𝑛+1, 𝑦𝑛 ↔ 𝑦𝑛+1, 𝑡
𝑛−

1

2

↔ 𝑡
𝑛+

1

2

, 𝑥
𝑛−

1

2

↔ 𝑥
𝑛+

1

2

, 𝑦
𝑛−

1

2

↔

𝑦
𝑛+

1

2

 

{
 
 
 
 

 
 
 
 𝑥𝑛+1 = 𝑥𝑛+1

2
+ 
ℎ

2
𝑓(𝑡𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1)

𝑦𝑛+1 = 𝑦𝑛+1
2
+
ℎ

2
𝑔(𝑡

𝑛+
1
2
, 𝑥
𝑛+
1
2
, 𝑦𝑛+1)

𝑦
𝑛+
1
2
= 𝑦𝑛 +

ℎ

2
𝑔(𝑡

𝑛+
1
2
, 𝑥
𝑛+
1
2
, 𝑦𝑛)

𝑥
𝑛+
1
2
= 𝑥𝑛 + 

ℎ

2
𝑓(𝑡𝑛, 𝑥𝑛, 𝑦𝑛)

 

Инвертируя коммутацию, т.е. записывая систему алгебраических уравнений в 

обратном порядке вычислений, можно получить исходный метод КД. Таким образом, 

доказано, что предлагаемый метод КД является симметричным интегратором. 

Проведем экспериментнальную оценку адекватности дискретных моделей 

хаотических систем, полученных различными численными методами при 

долгосрочном моделировании (𝑇 = 1000 c.) на примере хаотической системы Буали 

[29]. Цветом на рисунке 1.3 обозначено значение наибольшего показателя Ляпунова. 
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Рисунок 1.3 – Дискретные отображения хаотической системы Буали, полученные 

различными численными методами при долгосрочном моделировании. 

Анализируя рисунок 1.3, можно сделать вывод что полуявные методы типа КД 

и полуявная средняя точка (SIMP) позволяют достичь большей адекватности 

динамики дискретной модели непрерывному прототипу, чем применение явных и 

неявных методов, которое приводит к нарушению режима колебаний и 

искусственной диссипативности, влияющий на поведение системы. Для метода 

Рунге-Кутты второго порядка это означает практически полное разрушение фазовой 

структуры, в то время как метод ГБШ просто избыточно увеличивает ляпуновские 

показатели. Неявный метод Эйлера подавляет хаотическую динамику, уменьшая 

объём фазового пространства, энергию системы и, соответственно, значение 

наибольшего показателя Ляпунова. Таким образом, подтверждена гипотеза о 

соответствии полуявных численных методов требованию адекватности передачи 

динамических режимов непрерывного прототипа в дискретной модели. 

 

1.2 Математические модели тестовых задач 

В подразделе описаны некоторые из тестовых задач, которые будут 

использованы в экспериментальной части диссертации. Задача синтеза конечно-



42 

разностных моделей непрерывных хаотических систем решалась предложенными в 

диссертации одношаговыми полуявными методами. 

Аттрактор Рёсслера. Эта хаотическая система с диссипацией и квадратичной 

нелинейностью была предложена Отто Э. Рёсслером в работе [30] и может быть 

описана следующей системой обыкновенных дифференциальных уравнений: 

 𝑥̇ = −𝑦 − 𝑧;
𝑦̇ = 𝑥 + 𝑎 ∙ 𝑦;
𝑧̇ = 𝑏 + 𝑧 ∙ (𝑥 − 𝑐).

 (1.26) 

где 𝑎, 𝑏 и 𝑐 – параметры системы. На рис. 1.4 приведен фазовый портрет системы 

(1.26). 

Конечно-разностная модель системы (1.26), записанная методом КД с наиболее 

очевидным порядком коммутацией строк, выглядит следующим образом: 

 
𝑥𝑛+0.5 = 𝑥𝑛 +

ℎ

2
(−𝑦𝑛 − 𝑧𝑛);

𝑦𝑛+0.5 = 𝑦𝑛 +
ℎ

2
(𝑥𝑛+0.5 + 𝑎𝑦𝑛);

𝑧𝑛+0.5 = 𝑧𝑛 +
ℎ

2
(𝑏 + 𝑧𝑛(𝑥𝑛+0.5 − 𝑐));

𝑧𝑛+1 =
𝑧𝑛+0.5 +

ℎ
2
𝑏

1 +
ℎ
2
(𝑐 − 𝑥𝑛+0.5) 

;

𝑦𝑛+1 =
𝑦𝑛+0.5 +

ℎ
2
𝑥𝑛+0.5

1 − 𝑎
ℎ
2

;

𝑥𝑛+1 = 𝑥𝑛 +
ℎ

2
(−𝑦𝑛+1 − 𝑧𝑛+1);

 (1.27) 

Термин "порядок коммутации строк", означает изменение порядка вычисления 

переменных состояния. Это наглядно показано в уравнении (1.28), где приведена 

вторая из возможных коммутаций метода КД для системы Рёсслера: 
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𝑦𝑛+0.5 = 𝑦𝑛 +

ℎ

2
(𝑥𝑛 + 𝑎𝑦𝑛);

𝑧𝑛+0.5 = 𝑧𝑛 +
ℎ

2
(𝑏 + 𝑧𝑛(𝑥𝑛 − 𝑐));

𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛+0.5 − 𝑧𝑛+0.5);

𝑧𝑛+1 =
𝑧𝑛+0.5 +

ℎ
2
𝑏

1 +
ℎ
2
(𝑐 − 𝑥𝑛+1) 

;

𝑦𝑛+1 =
𝑦𝑛+0.5 +

ℎ
2
𝑥𝑛+1

1 − 𝑎
ℎ
2

;

 (1.28) 

 

Рисунок 1.4 – Фазовое пространство дискретной системы Рёсслера (1.28), 

визуализированное с помощью разработанного в диссертационном исследовании 

программного обеспечения и полуявных численных методов КД. 

 

Система Рёсслера выбрана в качестве тестовой задачи, поскольку является 

известной тестовой хаотической задачей третьего порядка и обладает ярко 

выраженным диссипативным поведением. 
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Система ван дер Поля. Существенное влияние на производительность 

методов численного интегрирования оказывает жесткость моделируемой системы. 

При моделировании жестких систем возможна как потеря порядка точности метода, 

так и полное разрушение траекторий дискретной системы из-за потери численной 

устойчивости. Для оценки свойств предлагаемых численных методов при решении 

жестких задач в диссертационном исследовании рассматривается одна из самых 

известных тестовых задач с управляемой жесткостью – нелинейный осциллятор ван 

де Поля. Эта система была впервые описана Бальтазаром ван дер Полем [31,32] и 

является важным тестовым примером при анализе численных методов 

интегрирования, так как способна изменять свою жёсткость в зависимости от 

параметра m: 

 

{

𝑑𝑥

𝑑𝑡
= 𝑦

𝑑𝑦

𝑑𝑡
= 𝑚(1 − 𝑥2)𝑦 − 𝑥

 (1.29) 

где 𝑚 – параметр, определяющий жесткость системы.  

Конечно-разностная модель осциллятора ван дер Поля, полученная полуявным 

алгоритмом КД, имеет вид: 

 
𝑦𝑛+0.5 = 𝑦𝑛 +

ℎ

2
(𝑚(1 − 𝑥𝑛𝑥𝑛)𝑦𝑛 − 𝑥𝑛), 

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑦𝑛+0.5, 

𝑦𝑛+1 =
𝑦𝑛+0.5 −

ℎ
2
𝑥𝑛+1

1 −
ℎ
2
𝑚(1 − 𝑥𝑛+1𝑥𝑛+1)

. 

(1.30) 

Фазовая плоскость системы ван дер Поля, визуализированная с помощью 

разработанного в диссертационном исследовании программного обеспечения, 

приведена на рис. 1.5. 
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Рисунок 1.5 – Фазовый портрет дискретной системы ван дер Поля (1.30) 

 

Системы Спротта. Случаи А и E. Эти две хаотические системы были впервые 

описаны Дж. К. Спроттом в известной работе [33] и демонстрируют хаотическое 

поведение при следующих значениях параметров:  

𝑎 =  1; 𝑏 =  1 для случая 𝐴: 

 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝑎𝑦 

𝑑𝑦

𝑑𝑡
= −𝑥 + 𝑦𝑧

𝑑𝑧

𝑑𝑡
= 𝑏 − 𝑦2

 (1.31) 

𝑑 =  11 для случая Е: 

 

 

 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝑦𝑧

𝑑𝑦

𝑑𝑡
= 𝑥2 − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑑 − 4𝑥

 (1.32) 

Конечно-разностные модели этих систем, полученные методом КД, выглядят 

следующим образом: 
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Для случая 𝐴: 

 
𝑥𝑛+0.5 = 𝑥𝑛 +

ℎ

2
𝑎𝑦𝑛;

𝑦𝑛+0.5 = 𝑦𝑛 +
ℎ

2
(−𝑥𝑛+0.5 − 𝑦𝑛𝑧𝑛);

𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 − 𝑦𝑛+0.5
2 );

𝑦𝑛+1 =
𝑦𝑛+0.5 −

ℎ
2
𝑥𝑛+0.5

1 +
ℎ
2
𝑧𝑛+1

;

𝑥𝑛+1 = 𝑥𝑛+0.5 +
ℎ

2
𝑎𝑦𝑛+1.

 (1.33) 

 

Для случая 𝐸: 

 
𝑥𝑛+0.5 = 𝑥𝑛 +

ℎ

2
𝑦𝑛𝑧𝑛;

𝑦𝑛+0.5 = 𝑦𝑛 +
ℎ

2
(𝑥𝑛+0.5
2 − 𝑦𝑛);

𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑑 − 4𝑥𝑛+0.5);

𝑦𝑛+1 =
𝑦𝑛+0.5 +

ℎ
2
𝑥𝑛+0.5
2

1 +
ℎ
2

;

𝑥𝑛+1 = 𝑥𝑛+0.5 +
ℎ

2
𝑦𝑛+1𝑧𝑛+1.

 (1.34) 

Фазовое пространство систем Спротта, визуализированных с помощью 

разработанного в диссертационном исследовании программного обеспечения и 

дискретизированных полуявным методом КД 2 порядка алгебраической точности 

приведено на рис.1.6 для системы (1.33) и на рис. 1.7 для системы (1.34). 
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Рисунок 1.6 – Фазовое пространство системы Спротта случай А 

 

Рисунок 1.7 – Фазовое пространство системы Спротта случай Е 

Аттрактор Дадра-Момени. Эта хаотическая система была описана С. Дадра и 

Х.Р. Момени в работе [34] и может быть записана как: 
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{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥 + 𝑏𝑦𝑧

𝑑𝑦

𝑑𝑡
= 𝑐𝑦 − 𝑥𝑧 + 𝑧

𝑑𝑧

𝑑𝑡
= 𝑑𝑥𝑦 −𝑚𝑧

, (1.35) 

где 𝑎, 𝑏, 𝑐, 𝑑 и 𝑚 – параметры системы.  

Конечно-разностная модель данной системы, синтезированная методом КД, 

выглядит следующим образом: 

 

𝑥𝑛+0.5 =
𝑥𝑛 +

𝐻
2
(𝑦𝑛 + 𝑏𝑦𝑛𝑧𝑛)

1 + 𝑎
𝐻
2

; 

𝑧𝑛+0.5 =
𝑧𝑛 +

𝐻
2
𝑑𝑥𝑛+0.5𝑦𝑛

1 +
𝐻
2
𝑚

; 

𝑦𝑛+0.5 =
𝑦𝑛 +

𝐻
2
(−𝑥𝑛+0.5𝑧𝑛+0.5 + 𝑧𝑛+0.5)

1 −
𝐻
2
𝑐

; 

𝑦𝑛+1 = 𝑦𝑛+0.5 +
𝐻

2
(𝑐𝑦𝑛+0.5 − 𝑥𝑛+0.5𝑧𝑛+0.5 + 𝑧𝑛+0.5); 

𝑧𝑛+1 = 𝑧𝑛+0.5 +
𝐻

2
(𝑑𝑥𝑛+0.5𝑦𝑛+1 −𝑚𝑧𝑛+0.5); 

𝑥𝑛+1 = 𝑥𝑛+0.5 +
𝐻

2
(𝑦𝑛+1 − 𝑎𝑥𝑛+0.5 + 𝑏𝑦𝑛+1𝑧𝑛+1). 

 

(1.36) 

Фазовое пространство системы Дадра-Момени (1.36) и вид аттрактора системы 

при стандартных параметрах приведены на рис. 1.8. 
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Рисунок 1.8 – Фазовое пространство дискретной модели системы Дадра-Момени 

(1.36), визуализированное с помощью разработанного в диссертационном 

исследовании программного обеспечения 

 

Аттрактор Нозе-Гувера. Эта консервативная хаотическая система третьего 

порядка была предложена С. Нозе и В.Г. Гувером, а также неоднократно 

переоткрывалась другими авторами [35, 36, 37], и в классическом виде 

формулируется следующим образом: 

 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝑎𝑦

𝑑𝑦

𝑑𝑡
= −𝑥 + 𝑦𝑧

𝑑𝑧

𝑑𝑡
= 𝑑 − 𝑦2

, (1.37) 

где 𝑎 и 𝑑 – параметры системы. Вид фазового пространства системы (1.37) приведен 

на рис. 1.9. 
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Конечно-разностная модель системы по методу КД имеет вид: 

 

𝑦𝑛+0.5 =
𝑦𝑛 − 𝑥𝑛

𝐻
2

1 −
ℎ
2
𝑧𝑛

; 

𝑧𝑛+0.5 = 𝑧𝑛 +
𝐻

2
(𝑑 − 𝑦𝑛+0.5𝑦𝑛+0.5); 

𝑥𝑛+1 = 𝑥𝑛 +𝐻𝑎𝑦𝑛+0.5; 

𝑧𝑛+1 = 𝑧𝑛+0.5 +
𝐻

2
(𝑑 − 𝑦𝑛+0.5𝑦𝑛+0.5); 

𝑦𝑛 = 𝑦𝑛+0.5 +
𝐻

2
(𝑦𝑛+0.5𝑧𝑛+1 − 𝑥𝑛+1). 

(1.38) 

Система Нозе-Гувера выбрана в настоящем диссертационном исследовании в 

качестве репрезентативного примера консервативной хаотической системы с 

квадратичной нелинейностью. 

 

Рисунок 1.9 – Фазовое пространство дискретной системы Нозе-Гувера (1.38), 

визуализированное с помощью разработанного в диссертационном исследовании 

программного обеспечения и полуявных численных методов 
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1.3 Композиционные методы численного решения ОДУ на основе полуявных 

опорных интеграторов 

 

Основной принцип работы композиционной схемы [38, 39] численного 

интегрирования ОДУ состоит в том, чтобы добиться приближения более высокого 

порядка точности путем последовательного выполнения решений, полученных 

опорным методом  Фℎ с различным шагом интегрирования. 

Выберем числа 𝛾1, … , 𝛾𝑠, удовлетворяющие условию согласованности 

 𝛾1 + 𝛾2 +⋯+ 𝛾𝑠 = 1 (1.39) 

и сформулируем общий вид композиционного метода интегрирования с 𝑠 

стадиями: 

 Ψℎ = Φ𝑦𝑠ℎ ∘ … ∘ Φ𝑦2ℎ ∘ Φ𝑦1ℎ (1.40) 

Коэффициенты 𝛾1, … , 𝛾𝑠,  выбираются таким образом, чтобы повысить порядок 

результирующего численного метода Ψℎ по сравнению с порядком опорного метода. 

Данные коэффициенты могут быть найдены различными способами. Вначале 

рассмотрим симметричную последовательность, предложенную Х. Йошидой в 1990 

году [38], которая оказалась простой и эффективной при практическом 

использовании, и широко известна среди исследователей в этой области. Для 3-

стадийного композиционного метода коэффициенты рассчитываются по следующим 

выражениям: 

 
𝛾1 = 𝛾3 = (2 − 2

1

𝑝+1)
−1

, 

𝛾2 = −2
1
𝑝+1 (2 − 2

1
𝑝+1)

−1

. 

(1.41) 

где 𝑝 – порядок точности опорного метода Фℎ,. 

Следуя идее работы [40], можно заключить, что выбор симметричного 

полуявного опорного метода порядка 2 для композиционной схемы с 

коэффициентами (1.41) позволяет получить трёхстадийный метод порядка 4. 

Несколько других рассмотренных в диссертационном исследовании 

последовательностей коэффициентов основаны на классической интерпретации 
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Кахана, данной в работе [41]. Обозначение sNOrdM используется в соответствии с 

работой [41] и соответствует схеме с N стадиями, которая дает аппроксимацию 

порядка точности M. 

Композиционные методы позволяют получить численное решение более 

высокого порядка точности простым повторением опорного метода. При этом 

сохраняются некоторые свойства опорного интегратора – симплектичность и 

симметричность. 

В данном разделе исследуются три подхода к построению композиционных 

схем на основе различных опорных интеграторов: явных и неявных численных 

методов, а также предложенных в диссертационной работе полуявных методов КД. 

Первый из рассматриваемых подходов к синтезу коэффициентов основан на формуле 

Йошиды [38], второй – на формуле Сузуки [39], третий – на формулах Кахана [41]. 

Исследованию подлежат композиционные численные методы с переменным шагом 

интегрирования. 

Реализация решателя ОДУ с адаптивным шагом требует формулы для 

вычисления нового значения шага на основе предыдущего. Общая формула для 

нового размера шага в алгоритме управления шагом выглядит следующим образом: 

 ℎ𝑛+1 = ℎ𝑛𝑅  

где 𝑅 – коэффициент, который содержит информацию о погрешности вычислений на 

текущем или предыдущем шаге, и может быть получен с помощью различных 

алгоритмов оценки локальной погрешности.  

В диссертационном исследовании используется обычный алгоритм управления 

размером шага, представленный Э. Хайрером и др. в работе [42], который требует 

дополнительной процедуры, заключающейся в том что после выбора начального 

размера шага ℎ𝑛 необходимо найти два приближенных решения с помощью двух 

методов интегрирования различной алгебраической точности для оценки локальной 

погрешности. Обозначим эти приближения как 𝑥𝑛 и 𝑥̃𝑛. Используя эти приближения, 

можно найти новое значение размера шага ℎ𝑛+1 как: 
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ℎ𝑛+1 = ℎ𝑛 (
𝑇𝑜𝑙

‖𝑥𝑛 −𝑥̃𝑛‖
)

1
𝑚+1

 (1.42) 

где m соответствует наименьшему порядку точности среди выбранных методов, 

𝑇𝑜𝑙  – заданное пороговое значение допуска по локальной погрешности. 

Полуявная модификация метода средней точки 

Следуя общей идее явного метода средней точки [43], рассмотрим его 

полуявную модификацию. Для рассматриваемой тестовой системы ОДУ в общем 

виде можно получить решение в момент времени 𝑡𝑛+1 по следующей формуле, 

которая является комбинацией второго порядка явного и полуявного методов первого 

порядка точности 

 Ф̃ (𝑥𝑛,
ℎ

2
) = Ф1 (𝑥𝑛,

ℎ

2
) °Ф3(𝑥𝑛, ℎ), (1.43) 

где 

 

Ф1 (𝑥𝑛,
ℎ

2
) :

{
 

 𝑥
𝑛+
1
2
= 𝑥𝑛 +

ℎ

2
𝑓(𝑥𝑛, 𝑦𝑛, 𝑡𝑛)

𝑦
𝑛+
1
2
= 𝑦𝑛 +

ℎ

2
𝑔(𝑥𝑛+1, 𝑦𝑛, 𝑡𝑛)

, (1.44) 

и 

 

Ф3 (𝑥𝑛, 𝑥𝑛+1
2
, ℎ) : {

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑥𝑛+1
2
, 𝑦
𝑛+
1
2
, 𝑡
𝑛+
1
2
)

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑔(𝑥𝑛+1
2
, 𝑦
𝑛+
1
2
, 𝑡
𝑛+
1
2
)
, (1.45) 

которая является модификацией классического явного метода средней точки, 

полученной путем замены первого этапа метода с явного на полуявный интегратор 

Эйлера. Заметим, что выражения (1.23) и (1.44) совпадают, поэтому нет 

необходимости проводить вычисления 𝑥𝑛+1/2 дважды. Получение 𝑥𝑛+1 и 𝑥̃𝑛+1 

разными методами и вычисление их разности позволяет использовать формулу (1.42) 

для управления шагом, т.е. создает встроенный механизм оценки локальной 

погрешности. 

Алгоритмы оценки локальной погрешности решения в композиционных 

методах численного интегрирования 

Рассмотрим несколько современных алгоритмов управления шагом 
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интегрирования в композиционных решателях ОДУ. Наиболее популярный способ 

оценивает локальную ошибку усечения, используя разность двух численных 

решений, полученными одинаковой композицией различных опорных методов 

интегрирования, которая в диссертационном исследовании будет обозначаться как 

OCDM (англ. One Composition for Different Methods). На рис. 1.10 показана общая 

схема оценки ошибки OCDM для произвольного композиционного решателя. 

 

Рисунок 1.10 – Схема алгоритма OCDM со встроенным механизмом оценки 

локальной погрешности. Здесь 𝑥𝑛+1 является основным решением и 𝑥̃𝑛+1 является 

дополнительным решением, введенным для оценки локальной ошибки. 

 

Модификация данного способа, существующая только для полуявных опорных 

методов и разработанная в ходе диссертационного исследования, основана на 

использовании двух различных коммутаций опорного метода КД. Этот прием 

обеспечивает нахождение двух различных решений на шаге аналогично тому, как 

если бы мы использовали различные опорные методы в схеме с одинаковым 

порядком точности. Разница коммутаций опорных методов обеспечивает нужную 

оценку локальной погрешности до 𝑂(ℎ3) на каждой стадии композиции: 

 

Ф(𝑥𝑛, ℎ):

{
 
 
 
 

 
 
 
 𝑥
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1
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2
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Ф̅(𝑥𝑛, ℎ):

{
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2
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2
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, 

Следующий исследуемый метод оценки погрешности использует два решения, 

найденные с одним и тем же опорным методом, но и в составе разных 

композиционных схем. Обозначим данный способ как DCOM (англ. Different 

Compositions for One Method). Схема DCOM показана на рис. 1.11. 

 

Рисунок 1.11 – Схема алгоритма DCOM. 𝛾𝑘 , где 𝑘 = 1,2,… , 𝑠  и 𝛾̃𝑘 , где 𝑘 = 1,2,… , 𝑢 

– коэффициенты для различных схем композиции с s и u стадиями, соответственно. 

 

  Одним из наиболее современных способов оценки локальной погрешности при 

управлении шагом в композиционных схемах численного интегрирования является 

использование пары вложенных (англ. Embedded) методов, например, как в 

известном семействе вложенных методов Рунге-Кутты. 

Встроенные алгоритмы оценки погрешности в композиционных схемах 

Следуя идее, впервые описанной Блейнсом и др. в работе [44], можно 

использовать промежуточные результаты расчета решения, полученные в процессе 

вычислений численной аппроксимации 𝑥𝑛+1 = Ψℎ(𝑥𝑛) ≈ 𝑥(𝑡𝑛+1) =  𝑥(𝑡𝑛 + ℎ) с 

(1.40). Используя композиционную схему с s этапами, можно получить 𝑠 − 1 

промежуточных значений, т.е.:  

 𝑥𝑛,0 = 𝑥𝑛 

𝑥𝑛,𝑘 = 𝜓ℎ(𝑥𝑛) = Ф𝛾𝑘
ℎ°⋯ °Ф𝛾1ℎ , 𝑘 = 1,… , 𝑠 − 1. 
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Аппроксимация 𝑥̃𝑛+1 может быть получена как линейная комбинация 

промежуточных значений 𝑥𝑛,𝑘 и в дальнейшем использована для оценки 

погрешности: 

 

𝑥̃𝑛+1 =∑𝑤𝑘

𝑠−1

𝑘=0

𝑥𝑛,𝑘 ,  

Коэффициенты 𝜔𝑘 находятся путем решения системы линейных уравнений, 

которые представляют собой условия порядка [44]. Количество условий порядка, 

которые должны быть удовлетворены, увеличивается соответственно желаемому 

порядку общего решения 𝑥̃𝑛+1: 

 

𝑟0 ≡ 𝑤0 +∑𝑤𝑘 = 1,

𝑠−1

𝑘=1

 

𝑟1 ≡∑𝑤𝑘∑𝛾𝑗 = 1,

𝑘

𝑗=1

𝑠−1

𝑘=1

 

𝑟2 ≡∑𝑤𝑘 (∑𝛾𝑗

𝑘

𝑗=1

)

2

= 1,

𝑠−1

𝑘=1
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𝑘

𝑗=1

)

3
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𝑠−1
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𝑟3,2 ≡∑𝑤𝑘∑𝛾𝑗
3 = 1,

𝑘
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𝑠−1

𝑘=1

 

𝑟4,1 ≡∑𝑤𝑘 (∑𝛾𝑗

𝑘
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3 ∑ 𝛾𝑙

𝑘

𝑙=𝑗+1

𝑘−1

𝑗=1

) = 0,

𝑠−1

𝑘=1

 

𝑟4,3 ≡∑𝑤𝑘 (∑𝛾𝑗
4 + 2

𝑘

𝑗=1

∑𝛾𝑗
3∑𝛾𝑙

𝑗−1

𝑙=1

𝑘

𝑗=2

) = 0.

𝑠−1

𝑘=1

 

(1.46) 



57 

Для получения решения второго порядка точности из стадий схемы четвертого 

порядка необходимо решить 5 уравнений из формулы (1.46). Наименьшее количество 

этапов, необходимых для выполнения условий порядка, в данном случае будет равно 

5, а единственное решение для конкретной схемы четвертого порядка s5ord4 Кахана 

[45], имеет следующий вид: 

 𝑥̃𝑛+1 = −𝑥𝑛 +𝑤1(𝑥𝑛,1 − 𝑥𝑛,4) + 𝑤2(𝑥𝑛,2 − 𝑥𝑛,3),  

где 𝜔1 = −1.40482876783862909, 𝜔2 = −2.40482876783863197 

Для получения вложенного решения четвертого порядка необходимо решить 

весь набор уравнений, представленный в (1.46). Для семистадийной схемы формула 

вложенного решения имеет вид: 

 𝑥̃𝑛+1 = 𝑥𝑛 + 𝑤1(𝑥𝑛,1 − 𝑥𝑛,6) + 𝑤2(𝑥𝑛,2 − 𝑥𝑛,5) + 𝑤3(𝑥𝑛,3 − 𝑥𝑛,4).  

Следуя той же идее, можно найти искомые значения 𝜔𝑖 , где 𝑖 = 1,2,3  для одной 

из схем Кахана [41] с коэффициентами семистадийной схемы 6 порядка s7ord6: 

 𝜔1 = −0.909832330075625028, 

𝜔2 = 2.16331188722936796, 

𝜔3 = 0.556955803872050015. 

 

Предложенная схема также может применена для получения меньшей 

локальной погрешности усечения и методов более высоких порядков. В частности, 

для получения оценки порядка 5 для симметричной композиционной схемы с 17 

стадиями порядка 8 (s17ord8) необходимо решить систему из 13 линейных 

уравнений. Выражение для оценки ошибки в этом случае имеет вид: 

 

𝑥̃𝑛+1 = −𝑥𝑛 +∑𝑤𝑖(𝑥𝑛,𝑖 − 𝑥𝑛,17−𝑖),

8

1

  

где 

 𝜔1 = −2.77811433347582461058, 

𝜔2 = 1.43336350604816157334, 

𝜔3 = −2.35490307436226712937, 

𝜔4 = 0.27249477875971647996, 

𝜔5 = 3.09204406313073660493, 
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𝜔6 = 1.33511505989947708172, 

𝜔7 = 0, 

𝜔8 = 0, 

Далее мы будем называть этот вложенный метод оценки локальной 

погрешности оценкой ошибки по способу Блейнса (англ. Blanes Error Estimator, 

BEE). 

Новый способ оценки локальной погрешности решения композиционных 

методов интегрирования 

Идея предложенного в диссертационном исследовании способа оценки 

локальной погрешности основана на особых свойствах композиционных полуявных 

методов и предполагает разделение решения на две части на каждой стадии метода, 

как показано на рис. 1.12. 

 

Рисунок 1.12 – Общая схема предложенного алгоритма оценки ошибок в 

двухэтапной композиционной схеме 

 

На рис. 1.12 𝑥𝑛 = (
𝑥𝑛
𝑦𝑛
), 𝑥𝑛,𝑖 = (

𝑥𝑛,𝑖
𝑦𝑛,𝑖
). При этом Φ1 является полуявным методом 

Эйлера-Кромера, а Φ2 является полуявным D-методом, сопряженным с Φ1 и 

образующим в композиции с ним полуявный метод КД второго порядка точности. 

Для получения полуявного метода средней точки требуется композиция из Φ1 и 

явного метода Эйлера. Обозначим эту схему как ECDM (англ. Embedded 

Composition for Different Methods). 

Формализуем предложенный подход следующим образом: 

 𝑥̅𝑛 = Ф1(𝑥𝑛, 𝛾1ℎ), 

𝑥𝑛,1 = Ф2(𝑥̅𝑛, 𝛾1ℎ), 

𝑥̃𝑛,1 = Ф3(𝑥̅𝑛, 𝑥𝑛, 𝛾1ℎ), 
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𝑥̅𝑛,1 = Ф1(𝑥𝑛,1, 𝛾2ℎ), 

𝑥𝑛+1 = Ф2(𝑥̅𝑛,1, 𝛾2ℎ), 

𝑥̃𝑛+1 = Ф3(𝑥̅𝑛,1, 𝑥̃𝑛,1, 𝛾2ℎ). 

Предлагаемый способ оценки локальной погрешности основан на идее 

использования внутри одной стадии композиции двух различных опорных методов – 

метода КД и полуявного метода средней точки, которые имеют один и тот же 

полуявный метод Эйлера в качестве начального этапа, но имеют разное разложение 

в ряд на шаге, что позволяет оценить погрешность с точностью до второго порядка. 

Для каждого шага интегрирования берется решение в точке 𝒙𝑛 и используется в 

качестве начального значения для двух разных опорных методов с общим участком, 

которые мы будем обозначать как 𝒙𝑛 (основное решение, полуявный КД) и 𝑥̃𝑛 

(дополнительное решение, полуявная средняя точка).  

Для дальнейшего пояснения предложенного решения приведем его алгоритм, 

записанный псевдокодом: 

Алгоритм 1.2 – Предложенный алгоритм управления размером шага 

Begin Algorithm 

1    Set variable values 𝑥𝑛, ℎ; 

2    Set vector of composition coefficients 𝛾; 

3    Set s as number of composition stages; 

4       Begin DO-WHILE cycle until  𝑡𝑜𝑙 ≥  ‖𝑥𝑛+1 − 𝑥̃𝑛+1‖ 

5        Begin FOR 𝒊 = 𝟏,… , 𝒔 

6        Calculate new value of ℎ using formula ℎ =  ℎ𝛾[𝑖]; 

7           Calculate 𝑥𝑛+0.5 value starting from 𝑥𝑛 using semi-explicit 𝐷 method with      

            stepsize ℎ/2; 

8          Calculate 𝑥̃𝑛+1 value starting from 𝑥𝑛 using explicit Euler method   

            with stepsize ℎ using previously obtained value 𝑥𝑛+0.5; 

9           Calculate 𝑥𝑛+1 value starting from 𝑥𝑛 using semi-implicit 𝐷 method with  

            stepsize ℎ/2 using previously obtained value 𝑥𝑛+0.5; 

10       End FOR cycle; 
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Оценка вычислительной эффективности полуявных композиционных 

решателей ОДУ с адаптивным шагом интегрирования 

В этом подразделе проводится сравнительная оценка вычислительной 

эффективности полуявных композиционных схем численного решения ОДУ с 

различными способами управления шагом интегрирования на наборе тестовых задач 

[360]. Вычислительная эффективность рассчитывается, как зависимость машинного 

времени, затраченного на нахождение решения, от глобальной погрешности решения. 

В каждом эксперименте использовались следующие параметры: начальные условия; 

время моделирования 𝑇, ℎ𝑠𝑡𝑎𝑟𝑡, ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥 – начальный, минимальный и 

максимальный размер шага соответственно; 𝑡𝑜𝑙 – пороговое значение допуска по 

погрешности. 

Для построения графика характеристик пороговое значение допуска по 

погрешности изменялось в заданном интервале (см. табл. 1.1-1.3). Для получения 

локальной погрешности результат расчета сравнивался с эталонным решением, 

полученным экстраполяционным методом 10-го порядка точности [46] в тех же 

точках. 

Система Рёсслера 

Система (1.26) хорошо известна как одна из простейших систем ОДУ с 

хаотическим поведением и является подходящей тестовой задачей для исследования 

свойств численных методов интегрирования ОДУ [30]. Все эксперименты, 

описанные в данном разделе диссертации, проводились с параметрами, которые 

соответствуют хаотическому режиму. 

Дискретная модель задачи Рёсслера, полученная методом КД, приведена в 

диссертации ранее (1.27). Дискретная модель, полученная методом полуявной 

средней точки (1.45) из системы Рёсслера выглядит следующим образом: 

11       Choose new step value ℎ;  

12     End DO-WHILE cycle;   

End Algorithm 
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 𝑧𝑛+0.5 = 𝑧𝑛 +

ℎ

2
(𝑏 + 𝑧𝑛𝑥𝑛 − 𝑐𝑧𝑛), 

 𝑦𝑛+0.5 = 𝑦𝑛 +
ℎ

2
(𝑥𝑛 + 𝑎𝑦𝑛), 

𝑥𝑛+0.5 = 𝑥𝑛 +
ℎ

2
(−𝑦𝑛+0.5 − 𝑧𝑛+0.5), 

𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛+0.5 − 𝑧𝑛+0.5), 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑥𝑛+0.5 + 𝑎𝑦𝑛+0.5), 

 𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 + 𝑧𝑛+0.5𝑥𝑛+0.5 − 𝑐𝑧𝑛+0.5). 

 

В таблице 1.1 представлены значения параметров, использованные в 

экспериментах. Протестированы три композиционных полуявных метода порядка 

точности 4, 6 и 8. Использовался тип данных с плавающей точкой и двойной 

точностью представления чисел (IEEE Double Floating Point Precision). Для сравнения 

вычислительных затрат и полученного отношения погрешностей для исследованных 

алгоритмов контроля шага интегрирования (OCDM, DCOM, вложенные методы 

Блейнса (BEE) и предложенный в диссертационном исследовании метод ECDM). 

Графики производительности исследуемых композиционных методов при решении 

тестовой задачи Рёсслера приведены на рисунке 1.13. Рисунок 1.14 иллюстрирует 

поведение размера шага во времени для различных способов оценки локальной 

погрешности. Приведенные графики производительности показывают существенное 

превосходство предлагаемого способа управления шагом композиционных схем над 

известными алгоритмами. 

 

Таблица 1.1 – Значения параметров при моделировании системы Рёсслера 

Порядок 
Начальные 

условия 

Время 

моделирования, с. 

Размер шага Допуск по 

погрешности Hmin Hstart Hmax 

4 

(1.6; 0; -0.1) 15 10−5 

 

5 ∙ 10−3 

 

 

1 

 

10−5 – 10−9 

6 
10−7 – 10−11 

8 
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(a) (б) 

 

(в) 

Рисунок 1.13 – Графики производительности композиционных решателей на основе 

полуявного метода КД с порядком алгебраической точности 4 (a), 6 (б) и 8 (в) 

при моделировании системы Рёсслера  

 

Как видно из рисунков 1.13 и 1.14, предложенный способ управления шагом 

композиционных решателей позволяет достичь наилучшего отношения ошибки к 

вычислительным затратам среди известных регуляторов шага. Некоторое отставание 

в точности получаемой схемы может быть компенсировано путем перенастройки 
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параметров решателя со сдвигом порога желаемой ошибки в сторону уменьшения. 

При этом угол наклона графика сохраняется на всем интервале оси абсцисс. 

 

Рисунок 1.14 – Графики динамики шага для различных исследуемых регуляторов 

шага при моделировании хаотической системы Рёсслера  

 

Отметим, что метод оценки погрешности OCDM и предложенная схема ECDM 

приводят к почти одинаковой динамике и амплитуде колебаний переменного шага, в 

то время как регуляторы, использующие DCOM и BEE склонны выбирать 

относительно малые шаги. При этом выигрыш схемы ECDM обусловлен лучшим 

соответствием динамики шага и динамики системы, достигаемым за счет 

предложенного способа оценки локальной погрешности. Для тестовой задачи 

Рёсслера предлагаемый в диссертации метод управления шагом ECDM оказывается 

наилучшим. Рассмотрим поведение предложенного регулятора на жесткой 

нелинейной задаче. 

 

Система ван дер Поля 

Осциллятор ван дер Поля (1.29) – это система с нелинейным демпфированием 

и управляемым параметром µ, определяющим жесткость системы [31]. Значение µ =

55 соответствует умеренно жесткому поведению решения. 

Полуявный алгоритм КД для осциллятора ван дер Поля был приведен ранее 

(1.30). Полуявный алгоритм средней точки для уравнения ван дер Поля имеет вид: 
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 𝑦𝑛+0.5 = 𝑦𝑛 +

ℎ

2
(𝑚(1 − 𝑥𝑛𝑥𝑛)𝑦𝑛 − 𝑥𝑛), 

𝑥𝑛+0.5 = 𝑥𝑛 +
ℎ

2
𝑦𝑛+0.5, 

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑦𝑛+0.5, 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑚(1 − 𝑥𝑛+0.5𝑥𝑛+0.5)𝑦𝑛+0.5 − 𝑥𝑛+0.5). 

 

На рисунке 1.15 показаны графики оценки производительности при решении 

уравнения ван дер Поля различными композиционными решателями с адаптивным 

размером временного шага. Рисунок 1.16 иллюстрирует поведение размера шага во 

времени для исследуемых алгоритмов управления шагом. 

 

Таблица 1.2 – Значения параметров при моделировании осциллятора ван дер Поля 

Порядок 
Начальные 

условия 

Время 

моделирования, с. 

Размер шага Допуск по 

погрешности Hmin Hstart Hmax 

4 
(1.15; 0) 

15 10−5 10−4 1 
10−5 – 10−10 

6 

8 (1.52; 0) 10−4 – 10−9 

 

Графики производительности методов, приведенные на рисунке 1.15, 

показывают, что исследованные методы оценки локальной погрешности и 

регуляторы шага работают хуже в составе решателей высокого (6го и 8го) порядка 

точности, в то время как предложенный метод эффективен как на низких, так и на 

высоких порядках. Дополняя предыдущие результаты, можно сделать вывод, что 

снижение дополнительных затрат, необходимых для локальной оценки погрешности, 

а также высокая точность данной оценки являются ключевыми причинами высокой 

эффективности предлагаемого алгоритма управления шагом интегрирования. 
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(a) (б) 

 

(в) 

Рисунок 1.15 – Графики производительности композиционных решателей на основе 

полуявного метода КД с порядком алгебраической точности 4 (a), 6 (б) и 8 (в) 

при моделировании системы ван дер Поля  

 

 

Рисунок 1.16 – Графики динамики переменного шага для различных исследуемых 

регуляторов при моделировании системы ван дер Поля 
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Задача двух тел 

Эта известная модель колебательной системы относится к классу 

гамильтоновых задач, и описывается ОДУ четвертого порядка, задающим движение 

двух гравитационно связанных тел с одинаковыми массами [47]: 

 𝑑𝑥

𝑑𝑡
= 𝑧, 

𝑑𝑦

𝑑𝑡
= 𝑤, 

𝑑𝑧

𝑑𝑡
= −

𝑥

(√𝑥2 + 𝑦2)3
, 

𝑑𝑤

𝑑𝑡
= −

𝑦

(√𝑥2 + 𝑦2)
3. 

(1.47) 

Полуявный алгоритм средней точки для системы двух тел выглядит 

следующим образом: 

 

𝑤𝑛+0.5 = 𝑤𝑛 +
ℎ

2
(−

𝑦𝑛

(√𝑥𝑛𝑥𝑛 + 𝑦𝑛𝑦𝑛)
3), 

𝑧𝑛+0.5 = 𝑧𝑛 +
ℎ

2
(−

𝑥𝑛

(√𝑥𝑛𝑥𝑛 + 𝑦𝑛𝑦𝑛)
3), 

𝑦𝑛+0.5 = 𝑦𝑛 +
ℎ

2
(𝑤𝑛+0.5), 

𝑥𝑛+0.5 = 𝑥𝑛 +
ℎ

2
(𝑧𝑛+0.5), 

𝑥𝑛+1 = 𝑥𝑛 + ℎ(𝑧𝑛+0.5), 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑤𝑛+0.5), 

𝑧𝑛+1 = 𝑧𝑛 + ℎ(−
𝑥𝑛+0.5

(√𝑥𝑛+0.5𝑥𝑛+0.5 + 𝑦𝑛+0.5𝑦𝑛+0.5)
3), 

𝑤𝑛+1 = 𝑤𝑛 + ℎ(−
𝑦𝑛+0.5

(√𝑥𝑛+0.5𝑥𝑛+0.5 + 𝑦𝑛+0.5𝑦𝑛+0.5)
3). 
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Полуявный алгоритм КД можно записать, как: 

 

𝑤𝑛+0.5 = 𝑤𝑛 +
ℎ

2
(−

𝑦𝑛

(√𝑥𝑛𝑥𝑛 + 𝑦𝑛𝑦𝑛)
3), 

𝑧𝑛+0.5 = 𝑧𝑛 +
ℎ

2
(−

𝑥𝑛

(√𝑥𝑛𝑥𝑛 + 𝑦𝑛𝑦𝑛)
3), 

𝑦𝑛+0.5 = 𝑦𝑛 +
ℎ

2
(𝑤𝑛+0.5), 

𝑥𝑛+0.5 = 𝑥𝑛 +
ℎ

2
(𝑧𝑛+0.5), 

𝑥𝑛+1 = 𝑥𝑛+0.5 + ℎ(𝑧𝑛+0.5), 

𝑦𝑛+1 = 𝑦𝑛+0.5 + ℎ(𝑤𝑛+0.5), 

𝑧𝑛+1 = 𝑧𝑛+0.5 + ℎ(−
𝑥𝑛+1

(√𝑥𝑛+1𝑥𝑛+1 + 𝑦𝑛+1𝑦𝑛+1)
3), 

𝑤𝑛+1 = 𝑤𝑛+0.5 + ℎ(−
𝑦𝑛+1

(√𝑥𝑛+1𝑥𝑛+1 + 𝑦𝑛+1𝑦𝑛+1)
3). 

 

Аналитическое решение системы (1.47) для начальных условий 𝑥(0) = 1, 

𝑦(0) = 0, 𝑧(0) = 0, 𝑤(0) = 1 имеет вид: 

 𝑥(𝑡) = cos(𝑡), 

𝑦(𝑡) = sin(𝑡), 

𝑧(𝑡) = −sin(𝑡), 

𝑤(𝑡) = cos(𝑡), 

 

 

Таблица 1.3 – Значения параметров при моделировании задачи двух тел 

Порядок 
Начальные 

условия 

Время 

моделирования, с. 

Размер шага Допуск по 

погрешности Hmin Hstart Hmax 

4 

(1; 0; 0; 1) 50 10−4 5 ∙ 10−3 1 

10−4 – 10−9 

6 10−6 – 10−11 

8 10−5 – 10−10 
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На рисунке 1.17 показаны графики оценки производительности различных 

композиционных полуявных методов интегрирования при решении задачи двух тел с 

адаптивным размером шага. На рисунке 1.18 показано поведение размера шага 

интегрирования при использовании регуляторов с различными способами оценки 

локальной погрешности. 

  

(a) (b) 

 

(c) 

Рисунок 1.17 – Графики оценки производительности композиционных решателей на 

основе полуявного метода КД с порядком алгебраической точности 4 (a), 6 (б) и 8 

(в) при моделировании системы двух тел  
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Рисунок 1.18 – Графики поведения размера шага для различных исследуемых 

вариаторов для задачи двух тел 

 

Из рисунков 1.17 и 1.18 можно видеть, что для гамильтоновых систем 

предложенный алгоритм управления размером шага ECDM показывает более 

высокую производительность для композиционных схем низкого порядка, но в целом 

выигрыш, получаемый от использования ECDM, меньше, чем в случае систем 

Рёсслера и ван дер Поля. Это может быть легко объяснено тем фактом, что для 

гамильтоновой системы метод КД сводится к методу Стёрмера-Верле, разложение в 

ряд, для которого минимально отличается от метода полуявной средней точки.  

Динамика переменного шага, представленная на рисунке 1.18, коррелирует с 

периодическим поведением переменных состояния системы. Алгоритм ECDM 

выбирает самые большие размеры шага, что косвенно указывает на то, что другие 

методы оценки локальной погрешности склонны переоценивать ошибку и выбирать 

меньшие размеры шагов. Таким образом, полученные результаты хорошо 

согласуются с теоретическими предположениями диссертационного исследования. 

 

1.4 Исследование численной устойчивости полуявных методов 

интегрирования 

 

Разработка полуявных методов численного интегрирования поставила перед 

исследователями задачу по оценке их численной устойчивости, нетривиальную в 
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контексте особого способа обращения к правой части решаемого уравнения у 

полуявных решателей. Классический анализ устойчивости численных методов 

предполагает построение областей устойчивости через рассмотрение одномерной 

задачи Дальквиста вида: 

 𝑥̇ = λ𝑥 (1.48) 

Для метода находится функция устойчивости вида 𝑥𝑛+1 = 𝑅(ℎλ)𝑥𝑛, где 𝑅(ℎλ) 

– функция приращения.  

Как известно из раздела 1.1 диссертации, полуявные методы существуют лишь 

для систем второго порядка и более. Для тестовой задачи (1.48) обычный метод КД 

(1.25) обращается в правило неявной средней точки, а альтернативный вариант 

композиции КД – в правило трапеций. Из вида функции приращения Д-методов (1.19) 

следует, что они не могут быть представлены в матричном виде, а, следовательно, 

распространять результаты оценки устойчивости, полученные на одномерной задаче 

Дальквиста, на все дифференциальные уравнения в нормальной форме Коши 

неправомочно. Первые попытки обобщить теорию устойчивости, предложенную 

Дальквистом, на случай моделирования двумерной линейной системы, были сделаны 

в работах [48] и [49]. В работе [50] было выдвинуто предположение, что устойчивость 

полуявных конечно-разностных схем зависит от степени симметрии моделируемой 

системы. 

В данном разделе диссертации предложена методика оценки устойчивости 

полуявных методов численного интегрирования на основе построения многомерных 

областей устойчивости с коэффициентом симметрии в качестве дополнительного 

параметра. Проводится анализ опорных полуявных методов КД, а также 

экстраполяционных и композиционных методов на их основе. Аббревиатуры ЭКД 

(экстраполяционный метод КД) и ECD (англ. Extrapolation Composition D-method) 

будут использоваться в дальнейшем в тексте диссертации. 

 

Методика оценки устойчивости полуявных методов интегрирования 

Рассмотрим влияние коэффициента асимметрии системы на устойчивость 

полуявных конечно-разностных схем. 
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Для тестовой задачи (1.48) найдем решение в общем виде  

 𝑥𝑛+1 = 𝑅(ℎλ)𝑥𝑛, (1.49) 

например, для метода Эйлера такая запись будет иметь вид 

𝑥𝑛+1 = (1 + ℎλ)𝑥𝑛. 

Поскольку полуявные методы не существуют для систем размерности меньше 

двух [51], используем двумерную задачу Дальквиста для анализа устойчивости [378]: 

 𝑥̇ = (
𝑎 𝑏
𝑐 𝑑

) (1.50) 

Алгоритм построения области устойчивости с использованием тестовой задачи 

(1.50) выглядит следующим образом. Выберем такую матрицу 𝐴 = (
𝑎 𝑏
𝑐 𝑑

), чтобы она 

имела два заданных комплексно-сопряженных собственных значения 𝜆1,2  =  𝜎 ±

 𝑗𝜔, соответствующие точке (𝜎,± 𝜔) на комплексной плоскости. Введем переменную 

𝑘 ≥  0 – коэффициент асимметрии матрицы 𝐴. Элементы матрицы 𝐴 определяются 

следующими уравнениями: 

 
𝑑 =

2𝜎

1 + 𝑘
 

𝑎 = 𝑘𝑑 

𝑐 = −√
2𝜔2 + (𝑎 − 𝑑)2

4
 

𝑏 = −𝑐 

(1.51) 

Из условий (1.51) следует, что при 𝑘 =  0 матрица является наиболее 

асимметричной, в частности, может быть матрицей в форме Фробениуса, при 𝑘 =  1 

матрица 𝐴 является наиболее симметричной, а именно, матрицей в форме Жордана. 

Зафиксировав коэффициент асимметрии, для каждой пары собственных 

значений 𝑥𝑛+1 = 𝑅(ℎ𝜆)𝑥𝑛, соответствующих точкам комплексной 

плоскости (𝜎, ± 𝜔), вычислим величину 𝑟 =  𝑚𝑎𝑥|𝑒𝑖𝑔(𝑅(ℎ𝜆))|. Областью 

устойчивости метода будем называть область комплексной плоскости, где 𝑟 ≤  1.  

Исследования показывают, что наибольшая область устойчивости 

композиционного полуявного метода достигается при симметричной матрице А, при 
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асимметричной матрице область устойчивости КД уменьшается. Примеры 

визуализации областей устойчивости приведены в следующих подразделах главы 1. 

Важным вопросом является способ оценки областей устойчивости при 

практическом применении метода. Часто опубликованные работы, например, [52], 

предполагают визуализацию только границы области устойчивости при 

значениях 𝑟 =  1. Этот подход можно улучшить при нанесении на комплексную 

плоскость не только границы области, но и величины 𝑟 – модуля собственных чисел 

функции устойчивости. При этом появляется возможность оценить важность той или 

иной части области устойчивости. На рисунках в данном разделе предполагается, что 

темные участки области устойчивости соответствуют медленно затухающим 

процессам со значениями 𝑟, близкими к 1, в то же время светлые участки 

соответствуют быстро затухающим процессам при 𝑟 вблизи нуля или равном нулю. 

Следует понимать, что темные участки области устойчивости, относящиеся к области 

𝜆 → −∞, фактически не вносят вклад в реальную область устойчивости исследуемого 

метода, как будет показано в следующем подразделе. 

 

Области минимально достаточной точности методов численного 

интегрирования: область практической применимости 

Для оценки той части области устойчивости, которая действительно важна при 

выполнении практических вычислений, введем понятие области минимально 

достаточной точности разностной схемы, полученной в результате применения 

метода численного интегрирования, исходной непрерывной системе. Определим эту 

область как область комплексной плоскости, где относительная погрешность метода 

не превышает 1. Более точно, это область комплексной плоскости 𝑈, где норма 

разности точного решения 𝑥(ℎ) ≠ 0 на одном шаге численного интегрирования и 

приближенного значения, найденного численным методом, деленная на норму 

точного решения, не превышает 1. 

 ‖𝑥(ℎ) − 𝑥1‖

𝑥(ℎ)
≤ 1, (1.52) 
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Исследование условия (1.52) может показаться избыточным, но на простом 

примере метода Эйлера можно продемонстрировать его важность. 

На рис. 1.19. показана область устойчивости явного метода Эйлера, 

построенная при решении двумерной тестовой задачи (1.50). Она не отличается от 

области для задачи (1.48), поскольку рассматриваемый метод Эйлера полностью 

явный. 

 

Рисунок 1.19. – Область устойчивости метода Эйлера и пробные точки 

 

На рис. 1.20 показаны временные графики решения в этих точках. Только 

случаи (𝑓) и (𝑖) соответствуют возможным решениям непрерывной системы. Случаи 

(𝑎 − 𝑐) на границе и вне области устойчивости заведомо ошибочны для устойчивых 

систем, в точках (𝑑) и (𝑔) возникают паразитные колебания, и процессы такого вида 

не могут протекать в непрерывных системах второго порядка. Точки (𝑒) и (ℎ) 

представляют разновидности предыдущих двух случаев для быстро затухающих 

процессов.  
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Рисунок 1.20 – Поведение переменных состояния задачи (1.50) в тестовых точках 

 

Предлагаемый подход к оценке практической применимости методов актуален 

даже в контексте анализа устойчивости известных явных методов Рунге-Кутты, 

области устойчивости которых получены в работах [50] и [53]. Используя 

предлагаемый в диссертационном исследовании способ визуализации, можно 

дополнить стандартные изображения областей устойчивости методов Рунге-Кутты 

визуализацией областей минимально достаточной точности, то есть их практически 

полезных частей. В диссертационном исследовании мы будем называть данные 

области областями минимально достаточной точности, или областями 

предпочтительности (англ. Preferred stability region). Изображения такого типа 

приведены на рис. 1.21 в комбинации с классическими градиентными областями 

устойчивости методов Рунге-Кутты различного порядка.  
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Рисунок 1.21 – Практически полезные фрагменты областей устойчивости (области 

минимально достаточной точности или области предпочтительности) явных 

методов Рунге-Кутты (обведены жирной линией) 

 

На практике для вычисления области устойчивости значение (1.52) отыскать 

нельзя ввиду того, что 𝑥𝑛 полагается неизвестным. Поэтому вместо (1.52) для 

построения областей минимально достаточной точности используется условие 

‖𝑅̃−𝑅(ℎλ)‖

‖𝑅̃‖
≤ 1, 

эквивалентное (1.52) в скалярном случае, где 𝑅̃ = 𝑥(𝑡 + ℎ)/𝑥(𝑡) – точное значение 

функции приращения, которое можно найти как 𝑅̃ = 𝑒λℎ(скалярный случай) или 𝑅̃ =

𝑒𝐴ℎ (матричный случай). 

Несомненно, что визуализация областей устойчивости является достаточно 

грубым инструментом исследования практической пригодности различных методов 

для решения конкретных задач. Однако, поскольку оценка области устойчивости 

применяется только к линейным системам и не претендует на полноту описания 
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свойств метода, она достаточно информативна с точки зрения сравнения площади 

области устойчивости, наличия участков в правой полуплоскости и других свойств 

устойчивости различных методов. Поэтому в следующих подразделах области 

устойчивости исследуемых методов будут приводиться преимущественно без 

областей минимально достаточной точности. Исключение делается для тех случаев, 

когда форма области устойчивости сложна и граница области минимально 

достаточной точности неочевидна.  

 

Трехмерные области устойчивости как инструмент пространственной 

визуализации изменения устойчивости полуявных методов 

Области устойчивости численных методов интегрирования обычно 

изображаются в форме двумерных геометрических фигур на комплексной плоскости. 

Но такие параметры, как коэффициент асимметрии матрицы системы, порядок 

метода, экстраполяционная последовательность и др. порождают дополнительные 

степени свободы данной фигуры, нуждающиеся в визуализации. Необходимый в 

конкретном исследовании параметр можно интерпретировать как третье измерение 

при построении областей устойчивости. Такие области устойчивости могут нести 

более полную информацию об изменении области устойчивости при вариации либо 

асимметрии матрицы уравнения, либо порядка метода, или иного параметра, который 

влияет на форму области устойчивости метода.  

При изображении на плоскости бумаги или монитора полученная трехмерная 

область устойчивости может быть сложной для восприятия, однако, с учетом 

развивающихся технологий трехмерных дисплеев [54] и 3D-печати [55] данный 

способ визуализации имеет определенные перспективы. Сегодня трехмерная печать 

из пластика применяется для наглядной демонстрации аттракторов, бассейнов 

притяжения в нелинейной динамике [56] и других трехмерных структур, не имеющих 

прямых аналогов в физическом мире, но существующих в виде математических 

абстракций [57]. Развитие технологий в области 3D-печати и визуализации приводит 

к необходимости создания и совершенствования программных и математических 

средств. В ходе диссертационной работы разработано специальное математическое и 
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программное обеспечение, позволяющее генерировать трехмерные модели областей 

устойчивости методов при варьировании какого-либо желаемого параметра.  

В качестве наглядной иллюстрации трехмерной визуализации областей 

устойчивости на рис. 1.22 представлены области устойчивости экстраполяционного 

метода на основе опорного метода КД (ЭКД) в трехмерном пространстве для 

симметричной матрицы уравнения. Параметром, порождающим третье измерение, 

является порядок метода, связанный с количеством стадий экстраполяции. 

 

Рисунок 1.22 – Трёхмерная область устойчивости экстраполяционного метода ЭКД 

2-8 порядков алгебраической точности. 

 

Рассмотрим процесс построения многомерных областей устойчивости 

полуявных методов различных классов подробнее. 

 

Исследование областей устойчивости экстраполяционных Д-методов 

Экстраполяционные методы численного интегрирования детально описаны в 

основополагающей работе Э. Хайрера и др. [5]. Их основные преимущества с точки 

зрения программирования – алгоритмическая простота получения методов 

произвольно высокого порядка точности, а также встроенный механизм оценки 

локальной погрешности практически без дополнительных вычислительных затрат. 

Эти преимущества присущи и методам на основе классических интеграторов, и 

экстраполяционным Д-методам, предлагаемым в настоящей работе. Между тем, для 
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практического применения необходимо оценить свойства синтезируемых методов. 

Одним из важных инструментов ее оценки является исследование областей 

устойчивости. 

 

Области устойчивости классических экстраполяционных методов 

Наиболее часто при создании экстраполяционных решателей ОДУ используют 

следующие опорные методы, которые, чтобы отличать от предлагаемых полуявных 

методов, будут называться в работе классическими опорными методами: 

явный метод средней точки (англ. Explicit midpoint method, EMP) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 [𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑓(𝑡𝑛, 𝑦𝑛)], 

неявный метод средней точки (англ. Implicit midpoint method, IMP) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 [𝑡𝑛 +
ℎ

2
,
1

2
(𝑦𝑛 + 𝑦𝑛+1)]. 

Обозначим ℎ
𝑘
 – шаг метода на текущий момент времени, 𝑅

𝑘
(𝑧) – функция 

приращения. С использованием формулы Эйткена-Невилла выражение для 

определения функции приращения 𝑅𝑗,𝑘+1 результирующего метода, сходное с 

формулой для нахождения 𝑇𝑗,𝑘 записывается в следующем виде: 

 𝑅𝑗,𝑘+1 = 𝑅𝑗,𝑘 +
𝑅𝑗,𝑘−𝑅𝑗−1,𝑘

(
𝑛𝑗

𝑛𝑗−1
)

2

−1

  
(1.53) 

Используя соотношение (1.53), визуализируем области устойчивости 

классических экстраполяционных методов.  В качестве опорных методов 

интегрирования использовались явный метод Эйлера (рис. 1.23), неявный метод 

средней точки (рис. 1.24) и алгоритм модифицированной явной средней точки по 

правилу Грэгга-Булирша-Штёра (ГБШ), показанный на рис. 1.25. Метод Эйлера 

несимметричен, поэтому для него число стадий экстраполяции 𝑘 и порядок точности 

экстраполяционной схемы равны. Для симметричных методов приращение порядка 

точности схемы на шаге равно двум. 
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Рисунок 1.23 – Области устойчивости экстраполяционного метода Эйлера при 

различном числе стадий экстраполятора k. 

 

Рост области устойчивости экстраполяционного метода Эйлера (рис. 1.23) 

замедляется с увеличением числа стадий. Экстраполяционный метод на основе 

явного метода Эйлера обладает численной устойчивостью, превосходящей таковую у 

явных методов Рунге-Кутты аналогичных порядков (рис. 1.21), что достигается 

примерно двукратным увеличением вычислительных затрат. Недостаток метода 

Эйлера как опорного метода при экстраполяции заключается в том, что он не является 

симметричным, что вызывает неоправданное увеличение вычислительных затрат 

метода по мере увеличения числа стадий для методов высоких порядков. Так, 

выполнение одного шага экстраполяционного метода шестого порядка требует 21 

обращение к ФПЧ решаемого обыкновенного дифференциального уравнения. 

Описанный около полувека назад метод Бутчера шестого порядка при сопоставимой 

точности решения имеет 7 обращений к ФПЧ [58]. Несмотря на это, Кетчесон и 

Вахид [59] высоко оценивают перспективы применения экстраполяционного метода 

Эйлера на вычислительных машинах с параллельной архитектурой. Кроме того, как 
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и любой экстраполяционный алгоритм, данный метод просто программируется и 

масштабируется к заданной длине разрядной сетки, если вычисления производятся с 

фиксированной точкой. К сожалению, из-за большого количества арифметических 

действий на шаге, алгоритм на основе метода Эйлера быстро накапливает ошибки 

округления [59]. Поэтому при реализации схем высоких порядков точности его 

применение можно считать нецелесообразным.  

На рис. 1.24 показаны области устойчивости экстраполяционных методов на 

основе правила неявной средней точки от 2-го до 18-го порядка. 

 

Рисунок 1.24 – Области устойчивости экстраполяционных методов на основе 

правила неявной средней точки 

 

Из рисунка 1.24 видно, что процедура экстраполяции разрушает A-

устойчивость метода неявной средней точки, т.к. только для метода второго порядка 

(k = 1) достигается абсолютная устойчивость схемы.  

В то же время, отсутствие L-устойчивости видно из рис. 1.24 по темному цвету 

на большей части левой полуплоскости. Этот факт означает, что при достаточно 

большом шаге интегрирования метод все равно может страдать от нежелательных 

колебаний, как было показано, например, Хайрером и др. в работе [5] для метода 



81 

трапеций. Визуализация областей минимально достаточной точности демонс, что 

область минимально достаточной точности правила неявной средней точки без 

экстраполяции мала, и с практической точки зрения A-устойчивость дает данному 

методу небольшое преимущество над явными методами, в то время как 

вычислительные затраты неявного метода средней точки существенно превосходят 

таковые для явных методов. 

Чтобы увеличить область устойчивости и снизить негативное влияние 

отсутствия L-устойчивости, можно применить т.н. сглаживающий шаг Грэгга [60]: 

 
𝑇1,𝑘 =

1

4
(𝑥(𝑡 + 𝐻 − ℎ𝑘) + 2𝑥(𝑡 + 𝐻) + 𝑥(𝑡 + 𝐻 + ℎ𝑘)). (1.54) 

Это приводит к увеличению порядка точности результирующего метода на 1. 

Метод, хотя и не становится L-устойчивым, при небольших порядках точности 

приобретает значительный прирост области устойчивости, и меньшую склонность к 

паразитным колебаниям на значительной части комплексной плоскости (рисунок 

1.25). Но при 𝑘 >  6 модификация (1.54) становится практически бесполезной. 

 

Рисунок 1.25 – Области экстраполяционных методов 2-18 порядка на основе 

правила неявной средней точки со сглаживающим шагом Грэгга. 
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Области устойчивости экстраполяционного метода, наиболее популярного в 

программных пакетах моделирования – метода модифицированной явной средней 

точки, или Грэгга-Булирша-Штера (ГБШ) приведены на рис. 1.26. Метод ГБШ не 

является ни А-устойчивым, ни L-устойчивым, при высоких порядках точности 

несколько уступает явным одношаговым алгоритмам Рунге-Кутты в плане 

вычислительных затрат, однако имеет области устойчивости, превосходящие по 

площади таковые у явных методов Рунге-Кутты. Ряд исследований свидетельствует 

о том, что этот метод является конкурентоспособным относительно методов Рунге-

Кутты при интегрировании нежестких [5] и слабо демпфированных [61] систем 

уравнений. 

 

Рисунок 1.26 – Области устойчивости экстраполяционного метода ГБШ 

 

Хотя области устойчивости метода ГБШ в несколько раз уступают по размеру 

областям устойчивости методов на основе неявного правила средней точки, его 
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популярность обусловлена как простотой программирования, так и весьма высокой 

вычислительной эффективностью при решении нежестких задач [5].  

 

Двумерные области устойчивости полуявных экстраполяционных 

методов  

Исследуем устойчивость экстраполяционной схемы, основанной на полуявном 

методе КД. Введем обозначение 𝑠, которое здесь будет соответствовать числу стадий 

экстраполяции, а 𝑘 – коэффициент асимметрии матрицы. Динамика изменения 

области устойчивости метода ЭКД в зависимости от коэффициента асимметрии 

матрицы системы показана на рис. 1.27 для случая 𝑠 =  1 (порядок метода 𝑝 =  2). 

На рис. 1.28 представлена динамика изменения области устойчивости при разном 

числе стадий экстраполяции для симметричной матрицы в Жордановой форме при 

натуральной экстраполяционной последовательности {1,2,3,4…}.  

 

Рисунок 1.27 – Область устойчивости опорного метода КД, с областями минимально 

достаточной точности (предпочтительности) 
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Для максимально асимметричной матрицы при 𝑘 =  0, динамика изменения 

области устойчивости метода ЭКД показана на рис. 1.29, при той же 

экстраполяционной последовательности. Можно отметить, что для асимметричной 

матрицы устойчивость полуявных методов КД и экстраполяционных схем на их 

основе является наихудшей. Также можно выдвинуть гипотезу, что изменение шага 

интегрирования в сопряженных методах Д внутри двухстадийной композиционной 

схемы позволит управлять размером области устойчивости метода КД, и, как мы 

увидим далее, диссипацией конечно-разностной модели. 

 

 

Рисунок 1.28 – Изменения формы и размера областей устойчивости и областей 

предпочтительности в зависимости от числа стадий экстраполяции метода ЭКД для 

тестовой задачи с симметричной матрицей  

 

На рис. 1.28, 1.29 также приведены области минимально достаточной точности 

(предпочтительности), которые изменяются в зависимости коэффициента 

асимметрии матрицы менее значительно, чем форма и размер области устойчивости.  
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Рисунок 1.29 – Динамика изменения областей устойчивости и предпочтительности 

метода ЭКД различного порядка точности при максимально асимметричной 

матрице тестовой системы  

 

Таким образом, экстраполяционные полуявные методы на основе опорного 

метода КД демонстрируют устойчивость, сравнимую с устойчивостью явных 

методов Рунге-Кутты и ГБШ, и даже превосходящую их при симметричной матрице 

тестовой системы, что совпадает с теоретическими предположениями о 

промежуточной устойчивости полуявных методов. Чувствительность области 

устойчивости метода к симметричности матрицы интегрируемой системы и к 

коммутации можно отнести к главному недостатку любых полуявных алгоритмов 

численного интегрирования. При этом в практических приложениях часто есть 

возможность переформулировать или модифицировать задачу сообразно с 

выбранным численным методом, уменьшив асимметрию матрицы. Из полученных 

результатов следует, что даже для наихудшего случая сильной асимметрии матрицы 

решаемой системы численная устойчивость методов ЭКД высока и превосходит 
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таковую для многих явных алгоритмов. При этом области устойчивости неявных 

методов численного интегрирования существенно больше, что и обусловливает их 

негативное влияние на динамику хаотических систем. Необходимо подчеркнуть, что 

при симметричной матрице область устойчивости простирается далеко в область  

 𝜎 → −∞, при том, что основная часть областей устойчивости классических методов 

сосредоточена около оси 𝜎 = 0. Отсюда вытекает лучшая приспособленность 

методов ЭКД к моделированию колебательных задач с высоким демпфированием по 

сравнению с классическими методами, что обосновывает высокие характеристики 

полуявных методов при моделировании хаотических систем, часто являющихся 

высокодемпфированными осцилляторами.  

 

Трехмерные области устойчивости методов ЭКД 

Использование трехмерной интерпретации областей устойчивости при анализе 

экстраполяционных методов на основе опорного метода КД позволяет увеличить 

информативность одного рисунка, отображая на нем динамику изменения области 

устойчивости при одновременном изменении нескольких параметров. Так, например, 

один из параметров порождает третье измерение в пространстве рисунка, а другой 

меняет форму получаемой трехмерной фигуры и может быть отображен 

соответствующим изменением подрисунков.  

На рис. 1.30 показаны области устойчивости метода ЭКД в трехмерном 

пространстве, которые изменяются в зависимости от экстраполяционной 

последовательности. Визуализация на данном рисунке позволяет оценить динамику 

прироста области устойчивости при использовании одной из следующих 

последовательностей: (а) {1,2,3,4,5,6,7,8… }, (b) {1,2,3,4,6,8,12,16,24… }, (c) 

{2,4,6,8… }, (d) {1,3,5,7… }, (e) {1,3,6,9… }, (f) {4,8,12,16… }. 
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Рисунок 1.30 – Трехмерные области устойчивости метода ЭКД, позволяющие 

оценить вклад различных экстраполяционных последовательностей в прирост 

объема области устойчивости 

 

Рис. 1.30 был построен для тестовой системы с симметричной матрицей в 

жордановой нормальной форме. При изменении симметрии до 𝑘 =  0, области 

устойчивости существенно меняются (рис. 1.31). Особенно сильным искажениям 

подвергается область устойчивости метода ЭКД при использовании 

экстраполяционной последовательности с большими начальными значениями и 

большим приростом каждого следующего числа в последовательности, а именно, (c), 

(e), (f). Область устойчивости становится изрезанной и вытянутой, деформируется в 

районе 2-4 стадий и выравнивается для методов более высокого порядка. 
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Рисунок 1.31 – Динамика изменения трёхмерной области устойчивости метода ЭКД 

при максимально асимметричной матрице тестовой системы 

 

Одна из трудностей, возникающих при трехмерной визуализации областей 

устойчивости – преобразование скачкообразно изменяющихся фрагментов границ 

областей устойчивости в трехмерные формы при резком изменении параметра, 

отвечающего за третье измерение; например, если этот параметр 𝑠 – целое число 

стадий экстраполяции. С этим связана треугольная в сечении форма выступов на 

фигурах (b) – (f) в районе выступов областей устойчивости на рис. 1.31, полученных 

в результате линейной интерполяции между соответствующими точками границ 

областей. 

 

Анализ численной устойчивости полуявных экстраполяционных методов 

с разрешением неявности методом асимптотического приближения  

Полуявные алгоритмы типа КД с асимптотическим кеплеровым приближением 

в точке, которое можно считать упрощением методом Ньютона, имеют свойства, 

зависящие от параметра 𝑠𝑡𝑔 – числа последовательных подстановок. На рис. 1.32 

показаны области устойчивости и минимально достаточной точности 

экстраполяционного метода на основе явного алгоритма КД с асимптотическим 
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приближением. Область минимально достаточной точности выделена жирной 

линией. 

 

Рисунок 1.32 – Области устойчивости и минимально достаточной точности для 

опорного алгоритма КД в зависимости от числа последовательных подстановок 𝑠𝑡𝑔 

и порядка схемы 𝑝. 

 

Из рис. 1.32 видно, что область устойчивости незначительно зависит от числа 

подстановок, причем с ростом числа стадий уменьшается, однако область 

минимально достаточной точности при этом занимает все большую долю области 

устойчивости. В целом, можно заключить что с точки зрения численной устойчивости 

метод простых итераций (асимптотического приближения) является полноценной 

заменой аналитического разрешения неявности или метода Ньютона при построении 

экстраполяционных полуявных схем численного решения ОДУ. 

 

Исследование областей устойчивости композиционных Д-методов 

В соответствии с введенной Каханом нотацией, будем обозначать методы 

sSorP, где 𝑆 – число стадий метода, а 𝑃 – его порядок. Например, композиционные 

методы 4-го порядка будут иметь наименования s3or4 для схемы Йошиды и s5or4 для 
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схемы Сузуки. На сегодняшний день при построении композиционных решателей 

используются методы Стёрмера-Верле, поскольку композиционные методы в 

основном применяются при решении гамильтоновых задач [15], а метод неявной 

средней точки, позволяющий решать дифференциальные уравнения в произвольном 

виде, обладает слишком большим числом арифметических операций на шаге и 

практически нецелесообразен в качестве опорного метода композиционных схем. 

При оценке устойчивости схем на основе методов Стёрмера-Верле их функция 

устойчивости в линеаризованном виде имеет чисто мнимые собственные числа, 

поэтому область устойчивости их строится не на плоскости, а на прямой, и носит 

наименование интервала периодичности. Так как в настоящей диссертации 

рассматривается обобщенный случай динамических систем, описываемых ОДУ в 

нормальной форме Коши, то интервал периодичности рассматриваться не будет.  

На рисунках 1.33-1.34 показаны области устойчивости композиционных 

методов на основе методов явного и неявного правила средней точки, соответственно. 

Используются схемы Йошиды s3or4, s7or6, s27or8 [38], Сузуки s5or4, s25or6, s125or8 

[39], Кахана s9or6, s17or8, s31or10 [41]. 

 

Рисунок 1.33 – Области устойчивости композиционных методов различного типа на 

основе явного правила средней точки со сглаживающим шагом Грэгга (ГБШ) 
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Рисунок 1.34 – Области устойчивости композиционных методов различного порядка 

на основе неявного правила средней точки 

 

Для удобства сравнения области устойчивости, соответствующие одной и той 

же схеме композиции, представлены в одном масштабе на всех рисунках. Области 

устойчивости композиционных методов на основе модифицированного явного 

правила средней точки представляют собой неправильные и раздробленные фигуры, 

в то время как области устойчивости методов на основе неявного правила средней 

точки представляют собой всю левую полуплоскость с выколотыми фрагментами и 

соответствующими им островками устойчивости в правой полуплоскости. 

Hа рис. 1.35, 1.36 приведены области устойчивости тех же методов, 

дополненные предложенными в диссертационном исследовании областями 

предпочтительности (минимальной достаточности). Из рисунков 1.35, 1.36 следует, 

что области предпочтительности методов на основе метода неявной средней точки не 

занимают всю левую полуплоскость комплексной плоскости. При этом их размер 

достаточно велик и превосходит таковой для методов на основе правила явной 

средней точки, что достигается за счет значительно большей вычислительной 

сложности, характерной для неявных методов интегрирования. 
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Рисунок 1.35 – Сравнение областей устойчивости и областей предпочтительности 

композиционных схем различного порядка на основе явного правила средней точки   

 

 

Рисунок 1.36 – Сравнение областей устойчивости и областей предпочтительности 

композиционных схем на основе неявного правила средней точки   
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Кроме того, в обоих случаях область минимально достаточной точности 

представляется сложными фигурами, напоминающими порядковые звезды [62], и это 

сходство не является случайным, так как в обоих случаях имеет место исследование 

границы комплексной экспоненциальной функции. Это интересное наблюдение, 

относящееся к дополнительным результатам диссертационного исследования. 

 

Области устойчивости композиционных методов на основе полуявного 

метода КД 

Исследуем устойчивость композиционных схем численного интегрирования, 

основанных на предложенном в работе полуявном методе КД и сравним ее с 

результатами, полученными ранее для известных композиционных методов. 

При использовании полуявного метода КД в качестве опорного метода 

композиционные схемы 4-го порядка s3or4 (Йошида) и s5or4 (Сузуки) позволяют 

сконструировать методы, области устойчивости которых изображены на рис. 1.37, 

при вариации коэффициента асимметрии k. 

 

Рисунок 1.37 – Области устойчивости полуявного композиционного метода s3or4 с 

опорным методом КД при различных коэффициентах асимметрии k матрицы 

тестовой линейной системы  
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Рисунок 1.38 – Области устойчивости полуявного композиционного метода s5or4 с 

методом КД в качестве опорного интегратора при различном коэффициенте 

асимметрии k матрицы тестовой системы 

 

Те же области устойчивости с нанесенными на график областями минимально 

достаточной точности представлены на рисунках 1.39 и 1.40. 

 

Рисунок 1.39 – Области предпочтительности композиционных методов s3or4 с 

опорным методом КД при различных значениях коэффициента асимметрии 

матрицы тестовой линейной системы k. 
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Рисунок 1.40 – Области минимально достаточной точности полуявных 

композиционных методов КД на основе схемы s5or4 при различных значениях 

коэффициента k – асимметрии матрицы тестовой системы. 

 

Из рисунков 1.37-1.40 видно, что область устойчивости композиционных 

полуявных методов интегрирования значительно изменяется в зависимости 

коэффициента асимметрии, в ней появляются, исчезают и деформируются несвязные 

области. Кроме того, практически пригодная часть области устойчивости полуявного 

методов Йошиды мала, но значительно меньше подвержена изменению при вариации 

коэффициента асимметрии. Последнее утверждение справедливо и для полуявного 

композиционного метода Сузуки. При этом его область минимально достаточной 

точности, равно как и область устойчивости, превосходит таковую для метода 

Йошиды по площади. 

Области устойчивости композиционных методов различного порядка 

алгебраической точности на основе полуявного опорного метода КД для 

экстремальных значений коэффициента асимметрии матрицы тестовой задачи 𝑘 = 1 

и 𝑘 = 0 приведены на рис. 1.41 и 1.42, соответственно [380]. 
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Рисунок 1.41 – Области устойчивости полуявных композиционных методов 

интегрирования различного порядка точности для случая 𝑘 = 1, когда матрица 

тестовой линейной системы симметрична. 

 

 

Рисунок 1.42 – Области устойчивости композиционных полуявных методов 

различного порядка для случая 𝑘 = 0, когда матрица тестовой линейной системы 

асимметрична. 
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Области минимально достаточной точности исследуемых композиционных 

полуявных методов различного порядка представлены на рис. 1.43 и 1.44. 

 

Рисунок 1.43 – Области минимально достаточной точности полуявных 

композиционных методов различного порядка точности для случая 𝑘 = 1   

 

Рисунок 1.44 – Области минимально достаточной точности полуявных 

композиционных методов различного порядка точности для случая 𝑘 = 0   
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По причине сильной изрезанности областей устойчивости композиционных 

методов и наличия в них большого количества несвязанных областей их трехмерная 

визуализация не рассматривается в работе. По итогам рассмотрения областей 

устойчивости композиционных методов можно сделать вывод, что конечно-

разностные схемы, полученные композиционными полуявными решателями, могут 

иметь большую устойчивость к деградации хаотических режимов за счет смешения 

хаотического поведения исходной непрерывной системы с непредсказуемой в 

нелинейном случае численной устойчивостью полуявного композиционного метода.  

 

Анализ устойчивости полуявных композиционных алгоритмов высокого 

порядка с асимптотическим приближением неявности 

В разделе 1.1 указывалось, что при невозможности аналитического разрешения 

неявности в полуявных методах типа КД может использоваться метод простых 

итераций. В предыдущем разделе было показано, что численная устойчивость 

опорного метода сохраняется при замене аналитического решения неявности или 

метода Ньютона на метод простых итераций, однако из этого не следует сохранение 

симметричности опорного метода, необходимого для построения композиционных 

схем высокого порядка точности. Оценим зависимость свойств композиционных 

полуявных методов от 𝑠 – числа последовательных подстановок в методе простых 

итераций, например, 𝑠 = 2 для обычного опорного метода КД второго порядка. На 

рис. 1.45-1.47 показана зависимость формы областей устойчивости различных 

композиционных методов интегрирования 8го порядка алгебраической точности, 

реализованных по схемам Кахана s17or8, Йошиды s27or8 и Сузуки s125or8 в 

зависимости от числа последовательных простых итераций 𝑠 при значениях 

коэффициента асимметрии матрицы тестовой системы 𝑘 = 0 и 𝑘 = 1.  
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Рисунок 1.45 – Области устойчивости полуявного композиционного метода Кахана 

s17or8 при различном числе последовательных подстановок метода простых 

итераций s в опорном методе КД и значениях коэффициента симметрии матрицы 

тестовой линейной системы 𝑘 = 0 и 𝑘 = 1 

 

 

Рисунок 1.46 – Области устойчивости полуявного композиционного метода 

Йошиды s27or8 при различном числе последовательных подстановок метода 

простых итераций s в опорном методе КД и значениях коэффициента асимметрии 

матрицы 𝑘 = 0 и 𝑘 = 1 
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Рисунок 1.47 – Области устойчивости полуявного композиционного метода Сузуки 

s125or8 при различном числе подстановок метода простых итераций 𝑠 и значениях 

коэффициента симметрии матрицы тестовой системы 𝑘 = 0 и 𝑘 = 1 

 

Из рисунков 1.45-1.47 видно, что влияние асимметрии системы на область 

устойчивости возрастает с ростом порядка метода. Наименьшую площадь область 

устойчивости методов имеет при 𝑘 =  0 и наибольшую при 𝑘 =  1. Отметим, что при 

любом опорном методе, включая полуявный, 27-стадийныe методы Йошиды 

обладают меньшей численной устойчивостью чем 17-стадийные методы Кахана, в то 

время как оба этих класса композиционных решателей уступают 125-стадийному 

алгоритму Сузуки. Тем не менее, внушительный выигрыш в численной устойчивости 

для метода Сузуки достигается многократным увеличением вычислительной 

сложности алгоритма за счет многократного (250 раз на шаге в случае схемы s125or8) 

обращения к функции правой части. Поэтому можно сделать вывод, что с 

практической точки зрения имеет смысл применение полуявных схем Кахана на 

основе метода КД, обладающих оптимальным сочетанием «устойчивость – 

вычислительные затраты». Более того, можно видеть, что области устойчивости 

методов Йошиды закрашены более темным цветом, что соответствует большим 

абсолютным собственным значениям дискретных моделей и указывает на возможную 

низкую сходимость алгоритма. Данный вопрос лежит за пределами настоящего 

диссертационного исследования.   
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Области минимально достаточной точности для метода Кахана s9or6 с 

разрешением неявности методом простых итераций показаны на рис. 1.48. Как и в 

случае экстраполяционных методов, с ростом числа подстановок область 

устойчивости и область минимально достаточной точности уменьшаются. При этом 

область минимально достаточной точности становится более близка по площади к 

области устойчивости. 

 

Рисунок 1.48 – Области минимально достаточной точности для полуявного метода 

Кахана s9or6 с разрешением неявности простыми итерациями. 

 

Из рисунка 1.48 видно, что использование более точного асимптотического 

приближения может существенно уменьшать область устойчивости, однако из-за 

относительно постоянного размера области релевантности проигрыш в 

производительности при решении уравнений с переменным шагом не будет 

значительным, так как фактически при 𝑠 = 2 значительная часть области 

устойчивости не будет использоваться. Резюмируя раздел, посвященный анализу 

устойчивости полуявных численных методов интегрирования, можно сделать 

выводы о том, что как экстраполяционные, так и композиционные схемы на основе 

полуявных опорных интеграторов соответствуют одному из критериев, введенных 

в разделе 1.1 работы, а именно, промежуточной между явными и неявными 

алгоритмами численной устойчивостью, достаточной для поддержания сильно 

демпфированных колебаний в дискретных моделях хаотических систем. 
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1.5 Увеличение периода хаотических колебаний в дискретных нелинейных 

системах с использованием полуявного интегрирования 

 

Несмотря на то, что влияние численных методов на дискретные модели 

хаотических систем хорошо изучено, появление новых алгоритмов численного 

интегрирования поднимает заново вопрос об их влиянии на динамику конечно-

разностных моделей. Когда появляется новый класс методов интегрирования, 

сопутствующие численные эффекты [368] представляют определенный интерес не 

только с точки зрения влияния на точность решения, но и с точки зрения возможности 

управления свойствами дискретных хаотических осцилляторов в технических 

приложениях. 

В последние десятилетия хаотические системы применяются в широком 

спектре инженерных приложений, включая защищенную связь [63-66], нейронные 

сети [67,68], криптографию [69-71, 372], робототехнику [72,73], сенсорику [74], 

обработку сигналов [75, 379], гидроакустику [362] и др. Обычно такие практически 

ориентированные исследования выполняются с применением компьютерного 

моделирования. Преобразование математических моделей в исполняемые 

(программные) неизбежно вызывает появление погрешностей. В дополнение к 

ошибке идентификации [381] математической модели, расхождение между 

численными результатами и поведением прототипа усиливается точностью 

используемого типа данных, ошибкой методов дискретизации и округлением 

результатов арифметических операций [76]. В дискретных хаотических системах, 

реализованных с конечной точностью представления данных, сочетание этих 

факторов может привести к деградации хаотической динамики [77]. К. Дж. Персон и 

Р. Дж. Повинелли [78] явно показали, что для четырехбитового представления 

траектория, порождаемая известной моделью логистического отображения, начинает 

повторяться после всего двух итераций с периодом равным 3 для любого начального 

значения. 

Для того чтобы избежать появления циклов в хаотических траекториях, 

полученных при компьютерном моделировании, исследователями предложено 
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множество методов [79,77,80-86]. Одним из наиболее простых и легко реализуемых 

подходов является периодическое или апериодическое возмущение траектории 

дискретной хаотической системы или параметра бифуркации [77,78,80-82]. Обычно 

разрушение зарождающегося периодического цикла осуществляется с помощью 

вспомогательного дискретного хаотического отображения небольшой размерности. 

Значительное удлинение периода с помощью этой техники было 

продемонстрировано для хаотических отображений с запаздыванием [83]. Для 

определения моментов возмущений можно использовать линейный регистр сдвига с 

обратной связью (LFSR) или хаотическую аналоговую систему [79, 84-86] было 

предложено вводить возмущение только тогда, когда траектория выходит из 

хаотического режима. Отметим, что такой подход требует выделения 

дополнительной памяти. 

Все вышеперечисленные способы эффективно справляются с увеличением 

периода хаотической траектории дискретной системы при долговременном 

моделировании. Эти методы особенно полезны в криптографических приложениях 

хаотических систем [79, 83, 374], где криптостойкость шифрования на основе хаоса 

часто зависит от меры случайности двоичных последовательностей, генерируемых из 

числовых траекторий [87]. Однако все рассмотренные техники возмущения могут 

существенно влиять на свойства хаотической системы. Так, изменение параметра 

бифуркации может привести к изменению характера колебаний. Из-за возмущения 

переменной состояния может произойти спонтанный бросок траектории, и т.д. В то 

же время, моделирование хаотических систем с постоянными параметрами на 

длительном интервале само по себе является важной задаче. Например, некоторые 

метрики, включая наибольший показатель Ляпунова, надежно вычисляются только 

на большом временном интервале [88, 89, 90]. Более того, изучение химерных 

состояний в ансамблях связанных осцилляторов также предполагает долгосрочное 

моделирование [91]. В обоих случаях рассмотренные методы предотвращения 

динамической деградации могут исказить результаты эксперимента и анализа 

динамики системы, непосредственно влияя на ее режимы колебаний. Также 

существующие способы возмущения траектории неприменимы для когерентных 
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прямохаотических систем связи, основанных на синхронизации, поскольку любое 

возмущение параметра вызывает срыв синхронизации, нарушая идентичность 

динамики приемника и передатчика, и для восстановления состояния синхронизации 

может потребоваться неприемлемо долгое время [92]. Таким образом, разработка 

новых подходов для уменьшения динамической деградации хаотических колебаний 

[377] из-за эффектов дискретизации представляет широкий научный и практический 

интерес. 

 

Методика возмущения решения с применением полуявных численных 

методов 

Как уже отмечалось, обычно для предотвращения циклов в траекториях 

хаотической системы при ее компьютерном моделировании используется 

возмущение параметра бифуркации [388]. У такого подхода есть два существенных 

недостатка. Во-первых, может быть нарушен режим установившихся колебаний, и 

возникнет нежелательная ситуация, когда хаотическое поведение перейдет в 

периодический режим из-за самого возмущения. Второй негативный аспект касается 

вычислений с плавающей точкой, которые подразумевают нормализацию чисел в 

двоичных операциях [93]. Два значения параметра бифуркации могут быть 

нормированы по-разному, что приведет к различным ошибкам интегрирования.  

В диссертационном исследовании предлагается способ возмущения 

хаотической динамики дискретной модели, основанный на переключении между 

двумя полуявными конечно-разностными схемами с различной коммутацией, 

моделирующими одну и ту же непрерывную хаотическую систему. Предполагается, 

что ряды Тейлора полуявных численных методов КД с разной коммутацией 

совпадают до второго члена, но отличаются в остальных членах. Поэтому 

переключение между двумя различными схемами, полученными с помощью 

полуявного интегрирования, может изменить ошибку усечения, накапливаемую на 

каждом шаге интегрирования. Помимо методической ошибки, переключение на 

схему с иным порядком вычислений вносит дополнительное возмущение, поскольку 

операции с плавающей точкой не являются полностью ассоциативными [94]. В то же 
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время, как было показано ранее, изменение порядка коммутации метода не ведет к 

резкой смене динамики дискретной модели или разрушении траекторий в фазовом 

пространстве. 

Предлагаемая схема возмущения решения для избегания возникновения циклов 

при компьютерном моделировании хаотических систем приведена на рисунке 1.49. 

На каждом шаге интегрирования управляющий алгоритм переключения выдает 0 или 

1, что соответствует выбору соответствующего полуявного метода интегрирования с 

определенным порядком вычислений. Например, можно использовать прямую и 

обратную коммутацию метода Эйлера-Кромера, как показано на рисунке 1.49. 

 

Рисунок 1.49 – Подавление хаотической деградации на основе переключения 

полуявных методов Эйлера-Кромера с различной матрицей коммутаций. 

 

Для определения момента переключения (англ. Switching law на схеме 1.48) 

может быть применен любой из известных подходов, включая регистр сдвига с 

линейной обратной связью (англ. Linear feedback shift register) LFSR или генератор 

псевдослучайных битов (англ. Pseudo-random bit generator, PRBG) [79, 363]. На 

рисунке 1.50 представлена одна из возможных схем с, заданная полиномом 𝑥8 +

 𝑥4 +  𝑥3 +  𝑥 +  1 с начальным состоянием (0, 0, 0, 0, 0, 0, 0, 0, 1). 

 

Рисунок 1.50 – Процесс возмущения решения, организованный по правилу LFSR. 
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Следует отметить, что разработанная техника возмущения может быть 

применена и с использованием методов высокого порядка, включая полуявные 

композиционные и экстраполяционные методы, описанные в предыдущих разделах 

диссертации. Однако в практических приложениях, например, в когерентных 

системах связи, основанных на явлении хаотической синхронизации, часто требуется 

минимизировать число арифметических операций в конечно-разностной модели 

чтобы удовлетворить ограничения на аппаратную реализацию [95]. Использование 

методов высокого порядка при решении таких задач приводит к снижению скорости 

передачи данных. Кроме того, во встраиваемых системах размерность реализуемой 

конечно-разностной схемы ограничена аппаратными ресурсами, поскольку 

реализуется несколько генераторов и приемников хаоса. Поэтому в настоящем 

подразделе основное внимание уделяется изучению полуявных методов небольшого 

порядка алгебраической точности, удовлетворяющих данному критерию. 

Рассмотрим результаты применения предложенного подхода при долгосрочном 

моделировании хаотических систем. 

 

Возмущение численного решения системы Рёсслера 

В качестве примера используем осциллятор Рёсслера (1.26). Рассмотрим 

конечно-разностную модель системы (1.26), полученную методом Эйлера-Кромера с 

прямым вычислением порядка переменных состояния:  

 𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛 − 𝑧𝑛 ) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑥𝑛+1 + 𝑎𝑦𝑛) 

𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 + 𝑧𝑛(𝑥𝑛+1 − 𝑐)) 

(1.55) 

Подставив строки конечно-разностной модели друг в друга, можно получить:  

 𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛 − 𝑧𝑛 ) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑥𝑛 + 𝑎𝑦𝑛) + ℎ
2(−𝑦𝑛 − 𝑧𝑛 ) 

𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 + 𝑧𝑛(𝑥𝑛 − 𝑐) + ℎ
2𝑧𝑛 (−𝑦𝑛 − 𝑧𝑛 )) 

(1.56) 

Из уравнения (1.56) видно, что решение системы (1.26) точно 

аппроксимируется первым членом ряда Тейлора, а полученные разложения частично 
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содержат члены из остальных членов ряда. Применяя метод Эйлера-Кромера с 

обратным порядком вычислений, мы получаем другую конечно-разностную схему: 

 𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 + 𝑧𝑛(𝑥𝑛 − 𝑐)) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑥𝑛 + 𝑎𝑦𝑛) 

𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛+1 − 𝑧𝑛+1 ) 

(1.57) 

разложение которой на шаге выглядит как 

 𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 + 𝑧𝑛(𝑥𝑛 − 𝑐)) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑥𝑛 + 𝑎𝑦𝑛) 

𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛 − 𝑧𝑛 ) + ℎ
2(−𝑥𝑛 − 𝑎𝑦𝑛 − 𝑏 − 𝑧𝑛 (𝑥𝑛 − 𝑐)) 

(1.58) 

Как видно из формул (1.56) и (1.58), восстановленные ряды совпадают до 

первого члена ряда Тейлора, являющегося основным для метода интегрирования 1го 

порядка точности, но существенно отличаются в остальных членах. 

 

Сравнение с известными методами внесения возмущений 

Сравним предложенный подход с известными методами избегания циклов в 

хаотических последовательностях. Рассмотрим широко используемый метод 

переключения параметра бифуркации и изменение ФПЧ определяющих 

дифференциальных уравнений. Например, для системы (1.26) уравнение переменной 

z может быть переписано как: 

 𝑥̇ = −𝑦 − 𝑧 

𝑦̇ = 𝑥 + 𝑎𝑦 

𝑧̇𝑏 + 𝑧𝑥 − 𝑧𝑐 

(1.59) 

Научная группа под руководством профессора Э. Непомусену обнаружила, что 

такой прием в хаотических системах приводит к отличным от исходных хаотическим 

траекториям [96] и показала, что этот подход продемонстрирует более низкую 

эффективность, чем обычное возмущение параметров. Можно предположить, что 

предложенный метод на основе переключения коммутаций также превосходит 

подобный способ возмущения, поскольку степень влияния ошибок округления 

различных чисел или порядка операций на увеличение периода последовательности 

неочевидна. 
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Для всех сравниваемых подходов моменты переключения определяются с 

помощью линейного сдвигового регистра LFSR, показанного на рис. 1.50. 

Проводилась оценка длины периода колебаний осциллятора Рёсслера, 

смоделированного с 16-битным типом данных с фиксированной точкой и длиной 

целой части в 8 бит. Моделирование проводилось на временном интервале 𝑇 =

 300 с. при шаге интегрирования равном 0.0117188 с. В эксперименте 

рассматривалось три набора начальных условий. Каждый набор был сгенерирован 

следующим образом: одно из начальных условий было приравнено к 0.96875, а 

остальные два начальных значения изменялись в диапазоне [0.0315;  0.96875] с 

шагом 0.00390625, что совпадает с минимальным представимым значением в 

выбранном 16-битном типе данных с фиксированной точкой. 

В методе параметрического возмущения переключение параметра 𝑏 

осуществлялось между значениями 𝑏 = 0.1875 и 𝑏 = 0.210938, при которых 

наблюдается хаотическое поведение. В подходе, основанном на изменении порядка 

арифметических операций, использовались исходная система Рёсслера (1.26) и ее 

переформулированная версия (1.59). В обоих случаях моделирование проводилось 

полуявным методом первого порядка с прямым порядком вычислений. Для 

исследования предлагаемой методики возмущения применялись конечно-разностные 

схемы (1.55) и (1.57), соответственно. 

Для обнаружения появления циклов в хаотических последовательностях был 

использован алгоритм, описанный в работе [97]. Экспериментальные результаты, 

полученные для набора начальных условий, где 𝑦0 зафиксировано, приведены на 

рисунке 1.51. Количество найденных периодических последовательностей для набора 

с 𝑦0 =  0.96875  для различных способов возмущения показано в таблице 1.4.  

Оценки режимов колебаний при возмущении динамики, полученные для двух 

различных наборов начальных условий, представлены на рисунках 1.52 и 1.53. На 

осях рисунков 1.51, 1.52 и 1.53 отложены значения начальных условий, с которых 

начиналось моделирование. Пары начальных значений, для которых в 

сгенерированной последовательности были найдены повторяющиеся значения 

переменных состояния, означающие возникновение цикла, отмечены черным цветом.   
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Рисунок 1.51 – Результаты сравнительного исследования методов возмущения 

хаотических траекторий. (а) – базовая модель, (b) – модель с измененным порядком 

вычислений, (c) – модель с модель с LSFR-возмущаемым параметром, (d) – 

предлагаемый способ возмущения на основе разных коммутаций полуявных 

методов. Набор начальных условий 1. 

 

Можно отметить, что количество пар начальных условий, приводящих к 

периодическим решениям, уменьшилось для всех рассмотренных способов 

возмущения решения по сравнению с исходной моделью (случай (a) на рисунках 1.51, 

1.52 и 1.53). Эффективность предложенного подхода с переключением конечно-

разностных схем с разными коммутациями (случай (d) на рисунках 1.51, 1.52 и 1.53) 

была близка к традиционному методу, основанному на переключении параметра 

бифуркации (случай (c) на рисунках 1.51, 1.52 и 1.53). Можно предположить, что, 

изменив только порядок вычислений, невозможно получить требуемое увеличение 



110 

периода (случай (b) на рисунках 1.51, 1.52 и 1.53). Стоит отметить, что ни один из 

рассмотренных методов возмущения не позволил сохранить хаотический режим для 

всех исследуемых траекторий.  

 

Рисунок 1.52 – Результаты исследования методов возмущения хаотических 

траекторий. (а) – исходная модель, (b) – модель с измененным порядком 

вычислений, (c) – модель с модель с LSFR-возмущаемым параметром, (d) – 

предлагаемый способ возмущения на основе разных коммутаций полуявных 

методов. Набор начальных условий 2. 
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Рисунок 1.53 – Результаты исследования методов возмущения хаотических 

траекторий. (а) – исходная модель, (b) – модель с измененным порядком 

вычислений, (c) – модель с модель с LSFR-возмущаемым параметром, (d) – 

предлагаемый способ возмущения на основе разных коммутаций полуявных 

методов. Набор начальных условий 3. 

 

Черная область для 𝑥0 ∈ (0; 0.35) в левом нижнем углу рисунка 1.53 

соответствует сходящемуся (устойчивому) решению. Можно видеть, что 

переключение между методами с различной коммутацией строк правой части 

позволяет лучше избежать сваливания траекторий дискретной системы в 

периодический режим, чем остальные способы возмущения. 

На основании полученных экспериментальных результатов можно сделать 

вывод, что предложенный в диссертационном исследовании подход к возмущению 

траектории дискретной хаотической системы эффективно увеличивает период 
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хаотических колебаний при компьютерном моделировании нелинейных систем с 

малой длиной машинного слова. 

 

Таблица 1.4 – Количество периодических последовательностей в выборке 

начальных условий размером 65 536 для различных методов возмущения  

при 𝑦0  =  0.96875 и 𝑥0, 𝑧0 ∈  [−0.0315;  0.96875].    

Метод создания возмущений Количество периодических 

последовательностей 

Исходная 16-битная модель 10.038 

Переключение между двумя формами ФПЧ 

по Э. Непомусену 

428 

Возмущение параметра бифуркации 13 

Предлагаемый способ 21 

 

Сравнение полуявных и явных конечно-разностных схем 

Неразрешенным остается вопрос, вызвано ли наблюдаемое преимущество в 

возмущении решения наличием дополнительных членов ряда Тейлора в разложении 

полуявных методов, или причиной ему служит простая смена используемого метода. 

Используем схему, показанную на рисунке 1.49, для экспериментального 

исследования свойств других известных методов интегрирования, а именно явного 

метода Эйлера, явного метода средней точки и алгоритма Хойна (метод РК2). 

Применение к системе (1.26) численного интегрирования по Эйлеру дает 

следующую конечно-разностную схему:  

 𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛 − 𝑧𝑛) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑥𝑛 + 𝑎𝑦𝑛) 

𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 + 𝑧𝑛(𝑥𝑛 − 𝑐)) 

(1.60) 

Формула (1.60) обеспечивает воспроизведение решение системы Рёсслера до 

первого члена ряда Тейлора без дополнительных членов, в отличие от полуявного 

метода. 
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Явный метод средней точки является уточнением явного метода Эйлера до 

второго порядка алгебраической точности [98]. Конечно-разностная модель системы 

(1.26), полученная этим методом, выглядит следующим образом: 

 𝑥𝑛+0.5 = 𝑥𝑛 + 0.5ℎ(−𝑦𝑛 − 𝑧𝑛) 

𝑦𝑛+0.5 = 𝑦𝑛 + 0.5ℎ(𝑥𝑛 + 𝑎𝑦𝑛) 

𝑧𝑛+0.5 = 𝑧𝑛 + 0.5ℎ(𝑏 + 𝑧𝑛(𝑥𝑛 − 𝑐)) 

 

𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛+0.5 − 𝑧𝑛+0.5) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑥𝑛+0.5 + 𝑎𝑦𝑛+0.5) 

𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 + 𝑧𝑛+0.5(𝑥𝑛+0.5 − 𝑐)) 

(1.61) 

Известна еще одна явная схема интегрирования второго порядка, называемая 

методом Хойна [98]. Для системы (1.26) он дает следующие конечно-разностные 

уравнения: 

 𝑥𝑛+1 = 𝑥𝑛 + ℎ(−𝑦𝑛 − 𝑧𝑛) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑥𝑛 + 𝑎𝑦𝑛) 

𝑧𝑛+1 = 𝑧𝑛 + ℎ(𝑏 + 𝑧𝑛(𝑥𝑛 − 𝑐)) 

 

𝑥𝑛+1 = 𝑥𝑛 + 0.5ℎ((−𝑦𝑛 − 𝑧𝑛) + (−𝑦𝑛+1 − 𝑧𝑛+1)) 

𝑦𝑛+1 = 𝑦𝑛 + 0.5ℎ((𝑥𝑛 + 𝑎𝑦𝑛) + (𝑥𝑛+1 + 𝑎𝑦𝑛+1)) 

𝑧𝑛+1 = 𝑧𝑛 + 0.5ℎ ((𝑏 + 𝑧𝑛(𝑥𝑛 − 𝑐)) + (𝑏 + 𝑧𝑛+1(𝑥𝑛+1 − 𝑐))) 

(1.62) 

Оба метода (1.61) и (1.62) являются явными и обладают алгебраической 

точностью второго порядка. Конечно-разностные схемы, полученные с помощью 

этих методов, восстанавливают ряд Тейлора только до второго члена без 

дополнительных членов, присутствующих у полуявных методов по типу Кромера и 

КД. 

Проверке подлежит гипотеза, что возмущение, необходимое для 

предотвращения перехода колебаний в периодический режим, может возникнуть и в 

результате переключения между методами разного порядка. Поэтому в качестве 

третьего случая в экспериментальном сравнении решение будет переключаться 

между моделями, полученными явными методами Эйлера и Хойна. Повторим оценку 
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длины периода для выборки начальных условий с 𝑦0  =  0.96875, 𝑥0  =  0.0315; и 

𝑧0  =  0.96875. Полученные результаты показаны на рисунке 1.54. Количество 

последовательностей, в которых возник цикл, для различных исследуемых способов 

возмущения приведено в таблице 1.5. 

Рисунок 1.54 – Результаты исследования методов возмущения хаотических 

траекторий. Переключение между (a) двумя полуявными конечно-разностными 

схемами, (b) методами Эйлера-Кромера и Эйлера, (c) явным методом средней точки 

и методом Хойна, (d) методами Хойна и Эйлера. 𝑦0  =  0.96875, 𝑥0, 𝑧0 ∈

 [−0.0315;  0.96875]. 
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Таблица 1.5 – Количество периодических последовательностей в наборе начальных  

условий размером 65 536 для различных методов возмущения  

при 𝑦0  =  0.96875 и 𝑥0, 𝑧0 ∈  [−0.0315;  0.96875]. 

Переключаемые методы Количество периодических 

последовательностей 

Два метода Эйлера-Кромера 21 

Методы Эйлера-Кромера и Эйлера 1183 

Явная средняя точка и метод Хойна 2608 

Метод Хойна и метод Эйлера 599 

 

Как видно из рисунка 1.54 и таблицы 1.5, эффективность подхода, основанного 

на методах разных порядков, близка к таковой для метода, основанной на 

переключении между различными формами представления ФПЧ исходного 

дифференциального уравнения. Дополнительные члены ряда Тейлора, 

присутствующие в разложении на шаге по методу Эйлера-Кромера, при 

переключении на обычный метод Эйлера дают меньшее возмущение, чем при 

переключении на второй полуявный метод с другой матрицей коммутаций. 

Наихудшие результаты были получены при переключении между методами Хойна и 

средней точки. Это можно объяснить относительно небольшой разницей между 

разложением в ряд этих методов второго порядка. В этом случае возмущение 

траекторий, скорее всего, оказывается аналогично изменению порядка вычислений. 

Таким образом, можно сделать вывод, что среди рассмотренных подходов наилучшее 

возмущение хаотических траекторий, а, следовательно, и наибольшую устойчивость 

к деградации хаотических режимов, дает предложенное в диссертационном 

исследовании переключение между двумя полуявными методами с разной 

коммутацией, что подтверждает выдвинутую в разделе 1.1 диссертации гипотезу о 

преимуществах полуявного интегрирования при долгосрочном моделировании 

хаотических динамических систем. 
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1.6 Многошаговые экстраполяционные полуявные методы интегрирования 

 

Многошаговые методы численного интегрирования являются сопоставимым по 

популярности с одношаговыми методами классом решателей ОДУ, и реализуют 

принцип расчета следующей точки решения на шаге с использованием нескольких 

значений переменных состояния или функции приращения, полученных на 

предыдущих шагах [5]. Многошаговые методы незаменимы в случаях, когда речь 

идет о моделировании систем большой размерности, поскольку позволяют получать 

решение высокого порядка точности без увеличения числа обращений к функции 

правой части на шаге [12]. Наиболее распространенным типом многошаговых 

методов являются линейные многошаговые методы (ЛММ), среди которых можно 

выделить методы дифференцирования назад (англ. Backward Differentiation Formula, 

BDF), методы Адамса-Башфорта и Адамса-Мултона [98], а также методы Адамса-

Башфорта-Мултона [369, 371], или методы прогноза-коррекции (англ. Predictor-

corrector). Двумя ключевыми недостатками многошаговых методов является 

необходимость «разгонного решения», обычно выполняемого одношаговым 

методом, и уменьшение размеров области устойчивости при росте порядка точности 

конечно-разностной схемы. Представляет теоретический и практический интерес 

разработка полуявных многошаговых схем для возможного использования 

преимуществ многошагового способа интегрирования одновременно с 

положительными качествами полуявных численных методов, предложенных в 

работе. 

В настоящем разделе диссертации вводится понятие многошаговых полуявных 

численных методов интегрирования, объединяющих в себе преимущества 

многошаговых и одношаговых решателей ОДУ за счет применения полуявных 

опорных методов КД и особого способа расчета правой части уравнения. Приводится 

сравнительная оценка вычислительной эффективности предложенных методов с 

известными ЛММ. 
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Математическое описание многошаговых экстраполяционных полуявных 

методов численного интегрирования 

Рассмотрим опорный метод численного интегрирования ОДУ порядка p. 

Последовательность членов локальной ошибки после перехода от точки 𝑥𝑛 в 𝑥𝑛+1 с 

шагом ℎ выглядит следующим образом [373]: 

 𝑥(𝑡𝑛+1) =  𝑥𝑛+1 + ℎ
𝑝+1𝑒𝑝+1 + ℎ

𝑝+2𝑒𝑝+2 +⋯ (1.63) 

Последовательность членов локальной ошибки после перехода от предыдущей 

точки 𝑥𝑛−1 в 𝑥𝑛+1 с шагом 2ℎ: 

 𝑥(𝑡𝑛+1) = 𝑥𝑛+1 + 2
𝑝+1ℎ𝑝+1𝑒𝑝+1 + 2

𝑝+2ℎ𝑝+2𝑒𝑝+2 +⋯ (1.64) 

Используя подход, аналогичный идее одношаговой экстраполяции [98, 99], 

объединим решение в точке 𝑛 + 1 с шагом ℎ (обозначим его как 𝑇1) и решение в той 

же точке с шагом 2ℎ (обозначим его как  𝑇2) следующим образом: 

 𝑥𝑛+1 = 𝑘1𝑇1 + 𝑘2𝑇2 (1.65) 

Представление этой комбинации в виде диаграммы приведено на рисунке 1.55. 

Выберем коэффициенты 𝑘1 и 𝑘2 следующим образом: 

 
{
𝑘1 + 𝑘2 = 1

𝑘1 + 2
𝑝+1𝑘2 = 0 

 (1.66) 

Аналитически эту систему уравнений можно разрешить как 

{
𝑘1 =

2𝑝+1

2𝑝+1 − 1

𝑘2 =
−1

2𝑝+1 − 1

 

Так, для метода, где 𝑝 = 2, получим следующее: 

𝑘1 =
8

7
, 𝑘2 =

−1

7
 

Такой подход позволяет избавиться от одного из элементов последовательности 

членов локальной ошибки 𝑒𝑝+1 и увеличить общий порядок точности решения на 1. 

 

Рисунок 1.55 – Схема предлагаемого многошагового экстраполяционного алгоритма  
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На рисунке 1.55 показано, как решение 𝑇1, полученное с шагом ℎ из точки 𝑥𝑛 и 

решение 𝑇2, полученное с шагом  2ℎ из точки 𝑥𝑛−1 усредняются по формуле для 

получения решения более высокого порядка. Опорные методы интегрирования 

обозначены как 𝛷ℎ и 𝛷2ℎ в зависимости от размера шага. 

Рассмотрим вычислительный процесс нового метода так, как он представлен на 

рисунке 1.56. 𝑇𝑖𝑗 – элемент интерполяционной таблицы на 𝑖-ом шаге на 𝑗-ой строке. 

Индекс 𝑚 коэффициента 𝑘𝑖𝑗
𝑚 обозначает, относится ли он к первому члену, либо ко 

второму, при этом сумма решений, найденных на предыдущем шаге, помноженных 

на соответствующие коэффициенты, даёт член 𝑇𝑖𝑗. 

 

Рисунок 1.56 – Интерполяционная таблица для метода ESIMM 6го порядка. 

 

Общий вид выражения для получения решения более высоких порядков может 

быть сформулирован, если обратить внимание на то, как операция (1.65) влияет на 

члены последовательности ошибки из выражений (1.63) и (1.64). Воспользуемся 

матричной формой записи и для коэффициентов на первом шаге получим: 

 
𝑘12 = (

𝑘12
1

𝑘12
2 ) ; (

1 1
1 2𝑝+1

) (
𝑘12
1

𝑘12
2 ) = (

1

0
) (1.67) 

Коэффициенты для второго шага находятся решением матричного уравнения: 

 
𝑘13 = (

𝑘13
1

𝑘13
2 ) ; (

1 1

𝑘12
𝑇 (

1

2𝑝+2
) 𝑘13

𝑇 (
1

3𝑝+2
)
)(
𝑘13
1

𝑘13
2 ) = (

1

0
) (1.68) 

Коэффициенты для третьего шага получаются следующим образом: 

 

(

1 1

𝑘13 (
𝑘12
𝑇 ( 1

2𝑝+3
)

𝑘13
𝑇 ( 1

3𝑝+3
)
) 𝑘23 (

𝑘12
𝑇 ( 1

2𝑝+3
)

𝑘14
𝑇 ( 1

4𝑝+3
)
)
)(
𝑘14
1

𝑘14
2 ) = (

1

0
) (1.69) 
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Продолжая следовать данной логике, можно получить коэффициенты 

многошаговой экстраполяционной схемы произвольного порядка. 

Интерполяционные коэффициенты схемы 6го порядка на основе опорного 

симметричного метода 2-го порядка сведены в таблицу 1.6. 

Таблица 1.6 – Интерполяционные коэффициенты для опорного метода 2 порядка. 

Порядок Коэффициент Значение 

3 

𝑘12 (8/7; −1/7) T 

𝑘22 (27/26; −1/26) T 

𝑘32 (64/63; −1/63) T 

𝑘42 (125/124; −1/124) T 

4 

𝑘13 (189/85; −104/85) T 

𝑘23 (8/5; −3/5) T 

𝑘33 (875/627; −248/627) T 

5 
𝑘14 (272/83; −189/83) T 

𝑘24 (10625/4982; −5643/4982) T 

6 𝑘15 (51875/12019; −39856/12019)T 

Далее приведены некоторые результаты, полученные при исследовании 

многошаговых экстраполяционных методов численного интегрирования (англ. 

Extrapolation symmetric integration multistep method, ESIMM) на наборе тестовых 

нелинейных динамических систем, выбранным в разделе 1.1 диссертации. Оценка 

точности решения проводилась относительно референсного метода Дормана-Принса 

восьмого порядка [100] с уменьшенным шагом. Также представлены результаты 

сравнения двух версий метода ESIMM. Первая версия обозначена как «FULL» и 

представляет значения, полученные с помощью прямого вычисления коэффициентов 

по интерполяционной таблице на каждом шаге решения, в то время как версия 

«SHORT» использует предварительно рассчитанные значения коэффициентов, что 

приводит к существенному сокращению числа арифметических операций при 

незначительном снижению точности по сравнению с «полной» версией заявленного 

метода из-за ошибки округления коэффициентов. 
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Исследование вычислительной эффективности многошаговых 

экстраполяционных методов с постоянным шагом интегрирования 

Вычислительная эффективность предлагаемых методов оценивалась, как 

отношение глобальной ошибки метода к времени, затраченному на расчет решения. 

Время на решение рассчитывалось как медианное значение по выборке из 100 

экспериментов. Глобальная ошибка рассчитана как евклидова норма разности 

переменных состояния исследуемой системы относительно референсных значений. 

Система Рёсслера 

Система (1.26) моделировалась при 𝑎 =  0.2, 𝑏 =  0.2 и 𝑐 =  5.7, прочие 

параметры системы и параметры моделирования указаны в таблице 1.7. 

 

 

Рисунок 1.57 – Сравнение вычислительной эффективности методов ESIMM и 

классических ЛММ различных порядков при моделировании системы Рёсслера. 
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Таблица 1.7 – Параметры моделирования системы Рёсслера 

Порядок 3 4 5 6 

Шаг интегрирования, с. 

0.02 

0.015 

0.01 

0.008 

0.006 

0.003 

0.002 

0.001 

0.02 

0.015 

0.01 

0.008 

0.006 

0.003 

0.002 

0.0015 

0.008 

0.0075 

0.006 

0.005 

0.004 

0.003 

0.0025 

0.002 

Параметры (0.2; 0.2; 5.7) 

Начальные условия (1; 1; 1) 

Время моделирования, с. 40 

Количество итераций 50 

Способ анализа ошибки Максимум нормы по трем переменным 

Способ анализа времени Медианное значение 

Из рисунка 1.57 видно, что предложенный многошаговый полуявный метод 

обладает большей производительностью при решении диссипативной хаотической 

задачи, чем известные линейные многошаговые методы. «Сокращенная» версия 

ESIMM обеспечивает наилучший баланс между вычислительными затратами и 

точностью, в то время как «полная» версия оказывается немного точнее, но требует 

больше времени для выполнения расчетов. Классические явные многошаговые 

методы, такие как метод Адамса-Башфорта [101], имеют более высокое 

быстродействие в схемах высокого порядка за счет одного обращения к ФПЧ на шаге, 

но все же значительно менее точны по сравнению с предлагаемым методом и 

уступают ему в устойчивости. 

Системы Спротта. Случаи А и E 

Эти две тестовые системы демонстрируют хаотическое поведение при 

следующих значения параметров: 𝑎 =  1, 𝑏 =  1 в случае Sprott Case А (1.31) и 𝑑 =

 11 для Sprott Case Е (1.32). Прочие параметры приведены в таблицах 1.8 и 1.9.  
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Рисунок 1.58 – Сравнение вычислительной эффективности методов ESIMM и 

ЛММ различного порядка при моделировании системы Sprott Case A. 

Таблица 1.8 – Параметры моделирования системы Sprott Case A. 

Порядок 3 4 5 6 

Шаг интегрирования, с. [0.04; 0.03; 0.025; 0.02; 0.015; 0.012; 0.01; 0.008] 

Параметры (1; 1) 

Начальные условия (1; 1; 1) 

Время моделирования 45 15 

Количество итераций 55 45 

Способ анализа ошибки Максимум нормы Максимум ошибки 

Способ оценки времени Медианное значение 
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Рисунок 1.59 – Сравнение вычислительной эффективности методов ESIMM и 

классических ЛММ при моделировании системы Sprott Case E. 
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Таблица 1.9 – Параметры моделирования системы Sprott Case E. 

Порядок 3 4 5 6 

Шаг интегрирования, с. 

0.085 

0.07 

0.055 

0.04 

0.03 

0.02 

0.01 

0.005 

0.02 

0.015 

0.01 

0.008 

0.006 

0.003 

0.0025 

0.002 

0.06 

0.055 

0.05 

0.04 

0.03 

0.02 

0.01 

0.005 

Параметры 1 

Начальные условия (1;  0; −2) 

Время моделирования, с. 30 

Количество итераций 40 

Способ анализа ошибки Максимум нормы ошибок по переменным состояния 

Способ анализа времени Медианное значение времени всех экспериментов 

 

Анализируя результаты оценки эффективности многошаговых решателей ОДУ, 

показанные на рисунках 1.58 и 1.59, можно сделать вывод, что полуявные методы 

ESIMM имеют преимущество над классическими ЛММ при моделировании как 

консервативных (система Спротта A), так и диссипативных (система Спротта Е) 

систем, что подтверждает теоретические положения диссертации о высокой 

эффективности полуявных численных методов при решении ОДУ с хаотической 

динамикой. Главным преимуществом методов ESIMM выступает высокая скорость 

расчетов в сочетании с высокой адекватностью передачи поведения непрерывной 

системы в дискретной модели. Несмотря на то, что неявные многошаговые методы, 

такие как алгоритм Адамса-Мултона [98], могут быть более точными, чем ESIMM, 

при решении жестких задач, предлагаемый метод предлагает лучший компромисс 

между точностью и временем моделирования, что важно при долгосрочном 
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моделировании. Чтобы исследовать влияние жесткости системы на исследуемые 

методы, рассмотрим классический осциллятор ван дер Поля. 

 

Система ван дер Поля. 

Нелинейная система ван дер Поля (1.29) является важным тестовым примером 

при анализе численных методов интегрирования, так как способна изменять свою 

жёсткость в зависимости от параметра 𝑚. В ходе экспериментов было решено 

использовать параметр 𝑚 =  1, но для схем более высокого порядка он был уменьшен 

до 0.5, поскольку явные методы Адамса-Башфорта высоких порядков теряли порядок 

вследствие недостатка численной устойчивости. Прочие параметры моделирования 

указаны в таблице 1.10. 

 

 

Рисунок 1.60 – Сравнение вычислительной эффективности методов ESIMM и 

классических ЛММ при моделировании системы ван дер Поля. 
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Таблица 1.10 – Параметры моделирования системы ван дер Поля. 

Порядок 3 4 5 6 

Шаг интегрирования, с. 

0.02 

0.015 

0.01 

0.008 

0.006 

0.005 

0.0045 

0.004 

0.01 

0.008 

0.007 

0.006 

0.005 

0.0045 

0.004 

0.0035 

0.01 

0.008 

0.007 

0.006 

0.0055 

0.005 

0.0045 

0.004 

Параметр m 1 0,5 

Начальные условия (1; 0) (5; 3) (2; 1) 

Время моделирования, с. 30 10 10 

Количество итераций 40 50 40 

Способ анализа ошибки Максимальная норма 

Способ анализа времени Медианное значение Минимальное значение 

 

Из рисунка 1.60 видно, что неявные многошаговые методы обеспечивают 

большую точность при решении, чем другие рассматриваемые алгоритмы. С другой 

стороны, явные методы, такие как Адамса-Башфорта, так же производительны, как и 

полуявные, но теряют порядок точности из-за меньшей численной устойчивости 

схемы. Дальнейшее увеличение значения параметра 𝑚 приводит к потере 

устойчивости методами Адамса-Башфорта и расходящемуся решению. Полуявные 

многошаговые методы демонстрируют более высокую устойчивость, однако неявный 

метод Адамса-Мултона оказался наиболее точным среди исследованных алгоритмов. 

Отметим, что «короткая» (SHORT) версия предлагаемого решателя ESIMM все равно 

превосходит метод Адамса-Мултона по вычислительной эффективности из-за 

меньших вычислительных затрат несмотря на меньшую достигаемую точность. Этот 

факт делает актуальным рассмотрение исследуемых методов при переменном шаге 

интегрирования. 
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1.7 Управление шагом в многошаговых полуявных схемах 

 

Возрастающая сложность и масштаб моделируемых систем требует 

соответствующего увеличения эффективности разрабатываемых решателей. Одним 

из распространенных способов повышения вычислительной эффективности 

численных методов выступает применение адаптивного шага интегрирования. 

Экспериментальные исследования, проведенные в предыдущем разделе диссертации, 

показывают, что при моделировании хаотических систем полуявные методы 

обеспечивают разумный компромисс между избыточно устойчивыми неявными 

решателями и эффективными в вычислительном отношении явными решателями. 

Более того, полуявные методы обладают такими свойствами как обратимость во 

времени и симметрия [102]. 

Одной из задач диссертационного исследования являлась разработка новых 

алгоритмов оценки локальной погрешности решения и управления шагом 

интегрирования для программной реализации предложенных одношаговых и 

многошаговых полуявных методов с адаптивным шагом, позволяющей достигать 

большей вычислительной эффективности и точности моделирования хаотических 

систем по сравнению с реализацией с равномерным шагом интегрирования. 

 

Алгоритм оценки локальной погрешности решения 

Обратимся к общей идее экстраполяционных решателей ESIMM, 

рассмотренной в разделе 1.6. Как показано ранее и в работе по теме диссертации [357] 

такие многошаговые методы экстраполируют значения, полученные на предыдущих 

шагах решения, с текущими, комбинируя, таким образом, многошаговый и 

экстраполяционный подходы для повышения порядка точности получаемой схемы.  

Пусть 𝐻1 – размер шага, используемый для вычисления решения ОДУ порядка 

𝑝 в точке 𝑥(𝑛+1) из точки 𝑥(𝑛). Тогда последовательность членов локальной ошибки 

𝑒 имеет следующий вид: 

 𝑥(𝑡(𝑛+1)) = 𝑥(𝑛+1) +𝐻1
𝑝+1
𝑒𝑝+1 +𝐻1

𝑝+2
𝑒𝑝+2 +⋯ (1.70) 
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Для получения решения в точке 𝑥(𝑛+1) путем вычисления приращения от точки 

𝑥(𝑛−1) воспользуемся величиной шага 𝐻2 = 𝐻1 +𝐻𝑛, где 𝐻𝑛 – размер шага, для 

перехода из точки 𝑥(𝑛−1) в 𝑥(𝑛) (см. рис. 1.61). 

 

Рисунок 1.61 – Принцип выбора размера шага в методе ESIMM. 

 

Теперь последовательность локальных членов погрешности может быть 

вычислена следующим образом: 

 𝑥(𝑡(𝑛+1)) = 𝑥(𝑛+1) +𝐻2
𝑝+1
𝑒𝑝+1 +𝐻2

𝑝+2
𝑒𝑝+2 +⋯ (1.71) 

Основная идея метода ESIMM заключается в использовании решения с 

размером шага 𝐻1 (обозначим его как 𝑇1) и решения в той же точке с размером шага 

𝐻2 (обозначим его как 𝑇2) следующим образом: 

 𝑥(𝑛+1) = 𝑘1𝑇1 + 𝑘2𝑇2. (1.72) 

Коэффициенты 𝑘1 и 𝑘2 выбираются в соответствии с общими принципами 

экстраполяции, с учетом соотношения ошибок усечения на соседних этапах так, 

чтобы выполнялись следующие условия: 

 

{

𝑘1 + 𝑘2 = 1

𝑘1 +
𝐻2
𝑝+1

𝐻1
𝑝+1 𝑘2 = 0

 (1.73) 

где 𝐻1 и 𝐻2 – значения шага, используемые для расчета решений в точках 𝑥(𝑛+1), 𝑥(𝑛)и 

𝑥(𝑛−1), соответственно. Рисунок 1.62 иллюстрирует общую схему метода ESIMM 

порядка 3. 

 

Рисунок 1.62 – Графическая интерпретация метода ESIMM третьего порядка. 
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Решения, полученные на двух параллельных стадиях (рис. 1.62), объединяются 

для получения решения третьего порядка. Φ обозначает опорный самосопряжённый 

метод интегрирования КД. 

Следуя той же логике, можно описать вычислительный процесс для ESIMM 

порядка 4 (рис. 1.63), где 𝑇𝑖𝑗  представляет собой компонент таблицы экстраполяции 

на 𝑖-м этапе на 𝑗-й строке, а 𝑘𝑖𝑗
𝑢  – коэффициент при первом или втором члене, 

соответствующий значению u, которое может быть равно либо 1, либо 2. 

 

Рисунок 1.63 – Графическая интерпретация метода ESIMM 4-го порядка. 

 

Используя матричную запись, можно получить выражения для коэффициентов 

первого этапа экстраполяции в соответствии с уравнением (1.72). Поскольку в (1.70) 

и (1.71) необходимо исключить член ошибки 𝑒𝑝+1, коэффициенты имеют вид: 

 
𝑘12 = (

𝑘12
1

𝑘12
2 ) ; (

1 1

𝐻1
𝑝+1

𝐻2
𝑝+1) 𝑘12 = (

1
0
) ;  

𝑘22 = (
𝑘22
1

𝑘22
2 ) ; (

1 1

𝐻1
𝑝+1

𝐻3
𝑝+1) 𝑘22 = (

1
0
). 

(1.74) 

После завершения первого шага экстраполяции уравнения для двух 

приближений для точки 𝑥(𝑡𝑛+1), которые обозначены 𝑇12 и 𝑇22 , выглядят следующим 

образом [357]: 

 𝑇12 = 𝑥𝑛+1 + (𝑘12
1 𝐻1

𝑝+2
+ 𝑘12

2 𝐻2
𝑝+2
)𝑒𝑝+2 +⋯ ; 

𝑇22 = 𝑥𝑛+1 + (𝑘22
1 𝐻1

𝑝+2
+ 𝑘22

2 𝐻3
𝑝+2
)𝑒𝑝+2 +⋯ 

(1.75) 

Перепишем эти выражения в векторной форме: 



130 

 
𝑇12 = 𝑥𝑛+1 + (𝑘12

1 𝑘12
2 ) (

𝐻1
𝑝+2

𝐻2
𝑝+2) 𝑒𝑝+2 +⋯ ; 

𝑇22 = 𝑥𝑛+1 + (𝑘22
1 𝑘22

2 ) (
𝐻1
𝑝+2

𝐻3
𝑝+2) 𝑒𝑝+2 +⋯ 

(1.76) 

Используя аналогичный подход, можно получить окончательные уравнения для 

коэффициентов 𝑘12 и  𝑘14: 

 

𝑘12 = (
𝑘13
1

𝑘13
2 ) ; (

1 1

𝑘12
𝑇 (
𝐻1
𝑝+2

𝐻2
𝑝+2) 𝑘22

𝑇 (
𝐻1
𝑝+2

𝐻3
𝑝+2)

)𝑘13 = (
1
0
) ;  

𝑘14 = (
𝑘22
1

𝑘22
2 ) ; 

(

 
 
 

1 1

𝑘13
𝑇

(

 
 
𝑘12
𝑇 (

𝐻1
𝑝+3

𝐻2
𝑝+3)

𝑘22
𝑇 (

𝐻1
𝑝+3

𝐻3
𝑝+3)

)

 
 

𝑘23
𝑇

(

 
 
𝑘12
𝑇 (

𝐻1
𝑝+3

𝐻2
𝑝+3)

𝑘32
𝑇 (

𝐻1
𝑝+3

𝐻4
𝑝+3)

)

 
 

)

 
 
 
𝑘14 = (

1
0
). 

(1.77) 

Таким образом, можно получить коэффициенты экстраполяции для "полного" 

варианта метода ESIMM, который требует решения матричного уравнения на каждом 

шаге. Значительно сократить количество вычислений можно с помощью так 

называемой "короткой" версии того же метода, описанной в предыдущем разделе 

диссертации.  

Модифицируем метод ESIMM, чтобы сделать его пригодным для реализации с 

переменным размером шага, интерпретируя наши значения шага как следующую 

систему линейных алгебраических уравнений: 

 
𝑥𝑛+1 =∑𝑘𝑖𝑇𝑖

𝑠

𝑖=1

. (1.78) 

Рассматривая разложение в ряд Тейлора для 𝑘𝑖 ∗ 𝑥(𝑡𝑛+1) через 𝑇𝑖, где 𝑇𝑖 

представляет собой первые компоненты таблицы экстраполяции, можно получить 

коэффициенты для метода ESIMM произвольного порядка: 

 

{
 
 

 
 𝑘1𝑥(𝑡𝑛+1) = 𝑘1𝑇1 + 𝑘1𝐻1

𝑝+1
𝑒𝑝+1 + 𝑘1𝐻1

𝑝+2
𝑒𝑝+2 +⋯+ 𝑘1𝐻1

𝑝+𝑠
𝑒𝑝+𝑠

𝑘2𝑥(𝑡𝑛+1) = 𝑘2𝑇2 + 𝑘2𝐻2
𝑝+1
𝑒𝑝+1 + 𝑘2𝐻2

𝑝+2
𝑒𝑝+2 +⋯+ 𝑘2𝐻2

𝑝+𝑠
𝑒𝑝+𝑠

…

𝑘𝑠𝑥(𝑡𝑛+1) = 𝑘𝑠𝑇𝑠 + 𝑘𝑠𝐻𝑠
𝑝+1
𝑒𝑝+1 + 𝑘𝑠𝐻𝑠

𝑝+2
𝑒𝑝+2 +⋯+ 𝑘𝑠𝐻𝑠

𝑝+𝑠
𝑒𝑝+𝑠

 (1.79) 
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Учитывая, что сумма коэффициентов 𝑘𝑖 должна равняться 1, а сумма всех 

остальных членов при любой степени 𝐻 равна нулю, можно записать следующую 

систему алгебраических уравнений: 

 

(

  
 

1 1 1 … 1

𝐻1
𝑝+1

𝐻2
𝑝+1

𝐻3
𝑝+1

… 𝐻𝑠
𝑝+1

𝐻1
𝑝+2

𝐻2
𝑝+2

𝐻3
𝑝+2

… 𝐻𝑠
𝑝+2

… … … … …
𝐻1
𝑝+𝑠

𝐻2
𝑝+𝑠

𝐻3
𝑝+𝑠

… 𝐻𝑠
𝑝+𝑠
)

  
 

(

 
 

𝑘1
𝑘2
𝑘3
…
𝑘𝑠)

 
 
=

(

 
 

1
0
0
…
0)

 
 

 (1.80) 

Этот подход может быть использован для получения коэффициентов метода 

ESIMM произвольного порядка точности при использовании симметричного 

опорного метода. В качестве опорного метода для решателя ESIMM используется тот 

же опорный метод КД второго порядка. 

Важным замечанием здесь является то, что при реализации ESIMM с 

переменным шагом необходимо пересчитывать все коэффициенты экстраполяции на 

каждом шаге, поскольку на эти коэффициенты напрямую влияют значения шага, 

использованные на предыдущих стадиях.  

 

Экспериментальное исследование вычислительной эффективности 

многошаговых экстраполяционных методов с переменным шагом 

интегрирования 

В этом разделе предлагаются два алгоритма для оценки локальной погрешности 

при управлении размером шага решателя ESIMM. Проводится анализ 

производительности экстраполяционного полуявного многошагового метода 

(ESIMM) с переменным размером шага по сравнению с классическими 

многошаговыми методами, включающими формулы Адамса-Башфорта, Адамса-

Мултона и формулы дифференцирования назад (BDF). В исследовании используется 

метод Дормана-Принса 8 (DOPRI8) [100] для получения эталонного решения. 

Аттрактор Рёсслера. 

Эксперименты проводились со следующими значениями параметров: 𝑎 =  0.2,  

𝑏 =  0.2, 𝑐 =  5.7.  Время моделирования, ограничения, накладываемые на шаг и 

начальные условия приведены в таблице 1.11. 
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Таблица 1.11 – Начальные условия и параметры моделирования системы Рёсслера 

многошаговыми методами с переменным шагом. 

Порядок метода 3 4 5 

Начальные условия (0.95; 0; −1.5) (3; 0; −0.3) (0.35; 0; −2) 

Время моделирования, с. 15 

Шаг интегрирования, с. 

Минимальное значение шага, с. 0.001 

Начальное значение шага, с. 0.005 

Максимальное значение шага, с. 1 

 

Для реализации адаптивного управления размером шага необходимо иметь 

оценку локальной погрешности усечения (англ., Local truncation error, LTE) метода. 

Первый способ оценки LTE для метода ESIMM, рассмотренный в данном разделе, 

основан на разнице между двумя параллельными решениями с различными 

порядками коммутации. 

Напомним, что термин "порядок коммутаций", введенный ранее в диссертации, 

означает изменение порядка вычисления переменных состояния в уравнении (1.27), 

как показано в уравнении (1.28), где приведена вторая возможная коммутация метода 

КД для системы Рёсслера (1.26). 

На рисунке 1.64 показана схема оценки LTE с использованием двух различных 

коммутаций опорного метода КД, выполняемых параллельно. 

 

Рисунок 1.64 – Блок-схема механизма оценки LTE на основе коммутаций. 𝛷𝐻
1   и 𝛷𝐻

2  

обозначают две различные коммутации опорного метода КД. 
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Локальная погрешность оценивается как разность между решениями ESIMM, 

полученными с помощью опорных методов (1.27) и (1.28). Закон, по которому 

производится управление шагом, может быть записан по формуле Зодерлинда [98]: 

 

𝐻𝑛+1 = 𝐻𝑛 |
𝑇𝑜𝑙

𝑑(𝑥𝑛)
|

1
𝑚
+ 𝑂(𝐻𝑛), 

(1.81) 

где 𝑚 – порядок точности схемы,  

𝑇𝑜𝑙 – желаемое значение допуска 

𝑑(𝑥𝑛) – локальная погрешность между двумя решениями. 

Рисунок 1.65 иллюстрирует поведение размера шага при решении системы 

Рёсслера методом ESIMM с механизмом оценки LTE на основе коммутации в 

сравнении с явным линейным многошаговым методом Адамса-Башфорта со 

стандартным алгоритмом управления адаптивным шагом интегрирования [98]. 

 

Рисунок 1.65 – Графики поведения шага для методов Адамса-Башфорта и ESIMM 

порядка 4 при решении системы Рёсслера. Для управления размером шага в схеме 

ESIMM используется оценка LTE на основе коммутации. 

Из рисунка 1.65 видно, что решатель ESIMM с предлагаемым регулятором шага 

демонстрирует более осциллирующую кривую графика динамики размера шага, но в 

то же время склонен использовать больший шаг интегрирования, что приводит к 

меньшему количеству вычислений функции правой части, что следует из меньшего 

количества шагов, необходимых для получения решения с помощью ESIMM. Хотя 

эти результаты уже выглядят многообещающими, в диссертационном исследовании 

был дополнительно разработан альтернативный подход к управлению шагом для 
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дальнейшего повышения эффективности многошаговых экстраполяционных 

решателей. 

Второй предложенный в диссертации метод оценки локальной погрешности 

основан на подходе, использующем вложенную схему, широко распространенную в 

одношаговых экстраполяционных решателях и вложенных методах Рунге-Кутты [98]. 

Для оценки локальной ошибки усечения использовалась разница между двумя 

опорными методами с одинаковыми порядками коммутации, но с разным размером 

шага. Одно решение было получено с использованием величины шага 𝐻, а другое 

содержит композицию двух последовательных шагов с величиной  
𝐻

2
. Учитывая, что 

опорный метод имеет порядок 2, локальная погрешность демонстрирует 

квадратичную зависимость от выбранного шага интегрирования. Оба решения 

экстраполируются для повышения общей точности следующим образом: 

 
𝑥𝑛+1 =

4𝑃𝑛+1
𝐻/2

− 𝑃𝑛+1
𝐻

3
, (1.82) 

где 𝑃𝑛+1
𝐻   и 𝑃𝑛+1

𝐻/2
 – два решения, найденные с размерами шага H и H/2, соответственно.  

Назовем этот подход "двойной экстраполяцией", поскольку метод ESIMM уже 

включает одну процедуру экстраполяции в алгоритм вычислений. После получения 

двух решений ESIMM можно использовать разницу между ними в качестве оценки 

локальной погрешности и вычислить новое значение размера шага, используя 

уравнение (1.81) с 𝑑(𝑥𝑛) = √|𝑥(𝑛+1) − 𝑃𝑛+1
𝐻 |

2
. Рисунок 1.66 иллюстрирует 

модификацию опорного метода в схеме ESIMM, которая включает в себя двойной 

экстраполяционный механизм оценки локальной погрешности. Рисунок 1.67 

иллюстрирует преимущества подхода двойной экстраполяции в виде графиков 

производительности различных методов интегрирования при моделировании 

системы Рёсслера. Графики производительности показывают зависимость между 

достигнутой точностью и реальным временем расчета решения с желаемым 

пороговым значением локальной погрешности. Время выполнения кода 

рассчитывалось как медианное значение из 100 вычислительных экспериментов. 
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Рисунок 1.66 – Блок-схема оценки LTE с применением двойной экстраполяции 

внутри метода ESIMM. Φ обозначает опорный полуявный метод интегрирования 

КД. 

 

Как показано на рисунке 1.67, использование оценки локальной погрешности 

на основе способа двойной экстраполяции приводит к значительному увеличению 

скорости расчета при больших пороговых значениях допустимой локальной 

погрешности и незначительному повышению точности решения при малых 

значениях допуска. Следует обратить внимание, что кривая динамики шага на 

рисунке 1.67 (b) более плавная, чем на рисунке 1.67 (a). На рисунке 1.67 также 

представлены графики производительности всех исследуемых многошаговых 

методов 3го и 5го порядка точности при моделировании системы Рёсслера. 
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(a) (b) 

  

(c) (d) 

Рисунок 1.67 – (a) поведение шага интегрирования при использовании оценки 

локальной погрешности на основе разности коммутации; (b) поведение шага при 

использовании двойной экстраполяции. (c) Сравнение вычислительной 

эффективности решателя ESIMM с оценкой локальной погрешности на основе 

коммутации и решателя ESIMM с оценкой локальной погрешности с двойной 

экстраполяцией. Виден выигрыш в точности для последнего способа; (d) сравнение 

методов AB, AM и BDF 4 порядка с двумя предложенными версиями адаптивного 

алгоритма ESIMM. 
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(a) (b) 

Рисунок 1.68 – Графики вычислительной эффективности, полученные для 

исследуемых многошаговых методов с порядком точности 3 (а) и 5 (б) при 

моделировании системы Рёсслера с переменным шагом интегрирования. 

 

Из рисунка 1.68 видно, что предложенные в диссертационном исследовании 

экстраполяционно-многошаговые методы ESIMM с адаптивным шагом оказываются 

более эффективными с вычислительной точки зрения, чем методы Адамса-Башфорта, 

Адамса-Мултона и формула дифференцирования назад. Наблюдаемые различия в 

производительности с явными методами, такими как линейный многошаговый 

Адамса-Башфорта, становятся менее значительными с увеличением порядка 

точности, но все еще остаются существенными с точки зрения соотношения точности 

и скорости вычислений на более низких пороговых значениях допустимой 

погрешности. Этот факт можно объяснить дополнительными вычислениями ФПЧ на 

шаге у метода ESIMM, а также накладными расходами, вносимыми в схему ESIMM 

обоими предложенными алгоритмами оценки локальной погрешности, и 

несколькими обращениями к функции правой части на шаге. Однако более высокая 

устойчивость методов ESIMM все же обеспечивает существенное превосходство над 

решателем Адамса-Башфорта, допуская большее значение шага при малых 

пороговых значениях требуемой ошибки. Верифицируем полученные результаты в 

серии вычислительных экспериментов с другими тестовыми нелинейными 

системами, рассматриваемыми в диссертационном исследовании. 
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Аттрактор Дадра-Момени. 

Эксперименты с системой Дадра-Момени (1.35) проводились с использованием 

следующих значений параметров: 𝑎 =  3, 𝑏 =  2.7, 𝑐 =  4.7, 𝑑 =  2, 𝑚 =  9. Прочие 

параметры моделирования сведены в таблицу 1.12. 

Из рисунка 1.69 видно, что эффективность методов ESIMM снижается с 

увеличением порядка точности схемы из-за необходимости вычисления 

дополнительных обращений к ФПЧ (+1 расчет на каждый порядок). Тем не менее, 

решатель ESIMM с оценкой LTE на основе двойной экстраполяции обеспечивает 

наилучшую вычислительную эффективность среди исследованных методов.  

 

  

(a) (b) 

 

(c) 

Рисунок 1.69 – Графики производительности, полученные при моделировании 

системы Дадра-Момени исследуемыми многошаговыми методами 3 (a), 4 (b) и 5 (c) 

порядка алгебраической точности с переменным шагом 
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Таблица 1.12 – Начальные условия и параметры моделирования системы Дадра-

Момени с переменным шагом интегрирования. 

Порядок метода 3 4 5 

Начальные условия (1; 0; −1) 

Время моделирования (сек.) 10 

Значение шага (сек.) 

Минимальное значение шага, с. 10−10 

Начальное значение шага, с. 0.0001 

Максимальное значение шага, с. 1 

 

Существенный интерес представляет сравнительная оценка эффективности 

предложенных многошаговых методов с известными решателями ОДУ при 

моделировании консервативной нелинейной системы, такой, как термостат Нозе-

Гувера. 

 

Аттрактор Нозе-Гувера. 

Эксперименты с системой Нозе-Гувера (1.37) проводились при следующем 

наборе значений параметров: 𝑎 =  1, 𝑑 =  1. Остальные параметры моделирования 

приведены в таблице 1.13. 

 

Таблица 1.13 – Начальные условия и параметры моделирования системы Нозе-

Гувера многошаговыми методами с переменным шагом. 

Порядок метода 3 4 5 

Начальные условия (0.1; 0; −0.1) (0.1; 0; −0.1) (0.1; 0; −0.1) 

Время моделирования (сек.) 15 25 

Значение шага (с.) 

Минимальное значение шага, с. 10−5 

Начальное значение шага, с. 0.001 

Максимальное значение шага, с. 1 
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Из рисунка 1.70 видно, что при моделировании консервативной системы 

методы ESIMM сохраняют хорошую производительность даже в случае 

использования более высокого порядка точности. Этот факт, возможно, объясняется 

геометрическими свойствами опорного метода КД, который обеспечивает 

дополнительную точность при решении консервативных ОДУ. Однако 

предложенные алгоритмы управления шагом, как и сам метод ESIMM, не являются 

симплектическими и не сохраняют энергию или первые интегралы системы в 

дискретной модели. Стоит отметить, что другие исследуемые линейные 

многошаговые методы оказываются менее точными по сравнению с результатами, 

полученными для диссипативных систем, в то время как ESIMM демонстрирует 

хорошую производительность во всех случаях. 

  

(a) (b) 

 

(c) 

Рисунок 1.70 – Графики производительности, полученные при моделировании 

консервативной системы Нозе-Гувера исследуемыми многошаговыми методами 

порядка точности 3 (a), 4 (b) и 5 (c) с переменным шагом. 
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Система ван дер Поля.  

Одна из возможных причин для обнаруживаемых различий в работе методов и 

регуляторов шага может заключаться в различной жесткости моделируемых систем. 

Поэтому в качестве тестового ОДУ для новой серии экспериментов рассмотрим уже 

упоминавшуюся жесткую динамическую систему ван дер Поля. Этот нелинейный 

осциллятор является классической задачей для тестирования методов численного 

интегрирования с переменным шагом. Эксперименты проводились при 𝑚 =  55, что 

соответствует сценарию средней жесткости. Остальные параметры моделирования 

представлены в таблице 1.14.  

  

(a) (b) 

 

(c) 

Рисунок 1.71 – Графики производительности, полученные при моделировании 

системы ван дер Поля исследуемыми многошаговыми методами порядка точности 3 

(a), 4 (b) и 5 (c) с переменным шагом. 
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Таблица 1.14 – Начальные условия и параметры моделирования системы 

ван дер Поля с переменным шагом. 

Порядок 3 4 5 

Начальные условия (0.1; 0) (0.9; −0.2) (0.9; −0.2) 

Время моделирования (сек.) 15 10 

Значение шага (с.) 

Минимальное значение, с. 10−10 

Начальное значение, с. 0.001 

Максимальное значение, с. 1 0.35 0.4 

 

Из рисунка 1.71 видно, что вычислительная эффективность предложенных в 

диссертационном исследовании адаптивных методов ESIMM превосходит таковую 

для стандартных многошаговых алгоритмов численного интегрирования при 

моделировании умеренно жесткой нелинейной системы. 

Превосходство метода ESIMM при решении умеренно жесткой задачи 

обусловлено относительно высокой численной устойчивостью схемы, 

унаследованной от опорных одношаговых полуявных методов за счет многократного 

обращения к функции правой части. Более высокая численная устойчивость и новые 

алгоритмы управления шагом интегрирования привели к лучшей общей 

производительности в случае жесткой системы.  

 

1.8 Выводы по главе 

 

В первой главе диссертационного исследования сформулированы требования к 

численным методам, применяемым при решении хаотических задач: 

1. Адекватность дискретной модели хаотической системы, получаемой при 

применении метода, непрерывному прототипу с точки зрения сохранения 

демонстрируемых режимов колебаний, особых точек, аттракторов, бассейнов 

притяжения, показателей Ляпунова и энтропии. 
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2. Высокая производительность метода (вычислительная эффективность), 

способствующая эффективной реализации алгоритмов многомерного численного 

анализа нелинейных систем. При этом желательным свойством метода выступает 

минимальное число арифметических операций как на шаге, так и на всем интервале 

решения, способствующее снижению влияния машинного шума. Одним из способов 

уменьшения общего числа арифметических операций выступает реализация методов 

с переменным (адаптивным) шагом интегрирования. 

3. Сохранение первых интегралов или энергии исходной консервативной 

хаотической системы при долгосрочном дискретной моделировании и возможность 

обращения численного решения во времени. Данное свойство позволяет также 

реализовать новые способы хаотической синхронизации, основанные на обратимости 

потока. Стоит отметить, что свойство обратимости может наследоваться также и от 

метода при дискретизации исходно необратимой системы. 

4. Эффективное управление порядком точности и шагом интегрирования 

для получения оптимального с точки зрения соотношения “достигаемая точность – 

вычислительные затраты” решения при минимальных накладных расходах на оценку 

локальной погрешности.  

5. Устойчивость к «хаотической деградации» – выходу из хаотического 

режима колебаний по причине накопления ошибок округления. 

Сформулирована и подтверждена гипотеза о том, что полуявные методы, 

применяемые для моделирования гамильтоновых задач, могут обеспечить 

соблюдение всех указанных требований. Для достижения цели диссертационного 

исследования полуявные симметричные численные методы интегрирования первого 

и второго порядка были обобщены на класс систем, описываемых уравнениями в 

нормальной форме Коши и обладающих хаотической динамикой. Доказаны порядок 

и симметричность новой модификации полуявных методов – методов КД с 

диагональной неявностью.  

Выдвинута и экспериментально подтверждена гипотеза, что вследствие малых 

вычислительных затрат и свойства симметрии полуявные методы второго порядка 

точности могут быть вычислительно эффективной основой для композиционных и 
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экстраполяционных схем численного решения ОДУ. Сформирован набор тестовых 

задач, используемых в диссертационном исследовании, синтезировано 

математическое описание конечно-разностных моделей тестовых задач с 

применением предложенного полуявного метода КД. 

Рассмотрена общая форма композиционных методов решения ОДУ и 

поставлена задача построения эффективного способа оценки локальной погрешности 

для реализации управления шагом интегрирования. Проведено сравнение четырех 

алгоритмов автоматического управления размером шага, включая новый способ, 

сочетающий полуявную модификацию метода средней точки с методом КД в 

композиционной схеме. Вычислительные эксперименты показали, что новый подход 

позволяет добиться большей производительности композиционных методов, чем 

другие методы оценки локальной погрешности композиционных схем, описанные в 

литературе.  

В главе предложен подход к построению многомерных областей устойчивости 

численных методов, существующих для задач размерности 2 и более. Введено 

понятие области предпочтительности как практического инструмента выбора 

размера шага интегрирования. Исследована численная устойчивость предлагаемых 

полуявных численных методов интегрирования в сравнении с известными 

решателями ОДУ. В ходе исследования численной устойчивости полуявных схем 

решения ОДУ установлено: 

1. Устойчивость полуявных конечно-разностных схем сильно зависит от 

коэффициента асимметрии системы. Это накладывает определенные ограничения на 

жесткость моделируемых систем, незначительно снижающую ценность 

математического аппарата полуявных методов в задачах управления. В то же время, 

в случае решения нелинейных задач, в особенности, хаотических систем, данное 

свойство может порождать новые качества модели по сравнению с прототипом и 

создавать возможности для управления диссипацией и другими фазовыми 

свойствами дискретной модели. 

2. Численная устойчивость экстраполяционных схем на основе полуявного 

опорного метода КД превышает таковую у считающихся наиболее эффективными 
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методов ГБШ, но уступает устойчивости экстраполяционных методов на основе 

неявной средней точке. На практике при решении нелинейных задач на ЭВМ с 

ограниченной длиной разрядной сетки, реальная устойчивость методов КД 

сопоставима с таковой для линейно-неявных методов, что в работе доказывается с 

помощью нового инструмента – областей минимальной достаточности. 

3. Трехмерные области устойчивости являются новым репрезентативным 

инструментом оценки устойчивости полуявных конечно-разностных схем, 

позволяющим сравнивать численные алгоритмы интегрирования при наличии 

нескольких параметров схемы. Трехмерные области устойчивости помогают 

правильно выбрать конкретную полуявную схему для решения нелинейной задачи, 

гибко сбалансировав устойчивость и вычислительные затраты. 

4. Области устойчивости экстраполяционных и композиционных 

полуявных методов интегрирования существенно различаются. Скорость увеличения 

области устойчивости при возрастании порядка точности у экстраполяционных 

методов в среднем выше, чем у композиционных конечно-разностных схем. При этом 

от ряда коэффициентов, составляющих композиционную схему, зависит скорость 

роста области устойчивости. Наивысшую устойчивость имеют наиболее затратные с 

точки зрения вычислений полуявные методы Сузуки, в то время как оптимальными с 

точки зрения соотношения «устойчивость – вычислительные затраты» можно считать 

алгоритмы Кахана. 

5. Помимо оценки области устойчивости, в главе предложена оценка 

области минимально достаточной точности (области предпочтительности), которая 

позволяет оценить практически полезную часть области устойчивости и в 

определенном смысле является обобщением классического понятия об L-

устойчивости методов. 

6. Сглаживающий шаг Грэгга нецелесообразно применять при построении 

полуявных конечно-разностных схем ввиду его незначительного влияния на размер 

области устойчивости при значительном росте вычислительных затрат. 

7. По размеру области устойчивости и области минимально достаточной 

точности полуявные методы находятся в интервале между явными и неявными 
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методами, что соответствует теоретически предсказанным в диссертации свойствам 

методам и удовлетворяет выдвинутому критерию, предъявляемому к 

специализированным методам моделирования хаотических систем. 

8. Область устойчивости композиционных методов сильно изрезана и при 

моделировании нелинейных систем данными методами также могут возникать 

дополнительные искажения. То же можно сказать и об области минимально 

достаточной точности, которая имеет сложную форму для всех композиционных 

методов. Это может способствовать сохранению непредсказуемых траекторий в 

дискретных моделях хаотических систем, необходимых для технических приложений 

хаотической динамики. В главе предложено использовать особенности полуявных 

численных методов интегрирования для решения проблемы расширения хаотической 

последовательности. Традиционно используемое возмущение параметра 

нелинейности можно заменить на переключение между двумя численными 

решениями, полученными полуявными методами интегрирования. Эксперименты 

показали, что данная методика позволяет существенно увеличить период хаотических 

колебаний при малой (16 бит) длине разрядной сетки вычислителя. Более того, 

предложенный метод может быть эффективно реализован во встраиваемых системах, 

использующих хаотические колебания, поскольку он может включать в себя одну 

конечно-разностную схему с различным образом коммутируемыми связями 

В главе также предложен и исследован новый тип экстраполяционных 

численных методов интегрирования – многошаговые экстраполяционные численные 

методы, а также два новых способа управления шагом интегрирования таких методов. 

На примере репрезентативного набора задач – нелинейных консервативных и 

диссипативных хаотических систем, а также жесткой задачи ван дер Поля – показано 

превосходство предложенных методов в производительности над известными 

многошаговыми решателями ОДУ в серии вычислительных экспериментов.  
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ГЛАВА 2. ДИСКРЕТНЫЕ ХАОТИЧЕСКИЕ ОТОБРАЖЕНИЯ С 

УПРАВЛЯЕМОЙ СИММЕТРИЕЙ 

 

Дискретные хаотические отображения представляют собой вычислительно 

простые конечно-разностные схемы, которые широко используются для 

моделирования динамических систем, включая движение заряженных частиц, 

изучение динамики оптических квантовых генераторов, исследование орбит 

небесных тел и прочих задач статистической механики. Одним из способов 

получения возвратных отображений является дискретизация дифференциальных и 

дифференциально-алгебраических уравнений непрерывных динамических систем с 

использованием численных методов. В предыдущей главе было показано, что 

применяемые при дискретизации численные методы существенным образом влияют 

на свойства дискретных моделей непрерывных хаотических систем. В 

диссертационном исследовании была выдвинута гипотеза, что, управляя свойствами 

дискретного оператора интегрирования, можно контролировать характеристики, 

порождаемой с помощью него, дискретной хаотической модели. Основная идея 

второй главы диссертации заключается в применении геометрических численных 

методов интегрирования и концепции управляемой симметрии композиционных 

схем к известным моделям непрерывных хаотических систем и их дискретным 

отображениям с целью реализации управляемости некоторыми из геометрических 

свойств потоков решений в дискретных моделях с динамическим хаосом.  

 

2.1. Управляемая симметрия в конечно-разностных моделях динамических 

систем 

 

Введем понятие управляемой симметрии композиционной схемы [66,103] 

численного решения ОДУ. Напомним, что метод интегрирования КД с управляемой 

симметрией Ψ с шагом интегрирования ℎ предполагает композицию двух 

сопряженных методов первого порядка [104,105] с функциями приращения Φ и Φ∗. 

Применим данные функции с шагами интегрирования ℎ ∙ 𝑠 и ℎ ∙ (𝑠 − 1), 
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соответственно:  

 Ψℎ = Φℎ∙𝑠 ∘ Φℎ∙(𝑠−1)
∗ . (2.1) 

где коэффициент 𝑠 называется коэффициентом симметрии или адаптивным 

коэффициентом симметрии. 

Графическая интерпретация одного шага полуявного численного метода КД с 

управляемой симметрией представлена на рис. 2.1. 

 

Рисунок 2.1 – Схема одного шага полуявного метода КД с управляемой 

симметрией. 

 

Значение коэффициента симметрии 𝑠 =  0.5 даёт обычный симметричный 

метод КД второго порядка, подробно рассмотренный и исследованный в предыдущей 

главе диссертации. При иных значениях коэффициентов симметрии метод КД 

постепенно теряет порядок алгебраической точности, однако при этом появляется 

возможность управления динамикой конечно-разностной модели непрерывной 

системы. Прежде всего речь идет об управлении диссипацией дискретной системы. 

Так, например, при разном коэффициенте симметрии дискретные модели 

консервативной системы Нозе-Гувера, полученные методом КД, демонстрируют 

разный уровень диссипации и различную динамику фазового объёма системы (см. 

рис. 2.2), являющегося хорошей метрикой для оценки ее полной энергии.  
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Рисунок 2.2 – Изменение объема фазового пространства по времени при 

различных значения 𝑠 для системы Нозе-Гувера. Очевидно, что диссипация в трех 

рассматриваемых конечно-разностных моделях различна и приводит к различным 

режимам колебаний. 

 

Тем не менее, остается открытым вопрос, какие именно типы динамики 

демонстрирует система при изменении коэффициента симметрии. На рисунке 2.3 

показан анализ дискретной системы Нозе-Гувера (1.37) при долгосрочном 

моделировании. В процессе моделирования в заданные моменты времени происходит 

изменение коэффициента симметрии s в соответствии со значениями, приведенными 

на рисунке. Коэффициент меняется от 0.3 до 0.7. Можно видеть, что изменение 

коэффициента симметрии приводит к соответствующему изменению фазового 

объема аттрактора системы, причем значение фазового объема устанавливается к 

заданному уровню, т.е. становится управляемым. Показанные фазовые портреты 

демонстрируют различную динамику – от предельного цикла (случай 4 на рис. 2.3) до 

хаотического поведения (случай 2). Промежуточные варианты отличаются уровнем 

фазового объема системы. Стоит отдельно отметить, что переходный процесс в 

случае изменения коэффициента симметрии протекает достаточно быстро, и 

полученные режимы колебаний являются устойчивыми состояниями системы. 
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Рисунок 2.3 – Изменение фазового объёма дискретной системы Нозё-Гувера при 

различных значениях 𝑠 

 

Далее в диссертации показано, как управление коэффициентом симметрии 

может применяться для создания дискретных отображений с новыми свойствами, а 

также придания дискретным хаотическим системам свойств, изначально 

отсутствовавших в непрерывном прототипе. 

Создание искусственной мультистабильности в дискретных моделях 

хаотических систем с помощью управляемой симметрии 

В данном разделе диссертации предлагается новый подход к созданию 

искусственной мультистабильности в дискретной системе при помощи полуявного 

метода численного интегрирования с переменной симметрией.  

Мультистабильность в нелинейных диссипативных динамических системах 

можно определить как сосуществование множества конечных стабильных состояний, 

или аттракторов. Мультистабильность наблюдается в моделях, принадлежащих 

самым разнообразным отраслям научного знания: физиологии [106,107], химии [108], 

экологии [109], оптике [110,111], электронике [112-115] и механике [116,117]. 

Каждый аттрактор мультистабильной системы обладает своей собственным 
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бассейном притяжения - набором начальных условий, ведущих к его траекториям. 

Исследователями обнаружено, что бассейны притяжения хаотических систем часто 

имеют фрактальную форму [118,119], и поэтому иногда практически невозможно 

предсказать, приведет ли какое-либо начальное условие к определенному 

вложенному аттрактору. Нетривиальная взаимосвязь между сосуществующими в 

системе состояниями и их сложно смешанными бассейнами притяжения делает 

мультистабильные системы критически зависимыми от начальных условий и 

чрезвычайно чувствительными к вносимым возмущениям. Переходы из одного 

стабильного состояния в другое называются критическими переходами, которые в 

физике также называются фазовыми переходами [120]. Поскольку во многих 

приложениях важно управлять траекторией системы, попадающей на желаемый 

сосуществующий аттрактор, было предложено несколько методов для выполнения 

этой задачи [121-123].  

Известные механизмы, приводящие к возникновению мультистабильности, 

включают слабую диссипацию [124], стабилизацию гомоклинических касаний [125], 

обратную связь с временной задержкой [126], взаимное влияние нескольких систем 

[127-129], периодические [130] и случайные [131] возмущения параметров, уже 

рассмотренные в первой главе диссертации как способ увеличения периода 

квазихаотических колебаний, баланс полярностей [132] и, наконец, нарушение 

вращательной симметрии [123]. Для того чтобы добиться мультистабильности, 

перечисленные выше подходы предполагают качественные изменения на уровне 

уравнений непрерывной системы-прототипа. Частным случаем мультистабильности 

является экстремальная мультистабильность – сосуществование бесконечно 

большого числа аттракторов в одной системе [133]. Экстремальная 

мультистабильность была впервые обнаружена в цепочках синхронизированных 

систем. Позже было обнаружено, что она также может быть присуща другим типам 

систем, например, сверхскоростным и гиперхаотическим системам [134-136]. Другим 

случаем мультистабильности является мегастабильность – сосуществование 

бесконечно большого числа аттракторов, когда, в отличие от экстремальной 

мультистабильности, эти аттракторы образуют счетное множество [137-140]. 
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Обнаружение мультистабильности в исследуемой хаотической системе 

является нетривиальной задачей. Аттрактор может быть самовозбуждающимся, что 

означает, что траектория, начинающаяся вблизи точки равновесия, достигает этой 

точки [141,142]. Одним из примеров такой мультистабильной системы является 

известная система Лоренца при определенном наборе параметров [143]. Сложность 

поиска мультистабильных состояний заключается в том, что помимо 

самовозбуждающихся аттракторов могут существовать и скрытые аттракторы, 

которые не возбуждаются вблизи какой-либо равновесной точки [141]. Практическим 

примером системы со скрытой динамикой является неавтономный нейрон Хопфилда 

с экстремальной мультистабильностью [144]. Такой тип поведения предполагает, что 

у нас нет какого-либо надежного теоретического способа предсказать, является ли 

данная система мультистабильной или нет, и только численные подходы к анализу 

фазового пространства системы и поиску сосуществующих аттракторов могут 

ответить на этот вопрос [145].  

Моностабильная система может стать мультистабильной при определенных 

изменениях ее фазового пространства [146]. Типичный пример таких изменений – 

дискретизация непрерывной системы с помощью численного интегрирования для 

компьютерного моделирования. Такая операция преобразует непрерывные потоки 

исходной системы в дискретные отображения, которые могут обладать более 

сложной динамикой, чем прототип, как было показано, например, в [147]. Это 

означает, что при наличии численного метода с управляемым параметром можно 

использовать его для управления свойствами дискретной системы. На сегодняшний 

день разработан ряд алгоритмов параметрического численного интегрирования (см., 

например, работы [148-150]), но возможность воспользоваться преимуществами 

использования таких методов для создания искусственной мультистабильности не 

исследовалась. При этом за последнее десятилетие было разработано несколько 

проблемно-ориентированных методов, в которых параметры численного 

интегрирования используются для управления свойствами дискретной схемы [149-

151]. Среди подобных методов особый интерес представляют симметричные 

интеграторы, рассмотренные ранее в главе 1 диссертации, где показано, что важным 
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свойством симметричных методов является то, что они обладают квадратичным 

асимптотическим разложением глобальной ошибки [152] и могут служить опорным 

методом для вычислительно эффективных экстраполяционных и композиционных 

схем [153]. Другим полезным свойством симметричных методов является сохранение 

первых интегралов и приближенной энергии системы на длительном интервале 

моделирования, что полезно для моделирования систем без диссипации [154,155].  

Предположим, что изменение коэффициента симметрии может незначительно 

изменить численную устойчивость дискретной системы, полученной с помощью 

такого метода. Такой подход, как было показано в разделе ранее, обеспечивает 

дополнительный канал управления [156]. Методы, в которых переменная симметрия 

используется в качестве управляемого параметра, в настоящей работе будут 

называться методами с адаптивной симметрией, по аналогии с методами 

адаптивного шага [157-160]. Рассмотрим применение методов с адаптивной 

симметрией для создания искусственной мультистабильности. 

 

Дискретная система Чена с переменной симметрией  

Хаотический осциллятор Чена [161] описывается следующей системой 

обыкновенных дифференциальных уравнений: 

 

{

𝑥̇ = 𝑎(𝑦 − 𝑥);

𝑦̇ = (𝑐 − 𝑎)𝑥 − 𝑥𝑧 + 𝑐𝑦;
𝑧̇ = 𝑥𝑦 − 𝑏𝑧,

 (2.2) 

где 𝑎 =  40, 𝑏 =  3 и 𝑐 =  28 – стандартные параметры, при которых 

наблюдается хаотическое поведение. Система имеет три точки равновесия 𝐸0  =

 (0, 0, 0), 𝐸±  = (±√𝑏(2𝑐 −  𝑎), ±√𝑏(2𝑐 −  𝑎), 2𝑐 − 𝑎) которые являются 

неустойчивыми. Для указанного выше набора параметров система (2.2) имеет 

следующие точки равновесия: 𝐸0  =  (0, 0, 0), 𝐸±  = (±4√3,±4√3, 16). Анализ 

системы позволяет предположить существование в данном случае единственного 

хаотического аттрактора, что подтверждается экспериментами, описанными в 

литературе [161,162]. 
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Конечно-разностная схема полуявного метода КД с управляемой симметрией 

для системы (2.2) выглядит следующим образом 

 

 ℎ1 = 𝑆ℎ, 

ℎ2 = (1 − 𝑆)ℎ. 

 

{
 
 
 

 
 
 

𝑥𝑛+𝑠 = (𝑥𝑛 + ℎ1𝑎𝑦𝑛)(1 + ℎ1𝑎)
−1;

𝑦𝑛+𝑠 = (𝑦𝑛 + ℎ1((𝑐 − 𝑎)𝑥𝑛+𝑠 − 𝑥𝑛+𝑠𝑧𝑛)) (1 − ℎ1𝑐)
−1;

𝑧𝑛+𝑠 = (𝑧𝑛 + ℎ1𝑥𝑛+𝑠𝑦𝑛+𝑠)(1 + ℎ1𝑏)
−1;

𝑧𝑛+1 = 𝑧𝑛+𝑠 + ℎ2(𝑥𝑛+𝑠𝑦𝑛+𝑠 − 𝑏𝑧𝑛+𝑠);

𝑦𝑛+1 = 𝑦𝑛+𝑠 + ℎ2((𝑐 − 𝑎)𝑥𝑛+𝑠 − 𝑥𝑛+𝑠𝑧𝑛+1 + 𝑐𝑦𝑛+𝑠);

𝑥𝑛+1 = 𝑥𝑛+𝑠 + ℎ2𝑎(𝑦𝑛+1 − 𝑥𝑛+𝑠).

 

 

(2.3) 

Исследуем динамику системы (2.3) с применением инструментов 

бифуркационного анализа и расчета наибольшего показателя Ляпунова. 

 

Исследование дискретной модели системы Чена с управляемой 

симметрией 

Бифуркационная диаграмма – один из основных инструментов анализа, 

используемых при исследовании динамических характеристик нелинейных систем в 

заданном диапазоне управляющих параметров [123]. Чтобы обнаружить свойство 

мультистабильности, бифуркационная диаграмма должна быть получена при 

долгосрочном моделировании [123,163,164,366]. При построении бифуркационных 

диаграмм с продлением решения (CBD, Сontinuation Bifurcation Diagram) решение 

продолжается на каждой итерации со значений, найденных в ходе предыдущей 

итерации. Алгоритм построения диаграмм с продолжением решения основан на том, 

что на каждой последующей итерации траектория системы остается внутри бассейна 

притяжения, где остановилась предыдущая траектория, до тех пор, пока она не 

покинет его вследствие очередной смены режима системы. Таким образом, с 

помощью данного инструмента можно выявить мультистабильное поведение 

системы. 
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На рис. 2.4 показаны две перекрывающиеся диаграммы с продолжением 

решения, отрисованные красным и черным цветом для дискретной системы Чена, 

полученные методом КД с управляемой симметрией (2.3) при шаге интегрирования 

ℎ = 0.01, и соответствующие траекториям, начатым в двух разных начальных 

условиях (𝑥0 = (0.1;  0.1;  18) (красная траектория) и 𝑥0 = (−0.1; −0.1;  18) (чёрная 

траектория)). Для большинства значений 𝑠 в диапазоне от 0 до 1 система имеет один 

аттрактор, но есть некоторые интервалы, в которых наблюдаются две независимые 

траектории. Один из этих интервалов был исследован при большем разрешении, как 

показано на рис. 2.5. При значении коэффициента симметрии 0.755 и выше 

бифуркационная диаграмма разбивается на две независимые ветви, соответствующие 

двум различным начальным условиям, что означает, что эти траектории попадают на 

два независимых аттрактора. 

 

Рисунок 2.4 – Диаграмма продолжения для дискретной модели системы Чена, 

реализованной полуявным методом КД с различными значениями коэффициента 

симметрии 𝑠. 
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Рисунок 2.5 – Участок диаграммы CBD для дискретной системы Чена при 

значении параметра 𝑠 от 0.75 до 0.82. Видно распадение решения на две 

независимые ветви. 

 

Тем не менее, одних только результатов CBD-анализа недостаточно, чтобы 

утверждать, что в системе существуют два или более мультистабильных состояния 

при определенных значениях коэффициента симметрии. Чтобы определить, сколько 

аттракторов реально сосуществует в дискретной системе Чена, полученной с 

помощью метода КД с управляемой симметрией, выполним анализ числа уникальных 

аттракторов при помощи алгоритма, представленного автором в работе [338]. 

Рисунок 2.6 показывает количество обнаруженных уникальных аттракторов в 

дискретной модели системы Чена с управляемой симметрией. На верхней панели 

рисунка 2.6 показаны столбчатые графики количества уникальных аттракторов, 

включая периодические и хаотические случаи, а на нижней панели выведена 

энтропия бассейна притяжения. Рис. 2.6 построен для всего диапазона коэффициента 

симметрии 𝑠 ∈  [0;  1]. На рис. 2.7 представлен аналогичный анализ, выполненный с 

увеличенным интервалом 𝑠 ∈  [0.769;  0.782], представляющим интерес т.к. там 

сосуществуют несколько уникальных аттракторов. Большинство значений 𝑠 в этом 

интервале не порождают хаотические аттракторы, хотя в системе присутствуют 

особые случаи, для которых существует один или два хаотических аттрактора. 
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Рисунок 2.6 – Количество сосуществующих аттракторов (вверху) и 

энтропийный индекс бассейна притяжения (внизу) системы Чена в зависимости от 

значения коэффициента симметрии 𝑠 в диапазоне [0, 1]. 

 

 

Рисунок 2.7 – Количество сосуществующих аттракторов (вверху) и 

энтропийный индекс бассейна (внизу) системы Чена в зависимости от значения 

коэффициента симметрии 𝑠 в диапазоне [0.769, 0.782]. 
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Фазовые портреты дискретной системы Чена, соответствующие различным 

типам сосуществующих аттракторов при различных значениях коэффициента 

симметрии 𝑠 представлены на рис. 2.8. Последующие бифуркации приводят к 

появлению двух, трех и более различных аттракторов, обозначенных на рисунке 2.8 

разными цветами. 

 

Рисунок 2.8 – Проекции фазового пространства системы Чена на плоскость x-z в 

зависимости от значения коэффициента симметрии 𝑠 

 

Таким образом, в разделе 2.1 показана возможность управления свойствами 

фазового пространства дискретных моделей непрерывных хаотических систем с 

помощью введенного в диссертационной работе понятия переменной симметрии 

композиционного полуявного численного метода КД. Продемонстрировано создание 

искусственной мультистабильности в дискретных моделях моностабильных систем 

через изменение коэффициента симметрии. В то же время, с точки зрения 

практических приложений теории хаоса, интерес также представляет модификация 

простейших хаотических осцилляторов – дискретных хаотических отображений. 

 

2.2. Синтез хаотических отображений с управляемой симметрией 

Возвратные хаотические отображения – класс дискретных осцилляторов с 

хаотическим поведением, широко используемый в приложениях 

детерминированного хаоса вследствие вычислительной простоты и способности 

таких осцилляторов порождать псевдослучайные последовательности. Классическим 

примером хаотического возвратного отображения является стандартное отображение 

(англ. Standard return map), впервые описанное Б.В. Чириковым как модель динамики 

плазмы в магнитной ловушке [165,166], которое также нашло применение во многих 
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других областях науки и техники. Так У. Тирнакли, Г. Руис и др. применяли его для 

исследования перехода от статистики Больцмана-Гиббса к статистике К. Цаллиса 

[167,168]. А. Круша и др. [169] построили статистическую модель случайно 

конкатенированных гамильтоновых отображений и проиллюстрировали свой подход 

на примере стандартного отображения. Э. Альтманн и Х. Канц [170] исследовали 

систему связанных стандартных отображений с целью проверки гипотезы об 

эргодичности и сильном перемешивании в хаотических системах высокого порядка. 

Новая техника визуализации фазового пространства, предложенная З. Левнаичем и 

И. Мезичем в [171], также была проверена авторами в первую очередь путем 

применения к стандартному отображению Чирикова. 

Последние достижения математической физики стимулировали появление и 

изучение множества других возвратных отображений. В частности, M.C. де Соуза и 

др. [172] моделировали частицу, взаимодействующую с электростатическими 

волнами под действием внешних магнитных полей, с помощью специально 

разработанного возвратного отображения. Ч. Лурье и соавторы [173] изучали 

частотные гребни Керра, используя уравнения на основе отображения Икеды. 

Визуализация удержания плазмы в ядерном реакторе типа «токамак» с помощью 

специализированного возвратного отображения была выполнена X. Трикошем [174]. 

Поскольку многие физические системы, моделируемые возвратными 

отображениями, обладают симплектическими свойствами и подвержены 

воздействию импульсных возмущений, численные методы, используемые для 

получения их возвратных отображений, как правило, также симплектичны. Наиболее 

распространенный подход основан на использовании рассмотренного в первой главе 

диссертации несимметричного метода Эйлера-Кромера, что не позволяет полностью 

передать симметричные свойства исходной физической системы в дискретном 

отображении. В частности, к известным недостаткам относится отсутствие 

зеркальной симметрии фазового пространства отображения относительно главных 

осей. Более того, отклики на гладкие возмущения также изучены слабо, что заметно 

контрастирует с хорошо проработанной реакцией на дельта-импульс. 
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Для преодоления указанных ограничений в диссертационном исследовании 

предлагается альтернативный подход к дискретизации простых гамильтоновых 

систем, основанный на применении симметричных полуявных методов численного 

интегрирования. В данном разделе диссертации рассматриваются симметричные 

модификации нескольких хаотических отображений и приводится доказательство 

того, что применение симметрии увеличивает их соответствие их непрерывным 

прототипам. Исследуются статистические свойства рассматриваемых симметричных 

и асимметричных отображений и демонстрируется существенная разница в их 

поведении, что дает возможность утверждать о создании нового типа дискретных 

хаотических отображений – симметричных возвратных отображений с управляемой 

(адаптивной) симметрией. 

Симметризация хаотических отображений 

Возвратное отображение Пуанкаре для непрерывной динамической системы – 

это последовательность точек, чьи орбиты пересекают трансверсальную плоскость в 

фазовом пространстве [175]. Правило получения следующей точки возвратного 

отображения из текущей не всегда может быть записано в явном виде. Когда это 

возможно, вместо непрерывного уравнения можно рассмотреть дискретное 

отображение меньшей размерности, что проще с точки зрения вычислительной 

сложности. 

Одним из способов получения возвратного отображения является численное 

интегрирование непрерывной системы уравнений вида  

 𝑥̇ = 𝑓(𝑡, 𝑥) (2.4) 

или 

 𝑥̈ = 𝑓(𝑡, 𝑥) (2.5) 

где шаг дискретизации равен периоду возврата решения. Обычным требованием, 

предъявляемым к методам интегрирования, используемым в подобных задачах, 

является сохранение геометрических свойств системы, например, ее 

симплектичности. Другим способом дискретизации уравнений (2.4) и (2.5) является 

использование аналитического решения в соответствующих дискретных точках. 

Рассмотрим оба этих варианта включая применение полуявных численных методов. 



161 

Рассмотрим гамильтонову систему следующего вида: 

 
𝑝̇ = −

𝜕𝐻

𝜕𝑞
(𝑝, 𝑞) 

𝑞̇ =
𝜕𝐻

𝜕𝑝
(𝑝, 𝑞) 

(2.6) 

Обычно уравнения типа (2.6) в отсутствие внешних возмущений имеют 

простые периодические решения. Добавление периодической возмущающей силы 

меняет их динамику на более сложную, добавляя, по сути, дополнительную 

размерность системе за счет входного сигнала. 

Если фазовое пространство изотропно, а возмущающая сила симметрична по 

времени, например, представляет собой дельта-импульс Дирака, то возвратные 

отображения должны быть симметричны во времени, а их фазовые портреты должны 

обладать некоторой визуальной симметрией относительно главных осей 𝑝 =  0 или 

𝑞 =  0. Продемонстрируем, что лишь некоторые из известных возвратных 

отображений, например, модификации отображения Заславского, демонстрируют 

фазовые портреты с подобной симметрией. 

Асимметрия фазового пространства может означать, что можно найти 

определенные начальные условия (𝑞0, 𝑝0), с которых начинается нехаотическая 

траектория, но, когда мы рассматриваем обратную во времени траекторию, 

начинающуюся с полученной при прямом решении точки (𝑞0, −𝑝0), она 

демонстрирует хаотическое поведение. Такое сложное нелинейное поведение обычно 

не унаследовано от непрерывного прототипа, и причину подобной необычной 

динамики следует искать выборе способа интегрирования. 

Рассмотрим простое тестовое уравнение с дельта-импульсом вида: 

 𝑞̇ = 𝛿(𝑡), 𝑞(−∞) = 𝑞−  (2.7) 

Обозначим 𝑞0  =  𝑞(0), 𝑞
+  =  𝑞(0 + 𝜀). Очевидный способ интегрирования 

уравнения (2.7) в окрестности нуля имеет вид: 

 

 𝑞0 = 𝑞− 

𝑞+  =  𝑞0  +  1. 
(2.8) 
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Можно заметить, что уравнение (2.8) несимметрично относительно шкалы 

времени. Действительно, если инвертировать расчет по формуле (2.8) во времени, 

получим: 

 𝑞0  =  𝑞
− + 1 

𝑞+  =  𝑞0  
(2.9) 

Это означает, что результаты, даваемые выражением (2.8), зависят от 

направления времени. Применим симметричный метод интегрирования к 

выражению (2.7): 

 𝑞0   =  𝑞
− + 0.5 

𝑞+  =  𝑞0  +  0.5 
(2.10) 

Если о системе больше ничего не известно, выбор между (2.8) и (2.10) 

неочевиден, однако для конкретной рассматриваемой физической системы часто 

предполагается, что функция возмущения симметрична по времени. Иногда ее 

рассматривают как предел некоторой конечной функции, например, 

распространенной практикой является использование следующего приближения: 

 
𝛿𝑎(𝑡) =

1

𝑎√𝜋
𝑒
−
𝑡2

𝑎2 (2.11) 

Очевидно, что пределом (2.11) является дельта-функция. 

Получим некоторые симметричные возвратные отображения, используя 

симметричные численные методы интегрирования. Обозначим произвольный метод 

интегрирования Фℎ как: 

𝑥𝑛+1 = 𝑥𝑛 + ℎФℎ(𝑡, 𝑥𝑛+1, 𝑥𝑛, … ), 

где ℎ – шаг интегрирования.  

Как уже говорилось в главе 1, метод Фℎ называется симметричным или 

обратимым по времени, если он допускает нахождение решения как в прямом, так и 

в обратном направлении времени [176]. Для гамильтоновой системы (2.6) 

несимметричный симплектический метод интегрирования Эйлера-Кромера 

записывается как 

 
𝑝𝑛+1 = 𝑝𝑛 − ℎ

𝜕𝐻

𝜕𝑞
(𝑝𝑛+1, 𝑞𝑛) (2.12) 
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𝑞𝑛+1 = 𝑞𝑛 + ℎ
𝜕𝐻

𝜕𝑞
(𝑝𝑛+1, 𝑞𝑛) 

Метод Эйлера-Кромера является простейшим методом интегрирования, 

сохраняющим симплектичность потока в дискретной модели. Так называемым 

сопряженным методом к (2.12) является метод вида: 

 
𝑞𝑛+1 = 𝑞𝑛 + ℎ

𝜕𝐻

𝜕𝑝
(𝑝𝑛, 𝑞𝑛) 

𝑝𝑛+1 = 𝑝𝑛 − ℎ
𝜕𝐻

𝜕𝑞
(𝑝𝑛, 𝑞𝑛+1) 

(2.13) 

Метод (2.13) может быть получен из (2.12) путем обращения времени решения. 

Таким образом, полуявный симметричный метод может быть получен композицией 

двух сопряженных методов Эйлера-Кромера [176] 

 Ф𝑠𝑦𝑚 = Фℎ/2°Фℎ/2
∗  (2.14) 

Для свойства симплектичности не имеет значения, какой метод, (2.12) или 

(2.13), применяется первым, поэтому существует две модификации композиционных 

методов, образованных парой сопряженных методов Эйлера-Кромера. Метод 

Стёрмера-Верле является еще одним известным симметричным методом [176]. 

Записанный в двушаговой форме для системы второго порядка (2.5), он имеет вид: 

 𝑞𝑛+1 = 2𝑞𝑛 − 𝑞𝑛−1 + ℎ
2𝑓(𝑞𝑛) 

𝑝𝑛 =
𝑞𝑛+1 − 𝑞𝑛−1

2ℎ
. 

(2.15) 

Еще один вариант алгоритма Стёрмера-Верле, известный как Velocity Verlet, 

можно записать как: 

 𝑎𝑛 = 𝑓(𝑡𝑛,𝑞𝑛) 

𝑞𝑛+1 = 𝑞𝑛 + ℎ𝑝𝑛 +
ℎ2

2
𝑎𝑛 

𝑎𝑛+1 = 𝑓(𝑡𝑛+1,𝑞𝑛+1) 

𝑝𝑛+1 = 𝑝𝑛 +
ℎ

2
(𝑎𝑛 + 𝑎𝑛+1) 

(2.16) 

В дальнейшем в диссертации проведено сравнение гладкой функции 

возмущения и различных подходов к дискретизации, наглядно демонстрирующее 
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актуальность симметричного подхода для симметричной гладкой дельта-импульс-

подобной функции. 

Симметричное отображение Чирикова 

Отображение Чирикова, или стандартное отображение – это возвратное 

отображение для системы, называемой возмущенным ротором. Задача возникла при 

решении проблемы устойчивости плазмы в термоядерном реакторе, которую изучал 

Б. В. Чириков. После заметного упрощения математической модели задача сводится 

к модели движения одиночной частицы в магнитной бутылке [165,166]. 

Рассмотрим динамику одиночной частицы при периодическом 

параметрическом возмущении с гамильтонианом вида: 

𝐻(𝑞, 𝑝) =
1

2
𝑝2 − 𝜔0

2 ∑ cos (𝑞 − 𝑛∆𝜔𝑡)

+∞

𝑛=−∞

 

Бесконечную последовательность равномерно распределенных косинусных 

функций можно заменить бесконечным набором дельта-импульсов [177]: 

 

𝐻 = 
1

2
𝑝2 −𝜔0

2𝑇0 cos 𝑞 ∑ 𝛿(𝑡 − 𝑛𝑇0)𝑑𝑡

+∞

𝑛=−∞

 (2.17) 

где 𝑇0  =  2𝜋/∆𝜔.  

Гамильтониан (2.17) описывает систему с динамикой 

 𝑞̇ = 𝑝 

𝑝̇ = −𝜔0
2𝑇0 sin 𝑥∑𝛿(𝑡 − 𝑛𝑇0)

+∞

−∞

 
(2.18) 

Переменные пространства состояний рассчитываются по модулю 2𝜋, что 

соответствует тороидальному фазовому пространству. Интегрирование выражения 

(2.18) симплектическим методом Эйлера-Кромера с шагом по времени 𝑇0 дает 

следующую дискретную систему: 

 𝑝𝑛+1 = 𝑝𝑛 − 𝑇0𝜔0
2 sin 𝑞𝑛 

𝑞𝑛+1 = 𝑞𝑛 − 𝑇0𝑝𝑛+1 
(2.19) 
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Поскольку интеграл дельта-импульса равен единице на любом конечном 

интервале времени, амплитуда смоделированного дельта-импульса равна 1/𝑇0, что 

обеспечивает равенство: 

 
∫ 𝛿(𝑡 − 𝑛𝑇0)𝑑𝑡 = ∫

1

𝑇0
𝑑𝑡 =  1

(𝑛+1)𝑇0

𝑛𝑇𝑜

 
(𝑛+1)𝑇0

𝑛𝑇𝑜

 (2.20) 

Обозначим 𝑇0𝜔0
2 = 𝐾 и отмасштабируем переменные в уравнении (2.19), чтобы 

привести отображение к стандартному виду: 

 𝑝𝑛+1 = 𝑝𝑛 − 𝐾 sin 𝑞𝑛 

𝑞𝑛+1 = 𝑞𝑛+𝑝𝑛+1 
(2.21) 

Фазовые портреты стандартного отображения Чирикова показаны на рис. 2.9 

(a) при значении параметра 𝐾 =  1.5.  

 

Рисунок 2.9 – Фазовые портреты (a) стандартного отображения Чирикова (2.21), (b) 

сопряженного ему отображения Чирикова (2.23), (c) симметричного отображения 

Чирикова (2.22), полученного композицией отображений (2.21) и (2.23), (d) 

сопряженного симметричного отображения Чирикова (2.24).  



166 

Динамика частицы, описываемая этим отображением, демонстрирует в 

основном периодические движения при малых 𝐾, а при больших 𝐾 – в основном, 

хаотическую динамику [177]. Разные цвета на диаграмме (2.9) соответствуют разным 

наборам начальных условий. Фоновый фиолетовый цвет соответствует т.н. 

«хаотическому морю» – области фазового пространства, в которой все начинающиеся 

из нее траектории являются хаотическим. 

Предполагая, что дельта-функция является четной, проинтегрируем уравнения 

движения частицы симметричным полуявным методом. Применяя композиционный 

полуявный метод КД, эквивалентный для выражения (2.18) методу Верле, получим 

симметричное отображение Чирикова: 

 
𝑝
𝑛+
1
2
= 𝑝𝑛 +

1

2
𝐾 sin 𝑞𝑛

𝑞𝑛+1 = 𝑞𝑛 + 𝑝𝑛+1
2

𝑝𝑛+1 = 𝑝𝑛+1
2
−
1

2
𝐾 sin 𝑞𝑛+1

 (2.22) 

Несимметричное отображение Чирикова, полученное сопряженным методом 

Эйлера-Кромера, может быть записано как: 

 𝑞𝑛+1 = 𝑞𝑛 + 𝑝𝑛 

𝑝𝑛+1 = 𝑝𝑛 − 𝐾 sin 𝑞𝑛+1 
(2.23) 

Симметричное отображение Чирикова, полученное композицией сопряженных 

полуявных методов, имеет вид: 

 
𝑞
𝑛+
1
2
= 𝑞𝑛 +

1

2
𝑝𝑛

𝑝𝑛+1 = 𝑝𝑛 − 𝐾 sin 𝑞𝑛+1
2

𝑞𝑛+1 = 𝑞𝑛+1
2
+
1

2
𝑝𝑛+1

 (2.24) 

Фазовые портреты всех четырех исследуемых отображений при значении 

параметра 𝐾 =  1.5 приведены на рис. 2.9. Видно, что два последних отображения 

имеют визуально симметричные фазовые пространства относительно осей 𝑞 =  0 и 

𝑝 =  0. Докажем возможность синтеза симметричных отображений для четной 

дельта-функции аналитически. 
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Теорема 1. Рассмотрим гладкую функцию возмущения 𝛿𝑎(𝑡) на возвратном 

интервале 𝑇0 со следующими свойствами: 

 

max
𝑡
𝛿𝑎(𝑡) = 𝑀,∫ 𝛿𝑎 → 1, 𝛿𝑎 (−

𝑇0
2
) =

𝑇0
2

−
𝑇0
2

𝛿𝑎 (
𝑇0
2
) → 0, 𝛿𝑎(𝑡) = 𝛿𝑎(−𝑡) (2.25) 

Применительно к гамильтоновой системе эта функция обеспечивает 

геометрическую симметрию фазового пространства возвратного отображения 

относительно осей 𝑝 =  0 и 𝑞 =  0. Пусть q(t) = ε → 0. Из уравнений движения (2.18) 

и условий (2.25) получаем 𝑡 → 𝑡∗. 

𝑑𝑝

𝑑𝑞
=
𝑘𝛿𝑎(𝑡)sin 𝑞(𝑡)

𝑝(𝑡)
 
𝑡→𝑡∗
→  0; 

Пусть 𝑝(𝑡) = 𝜀
𝑡→𝑡∗∗
→   0, тогда получим, что: 

𝑑𝑝

𝑑𝑞
=

𝑝(𝑡)

𝑘𝛿𝑎(𝑡)𝑠𝑖𝑛 𝑞(𝑡)
 
𝑡→𝑡∗∗
→   0. 

Это означает, что касательная к любой проекции плотной дифференцируемой 

орбиты на фазовую плоскость горизонтальна при 𝑞 ⟶ 0 и вертикальна при 𝑝 ⟶ 0. 

Это приводит к желаемой симметрии фазового пространства относительно осей 𝑝 =

 0 и 𝑞 =  0.  

Симметричное интегрирование позволяет получить отображения с осевой 

симметрией, подобной той, которой обладают физические системы при плавном 

возмущении. Проиллюстрируем это на следующем примере.  

Возьмем гладкую функцию (2.11) вместо дельта-импульса в уравнении (2.18) и 

проинтегрируем ее с шагом ℎ =  1/200. Полученный фазовый портрет и график 

гладкой функции возмущения изображены на рис. 2.10. Параметр функции (2.11) 

равен 𝑎 =  10−2. 
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а) b) 

  

Рисунок 2.10 – Фазовое пространство отображения гладкого возмущенного ротора 

(a) и график гладкой функции возмущения (b) 

 

Хотя интегрирование проводилось несимметричным методом Эйлера-Кромера, 

фазовый портрет имеет предсказанную отражательную симметрию относительно 

главных осей, что полностью подтверждает выдвинутую гипотезу. 

Стандартное отображение Чирикова (2.21) является хорошо изученной базовой 

моделью, которая повсеместно используется в моделировании сложных систем и 

ансамблей связанных осцилляторов [165,166,178,179]. Создание симметричной 

версии такого отображения является важным шагом в развитии моделирующих 

систем, основанных на структурах связанных дискретных отображений. Тем не 

менее, известны многие другие дискретные хаотические отображения, используемые 

в практических приложениях. Рассмотрим возможность получения других 

симметричных отображений предложенным в диссертационном исследовании 

способом. 

Симметричное отображение Эно 

В отличие от стандартного отображения Чирикова, отображение Эно 

изначально было введено как математическая модель без явного физического 

прототипа. Целью М. Эно было найти простейшее отображение, демонстрирующее 

тот же тип хаотической динамики, что и система Лоренца [180]. Физическая 

интерпретация отображения Эно была предложена позднее в работе [181]. В 

настоящем разделе рассматривается только вариант отображения с сохранением 
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площади, представляющий собой возвратное отображение автономной системы 

следующего вида: 

 𝑞̇ = 𝑝 

𝑝̇ = −𝑞 − (𝑞2 − 𝐾)∑𝛿(𝑡 − 𝑛𝑇𝑛)

+∞

−∞

 
(2.26) 

где 𝐾 – параметр системы. Дискретное преобразование выражения (2.26) и 

добавление в правую часть возмущения позволяет получить отображение вида: 

 
(
𝑞𝑛+1
𝑝𝑛+1

) = (
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

) (
𝑞𝑛

𝑝𝑛 − 𝑞𝑛
2 + 𝐾

) (2.27) 

где 𝛼 – параметр возмущения, связанный с его частотой.  

Частный случай при 𝛼 =  𝜋/2 приводит к простой модели дискретного отображения 

с сохранением площади: 

 𝑞𝑛+1 = 𝑝𝑛 − 𝑞𝑛
2 + 𝐾 

𝑝𝑛+1 = −𝑞𝑛 
(2.28) 

Сечение Пуанкаре для отображения (2.28) приведено на рис. 2.11 (а) для случая 

K = 0. Обе переменные состояния взяты по модулю 2. 

a) б) 

  

Рисунок 2.11 – Сечение Пуанкаре для различных отображений Эно: 

(a) несимметричного отображения, (б) предлагаемого симметричного отображения 

 

Вариант отображения Эно (2.28) не может демонстрировать все типы 

хаотического поведения, которые могут быть наблюдаться в отображении с 

затуханием, но его свойства, тем не менее, представляют определенный 
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теоретический и практический интерес, например, в контексте задач построения 

генераторов псевдослучайных чисел. 

Симметричный вариант отображения Эно можно получить, разделив действие 

возмущения на две половины с периодом до свободного поворота и после: 

 𝑞𝑛+1 = 𝑝𝑛 − 0.5(𝑞𝑛
2 + 𝐾) 

𝑝𝑛+1 = −𝑞𝑛 − 0.5(𝑞𝑛+1
2 − 𝐾) 

(2.29) 

Фазовый портрет симметричного отображения Эно приведен на рис. 2.11 (б). 

Полученное симметричное отображение Эно (2.29) обладает геометрической 

симметрией фазового пространства относительно оси 𝑝 =  1, поскольку дельта-

функция влияет на импульс системы. Поскольку член 𝑞2 дельта-функции является 

четной функцией 𝑞, зеркальная симметрия фазового пространства относительно 

вертикальной оси, как и следовало ожидать, отсутствует. Исследуем влияние 

симметрии фазового пространства дискретных возвратных отображений на их 

статистические характеристики, важные с точки зрения таких приложений, как 

криптографические алгоритмы, системы связи и др. 

 

2.3. Статистические свойства симметричных и несимметричных хаотических 

отображений 

 

Данный раздел диссертации посвящен исследованию некоторых 

статистических и фазовых свойств дискретных хаотических отображений, таких как 

площадь и структура хаотических морей и островов устойчивости. Область 

хаотического моря соответствует множеству начальных условий, приводящих к 

хаотическому поведению. Выдвигаемая гипотеза гласит, что симметричные и 

несимметричные отображения характеризуются фазовыми пространствами с 

сопоставимой площадью хаотических морей и островов устойчивости. 

Предполагается, что расположение и конфигурация островов устойчивости 

сохраняется благодаря симплектичности, т.е. при изменении симметрии фазовое 

пространство претерпевает только аффинные преобразования. 
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Вышеуказанные предположения исследовались в ходе нескольких 

вычислительных экспериментов. В первой серии экспериментов рассматривались 

несимметричные и симметричные стандартные отображения. Для вычисления 

площади хаотического моря оба отображения рассчитывались из набора начальных 

точек, распределенных в виде равномерной сетки, покрывающей все пространство 

состояний, с последующим вычислением наибольшего показателя Ляпунова (англ. 

Largest Lyapunov Exponent, LLE). Положительные значения LLE соответствуют 

хаотическому морю, а нулевые – острову устойчивости. Два размера шага сетки 𝐻 и 

𝐻/2 были использованы для того, чтобы оценить ошибку оценки площади, которую 

могут вносить дискретные погрешности округления. 

Погрешности для большего и меньшего размеров шага 𝑒1 и 𝑒2, соответственно, 

в первом приближении могут быть выражены как: 

 𝑒1 ≈ 𝐶𝐻
2 

𝑒2 ≈ 𝐶
𝐻2

4
, 

(2.30) 

где 𝐶 – константа. Для оценки 𝑒2  используется разница между площадью 𝑆1, 

полученной при большем размере шага, и 𝑆2, полученной при меньшем размере шага. 

 
𝑒̅2 =

1

3
(𝑆1 − 𝑆2) ≈ 𝑒2  (2.31) 

Результаты экспериментов подтверждают, что разница в площади хаотических 

морей в симметричных и асимметричных стандартных отображениях для выбранного 

значения параметра ниже оценочной ошибки, и поэтому ею можно пренебречь. 

Результаты были получены с использованием 175561 начальных условий для шага 

𝐻/2 после 105 итераций для каждого расчета LLE. Экспериментальные области для 

некоторых начальных условий с положительной LLE, выбранных из общего числа 

начальных условий приведены в таблице 2.1. 

Для вычисления старшего показателя Ляпунова LLE применяется следующая 

процедура.  

Пусть отображение записано в векторной форме 𝑥𝑖+1  =  𝐹(𝑥𝑖), а общее число 

итераций равно 𝑁. Затем начиная с 𝒙0 и определятся вектор единичной погрешности 
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𝒆0 (с произвольным начальным направлением). Также должен быть зарезервирован 

буфер 𝐿𝑠𝑢𝑚 для вычисления LLE. На каждом 𝑖-м шаге вычисляется матрица Якобиана 

исследуемого отображения 𝐽(𝒙𝑖), далее находится: 

𝑥𝑖+1 = 𝐹(𝑥𝑖) 

𝑒𝑖+1 = 𝐽(𝑥𝑖)𝑒𝑖 

𝐿𝑠𝑢𝑚 = 𝐿𝑠𝑢𝑚 + ln‖𝑒𝑖+1‖ 

𝑒𝑖+1 =
𝑒𝑖+1
‖𝑒𝑖+1‖

 

Когда все итерации выполнены, LLE оценивается как 

 
LLE =

𝐿𝑠𝑢𝑚
𝑁

 (2.32) 

Алгоритм, использующий формулы (2.31) и (2.32), является более надежным и 

точным, чем алгоритм, основанный на прямом сравнении двух отображений, 

полученных с использованием начальных условий, различающихся на малую 

величину.  

Таблица 2.1 – Экспериментальная оценка площади хаотического  

моря для отображений Чирикова, K = 2 

Пространственное 

разрешение 

Площадь хаотического моря 

для несимметричного 

отображения 

Площадь хаотического 

моря для симметричного 

отображения 

𝐻 = 0.03 0.758662132 0.758208617 

𝐻 = 0.015 0.758437238 0.758368886 

Оценка ошибки 𝑒̅2 7.49 × 10−5 −5.34 × 10−5 

 

Значения наибольшего показателя Ляпунова (LLE) для несимметричных и 

симметричных отображений Чирикова визуализированы на рис. 2.12. Темный цвет 

использовался для островов устойчивости, а светлый – для хаотических морей. 

Полученный рисунок хорошо коррелирует с фазовыми портретами отображений 

Чирикова, показанных на рис. 2.9. 
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Рисунок 2.12 – Фазовое пространство с нанесенными значениями LLE (a) 

стандартного отображения Чирикова и (b) симметричного стандартного 

отображения, 𝐾 = 2. Темный (синий) цвет соответствует нулевым значениям LLE, а 

светлый (желтый) цвет соответствует положительным значениям LLE. 

 

Функции плотности вероятности (англ. Probability Density Function, PDF), 

рассчитанные для значений LLE несимметричного и симметричного отображений 

Чирикова показаны на рис. 2.13. Они схожи, что означает, что симплектический и 

симметричный операторы сжимают и растягивают фазовое пространство, сохраняя 

его общую структуру и динамику исходного отображения. Тем самым, гипотеза об 

аффинности преобразования при изменении симметрии отображения подтверждена 

экспериментально.  

 

Рисунок 2.13 – Функции плотности вероятности наибольших экспонент Ляпунова 

симметричного и несимметричного вариантов отображения Чирикова с 𝐾 =  2 
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Аналогичные эксперименты с симметричными и несимметричными 

отображениями Эно показывают, что они демонстрируют схожую динамику и 

структуры фазового пространства. Области хаотических морей и островов 

устойчивости находятся в пределах расчетной численной ошибки (см. рис. 2.14 и 

табл. 2.2). Всего было использовано 444889 начальных условий с вычислением 104 

итераций для каждого начального условия при расчете LLE. Площади хаотических 

морей обоих версий отображения Эно равны в пределах численной погрешности из-

за конечного пространственного разрешения получаемой картины. 

Функции плотности вероятности LLE для несимметричных и симметричных 

отображений Эно показаны на рис. 2.15. Как и в случае стандартного отображения 

распределения LLE для несимметричных и симметричных отображений Эно похожи. 

 

Рисунок 2.14 – Пространство показателей Ляпунова (LLE) отображения Эно (a) и 

симметричного отображения Эно (b). Темный цвет соответствует нулевым 

показателям Ляпунова, светлый цвет соответствует положительным LLE. 

 

Рисунок 2.15 – Функции плотности вероятности наибольших показателей Ляпунова 

для симметричных и несимметричных отображений Эно 
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Таблица 2.2 – Оценка площади хаотических морей для отображений Эно 

Пространственное 

разрешение 

Площадь хаотического 

моря несимметричного 

отображения Эно 

Площадь хаотического моря 

симметричного отображения 

Эно 

H = 0.01 0.868641865300364 0.869013143239029 

H = 0.005 0.868296838950007 0.868433654019565 

Оценка ошибки  0.0001150 0.0001932 

 

Второе статистическое свойство отображений, которое было изучено в ходе 

диссертационного исследования, это функция плотности вероятности специальной 

переменной 𝑦, введенной в работе [167] в контексте обобщения центральной 

предельной теоремы и позже развитое в исследовании [168] для случая дискретных 

отображений в следующем виде: 

 

𝑦 =∑(𝑞𝑖 − 〈𝑞〉)

𝑁

𝑖=1

 (2.33) 

где 

 

〈𝑞〉 =
1

𝑀

1

𝑁
 ∑(∑𝑢𝑖,𝑗

𝑁

𝑖=1

)

𝑀

𝑗=1

 (2.34) 

усредняется по большому числу итераций 𝑁 из 𝑀 случайных начальных условий. В 

случае стандартного отображения Чирикова эта величина распределена нормально 

для всех начальных условий в хаотическом море и 𝑞-нормально для начальных 

условий на островах устойчивости [167]. Функции плотности вероятности 

переменной y во всем фазовом пространстве для отображений Чирикова получены 

суперпозицией гауссовой и q-гауссовой функций распределения, как показано на рис. 

2.16(а). Всего было использовано 𝑁 =  2 ∙ 105 итераций из 𝑀 =  106 начальных 

условий. Можно заметить определенные различия между функцией плотности 

вероятности (2.33) для симметричных и для асимметричных отображений. Хотя 

природа этих различий в настоящее время остается неясной, можно предположить, 
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что они могут быть вызваны либо численной ошибкой, либо общим свойством 

полуявного оператора, а также их комбинацией. 

Функции плотности вероятности величины 

 

𝑦 =∑(𝑝𝑖 − 〈𝑝〉)

𝑁

𝑖=1

 (2.35) 

для асимметричного и симметричного отображений Эно приведены на рис. 2.16 (б). 

В отличие от предыдущих экспериментов, можно заметить явное различие. Функция 

плотности вероятности (2.35) в симметричном отображении Эно представляет собой 

суперпозицию гауссовой и 𝑞-гауссовой функций, как и для стандартного 

отображения. Для асимметричного отображения распределение является 

несимметричным, см. рис. 2.16 (б). Для симметричного отображения Эно фазовое 

пространство обладает зеркальной симметрией относительно горизонтальной оси. 

Фазовое пространство несимметричного отображения Эно обладает зеркальной 

симметрией относительно оси 𝑝 =  2 −  𝑞. Распределение величины 𝑝 +  𝑞 для 

несимметричного отображения Эно также проявляет симметричные свойства, но все 

же отличается от симметричного отображения Эно и стандартного отображения. 

Примечательно, что симметричное и несимметричное отображения Эно описываются 

разными статистическими законами, поскольку это ясно показывает, что 

статистические свойства дискретных хаотических отображений существенно 

разнятся при том, что несимметричное отображение не имеет отражательной 

симметрии относительно главных декартовых осей, а симметричное ее имеет 

относительно одной или двух осей. Это дает основание утверждать, что 

симметричные версии хаотических отображений являются новыми математическими 

моделями с иным набором статистических характеристик. 
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     а)                  б) 

 

Рисунок 2.16 – Функции плотности вероятности для переменной y для (a) 

симметричного и несимметричного отображений Чирикова с 𝐾 =  2, (b) 

симметричного и несимметричного отображений Эно 

 

Резюмируя данный раздел диссертации, можно сделать вывод что 

композиционные полуявные дискретные операторы с управляемой симметрией 

представляют интерес с точки зрения синтеза новых математических моделей в 

форме дискретных хаотических отображений. благодаря своей способности 

сохранять некоторые геометрические свойства непрерывных потоков, что приводит 

к лучшему соответствию между дискретными системами и их непрерывными 

прототипами (см., например, работу [182]). Совсем недавно было обнаружено их 

превосходство в случае моделирования непрерывных хаотических систем с точки 

зрения вычислительной производительности [183,184]. Применение симметричного 

оператора интегрирования к дискретным отображениям может порождать 

геометрическую симметрию их фазового пространства относительно главных 

координатных осей, что часто является свойством различных природных систем в 

случае, когда импульсная функция симметрична [179]. В более общем подходе 

управляемая симметрия фазового пространстве может также обеспечить некоторые 

дополнительные свойства дискретным моделям непрерывных систем, например, 

искусственную мультистабильность, как было показано в предыдущем разделе 

диссертации, и независимое управление амплитудой различных траекторий [185]. 

Данные свойства могут быть полезны в контексте технических приложений систем с 
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динамическим хаосом, среди которых хаотическая криптография, защищенные 

системы связи [382] и генераторы хэш-функций. 

 

2.4. Создание хэш-функций с увеличенным диапазоном ключей на основе 

адаптивных отображений 

 

Хэш-функции широко используются для поиска дубликатов в наборах данных, 

для вычисления контрольной суммы, безопасного хранения паролей, реализации 

электронной цифровой подписи и т.д. Они предназначены для преобразования 

входных данных произвольной длины в выходную битовую строку фиксированной 

длины. Безопасность некоторых известных хэш-функций, включая алгоритм 

Whirlpool [186], сильно зависит от базовых блочных шифраторов [187].  

Другие традиционные алгоритмы хэширования, такие как MD5 и SHA-1, 

состоят из нескольких этапов с большим количеством сложных битовых операций. 

Более двух десятилетий назад было показано, что при короткой длине блока 

сообщения алгоритм MD5 подвержен коллизиям [188]. В 2017 году небезопасность 

алгоритма SHA-1 также была прямо доказана экспертами Google [189]. Они 

представили два разных PDF-файла с одинаковыми хэшами, полученными с 

помощью SHA-1. Это подтвердило уязвимость SHA-1 к атаке по типу “день 

рождения”. Поэтому в последних программных и аппаратных решениях SHA-1 был 

заменен на SHA-2 и алгоритмы Keccak. В 2015 году хэш-функция Keccak была 

утверждена в качестве криптографического стандарта SHA-3 [190]. Однако из-за 

большого количества внутренних битовых операций программные реализации хэш-

функции Keccak требуют больших вычислительных затрат [191]. Таким образом, 

разработка быстрых алгоритмов генерации хэшей представляет большой 

практический интерес. 

Одним из перспективных подходов к преодолению вышеупомянутых проблем 

являются криптографические алгоритмы на основе дискретных хаотических 

отображений. Анализ возможности применения динамического хаоса для решения 

задач информационной безопасности показывает, что хаотические криптосистемы 
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обладают высокой производительностью и устойчивостью к различным типам атак 

[157,192-195]. За последнее десятилетие было предложено несколько быстрых хэш-

функций на основе хаоса [187,196-217]. Один из первых алгоритмов был описан 

Вонгом в работе [218]. Автор рассмотрел логистическое отображение с динамически 

обновляемой таблицей поиска. Вонг наглядно показал, что хэш-функция на основе 

хаотической системы демонстрирует высокую производительность при обработке 

аудио-, видео- и текстовых данных. Односторонняя хэш-функция на основе кусочно-

линейного хаотического отображения была предложена Сяо и др. в работе [204]. 

Основным преимуществом их подхода является гибкая длина блоков сообщений, 

используемых в процессе генерации. В работах [198,199,219] были рассмотрены 

аналогичные схемы генерации хэшей на основе дискретного хаотического 

отображения по типу «tent map». Все упомянутые выше хэш-функции 

демонстрируют хорошую производительность, но обладают относительно 

небольшим пространством ключей [197]. Для решения этой проблемы Ахаван и др. 

предложили использовать двумерные кусочно-нелинейные хаотические 

отображения с большим количеством управляемых параметров и начальных условий 

[196,220]. Аналогичные хэш-функции с изменяющимся во времени возмущением 

параметров рассматривались в работах [205-207] с целью избежать циклов, 

наблюдаемых при моделировании хаотических отображений на ЭВМ с конечным 

представлением данных. Несмотря на высокую сложность полученной схемы 

генерации, такая хэш-функция предполагает параллельное выполнение операций, в 

отличие от других рассмотренных алгоритмов. В статьях [208] и [209] 

рассматривались высокопроизводительные хэш-функции, реализованные на типе 

данных с фиксированной точкой и основанные на хаотических отображениях малой 

размерности. 

Таким образом, можно заключить, что большинство представленных в 

литературе хэш-генераторов на основе динамического хаоса используют 

отображения с нелинейными кусочными функциями. Такие отображения являются 

одной из лучших основ для построения односторонних функций, поскольку они 

включают необратимые арифметические операции [221]. Более того, до сих пор не 
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существует эффективного способа фазовой реконструкции уравнений хаотической 

системы с кусочными функциями [222-225]. Таким образом, данный тип хаотических 

отображений перспективен для использования в криптографических приложениях.  

В настоящем разделе диссертации предлагается использовать описанные в 

предыдущем разделе симметричные хаотические отображения вместо отображения 

на основе кусочных функций для реализации алгоритма генерации хэшей. 

Предполагается разработать хаотические функции, которые определяются набором 

подфункций с различными адаптивными коэффициентами симметрии, 

применяемыми к определенным поддоменам фазового пространства [367]. Таким 

образом, возможно комбинировать два или более хаотических отображений с 

похожими бифуркационными свойствами, но разным поведением во временной 

области. Такие отображения перспективны для реализации безопасных хэш-функций, 

поскольку они устойчивы к атакам на основе реконструкции фазового пространства. 

Более того, в адаптивных отображениях с управляемой симметрией присутствует 

возможность гибкого изменения ключевого пространства, путем добавления или 

удаления некоторого количества функциональных поддоменов с различными 

значениями адаптивного коэффициента симметрии. Гипотеза исследования, 

описанная в настоящем разделе, заключается в том, что хэш-функции, основанные на 

предложенных в диссертации дискретных отображениях с управляемой симметрией, 

способны обладать большим пространством ключей, чем их стандартные версии. 

 

Возвратное отображение Богданова и его адаптивная версия 

Отображение Богданова – это двумерное плоское квадратичное отображение, 

демонстрирующее бифуркацию по типу Богданова-Такенса [226]. Его динамика 

описывается следующими уравнениями: 

 𝑦𝑛+1 = 𝑦𝑛 + 𝜖𝑦𝑛 + ℎ𝑥𝑛(𝑥𝑛 − 1) + 𝑚𝑥𝑛𝑦𝑛 

𝑥𝑛+1 = 𝑥𝑛 + 𝑦𝑛+1 
(2.36) 

где 𝜖, ℎ и 𝑚 – свободные параметры. Для всех отображений, рассматриваемых в 

данном разделе диссертации, на каждой итерации применяется операция 𝑟𝑒𝑚(𝑥, 𝑏), 

где 𝑥 – переменная состояния, а 𝑏 =  1. Эта функция возвращает остаток после 
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деления 𝑥 на 𝑏. Для 𝑥 меньше нуля 𝑟𝑒𝑚 возвращает отрицательное значение, 

например, 𝑟𝑒𝑚(−1.4, 1)  =  −0.4. Таким образом, отображение (2.36) можно 

переписать следующим образом 

 𝑦𝑛+1 = 𝑟𝑒𝑚(𝑦𝑛 + 𝜖𝑦𝑛 + ℎ𝑥𝑛(𝑥𝑛 − 1) +𝑚𝑥𝑛𝑦𝑛 , 1)

𝑥𝑛+1 = 𝑟𝑒𝑚(𝑥𝑛 + 𝑦𝑛+1, 1)
 (2.37) 

На рис. 2.17 (а) представлено сечение Пуанкаре для отображения (2.36) при 

𝜖 =   0.0025, ℎ =  1.44,𝑚 =  −0.1. Применив технику полуявного интегрирования, 

предложенную в предыдущих разделах диссертации, а также в работах автора [157] 

и [227], можно получить адаптивное симметричное отображение Богданова [388]: 

 𝑥𝑛+𝑠 = 𝑥𝑛 + 𝑠𝑦𝑛
𝑦𝑛+1 = 𝑟𝑒𝑚(𝑦𝑛 + 𝜖𝑦𝑛 + ℎ𝑥𝑛+𝑠(𝑥𝑛+𝑠 − 1) +𝑚𝑥𝑛+𝑠𝑦𝑛, 1)

𝑥𝑛+1 = 𝑟𝑒𝑚(𝑥𝑛+𝑠 − (1 − 𝑠)𝑦𝑛+1𝑥𝑛+𝑠, 1)
 (2.38) 

где 𝑠 – адаптивный коэффициент симметрии. Стоит напомнить, что изменение 

симметрии симметричного дискретного отображения является аффинным 

преобразованием, как было доказано в предыдущем разделе диссертации, поэтому 

изменение симметрии практически не виляет на хаотические свойства отображения, 

но увеличивает доступное пространство ключей [388].  

Сечения Пуанкаре для адаптивных отображений Богданова с коэффициентами 

симметрии 𝑠 =  0.5 и 𝑠 =  1.25 показаны на рис. 2.17 (случаи b и c, соответственно). 

При 𝑠 =  0.5 наблюдается зеркальная симметрия фазового пространства 

относительно оси 𝑥 =  0, что подтверждает теоретические предположения, 

сделанные в разделе 2.2 диссертации. 
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(a) s = 0 (стандартное отображение 

Богданова) 

(b) s = 0.5 (симметричное отображение Богданова) 

 

(c) отображение Богданова с s = 1.25 (d) переключение между s1 = 1.25 и s2 = 0.5 

Рисунок 2.17 – Сечения Пуанкаре для отображений Богданова с управляемой 

симметрией и различными коэффициентами симметрии, включая адаптивный 

случай (d), когда коэффициент симметрии переключается в зависимости от 

количества итераций отображения 

В разделах 2.2 и 2.3 диссертации было показано, что управляемый 

коэффициент симметрии 𝑠 не оказывает существенного влияния на хаотические 

свойства исходной системы. Используем различные значения адаптивного 

коэффициента для управления различными подобластями фазового пространства 

хаотического отображения. 

Пусть 𝑠1 и 𝑠2 –два значения коэффициента адаптивной симметрии 
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отображения. Тогда значение s для каждой итерации выбирается как: 

𝑠 = {
𝑠1, 𝑥 < 𝑡
𝑠2, 𝑥 ≥ 𝑡

 

где 𝑡 – пороговое значение, которое может соответствовать любой величине, 

принимаемой переменной 𝑥. Сечение Пуанкаре адаптивного отображения Богданова 

(2.38) при 𝑡 =  −0.5, реализующего предложенный способ переключения между 

𝑠1  =  1.25 и 𝑠2  =  0.5, представлено на рис. 2.17 (d). 

Докажем, что изменение коэффициента симметрии незначительно влияет на 

бифуркационные свойства системы, построив их бифуркационные диаграммы по 

переменной 𝑥. На рис. 2.18 приведена бифуркационная диаграмма обычного 

отображения Богданова (2.37) построенная относительно параметра ℎ. Значения 

прочих параметров были выбраны как 𝜖 =  0.0025,𝑚 =  −0.1,  начальные условия 

были заданы равными 𝑥0   =  −0.1, 𝑦0  =  −0.1. Соответствующий график 

наибольшего показателя Ляпунова (LLE) отображения Богданова показан на 

рис. 2.19. Из графика LLE видно, что система демонстрирует постоянное хаотическое 

поведение при отрицательных значениях ℎ и положительных значениях ℎ > 3, с 

небольшими периодическими окнами. Наличие окон периодического поведения 

является нежелательным свойством отображения с точки зрения криптостойкости 

алгоритма генерации хэш-функций, поскольку попадание траектории в 

нехаотический режим будет означать потерю псевдослучайных свойств 

генерируемой последовательностью хэширования [390]. 

 

Рисунок 2.18 – Бифуркационная диаграмма отображения Богданова (2.37) 

относительно параметра ℎ, с 𝜖 =  0.0025,𝑚 =  −0.1 
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Рисунок 2.19 – График наибольшего показателя Ляпунова LLE для системы (2.37) в 

зависимости от параметра ℎ при 𝜖 = 0.0025,𝑚 =  −0.1 

 

Построим такие же графики для симметричного отображения Богданова (2.38) 

с управляемым коэффициентом симметрии. Бифуркационная диаграмма при 

значении коэффициента симметрии 𝑠 =  0.5 (фазовое пространство с осевой 

симметрией) показана на рис. 2.20. Зависимость наибольшего показателя Ляпунова 

LLE от параметра ℎ при зафиксированных значениях параметров 𝜖 =  0.0025,𝑚 =

 −0.1, 𝑥0 = −0.1, 𝑦0 = −0.1 приведена на рис. 2.21. Видно, что симметричное 

отображение (2.38) демонстрирует динамику весьма схожую со стандартным 

отображением Богданова. 

 

Рисунок 2.20 – Бифуркационная диаграмма симметричного отображения Богданова 

(2.38) относительно параметра ℎ, при 𝜖 = 0.0025,𝑚 = −0.1, 𝑥0 = −0.1, 𝑦0 =

−0.1, 𝑠 = 0.5 
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Рисунок 2.21 – Зависимость наибольшего показателя Ляпунова для системы (2.38) 

от параметра ℎ, при 𝜖 = 0.0025,𝑚 = −0.1, 𝑥0 = −0.1, 𝑦0 = −0.1, 𝑠 = 0.5 

 

На рисунке 2.22 представлены наложенные друг на друга бифуркационные 

диаграммы для отображения (2.38) при различных значениях коэффициента 

симметрии 𝑠. Как видно, бифуркационные свойства симметричного отображения в 

рассматриваемых случаях при разных значениях параметров весьма схожи. 

Независимо от значений адаптивного коэффициента симметрии, отображения 

демонстрируют сходные режимы колебаний, такие как хаотические и периодические 

участки, мультипериодическая динамика и т.д. 

 

Рисунок 2.22 – Бифуркационные диаграммы симметричного отображения 

Богданова (2.38) с различным значением коэффициента симметрии s построенные 

относительно параметра ℎ при 𝜖 = 0.0025,𝑚 = −0.1, 𝑥0 = −0.1, 𝑦0 = −0.1  



186 

 

Для более детальной оценки пространства параметров исследуемых 

дискретных отображений построим двумерную LLE-диаграмму симметричного 

отображения Богданова в зависимости от параметров ℎ и 𝑠 при прочих значениях 

параметров 𝜖 = 0.0025,𝑚 = −0.1, 𝑥0 = −0.1, 𝑦0 = −0.1 (рис. 2.23). Видно, что для 

большинства значений 𝑠 из интервалов [−1;  0] и [3;  4] хаотическое поведение 

сохраняется по сравнению со стандартным несимметричным отображением 

Богданова. Это позволяет использовать различные значения коэффициента 

симметрии для построения кусочно-хаотических функций. Таким образом, 

экспериментально подтверждено, что для создания алгоритма генерации хэшей 

можно использовать адаптивное симметричное отображение Богданова с 

произвольным значением 𝑠, 𝜖 = 0.0025,𝑚 = −0.1, избегая интервала ℎ ∈ [0; 3]. 

 

Рисунок 2.23 – Двумерная диаграмма наибольших показателей Ляпунова (LLE) для 

адаптивного симметричного отображения Богданова. Отрицательные значения LLE 

соответствуют черному цвету, положительные значения LLE отмечены белым 

цветом 

 

В качестве примера применения дискретных адаптивных отображений 

рассмотрим новый алгоритм генерации хэшей на основе симметричных возвратных 

хаотических отображений. 
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2.5. Хэш-функция на основе генератора хаотических колебаний 

 

Общая схема разработанной в рамках диссертационного исследования 

хаотической хэш-функции показана на рис. 2.24. Предлагаемая функция основана на 

схеме Меркла-Дамгарда [228] с применением возвратного хаотического отображения 

с управляемой симметрией в качестве функции сжатия 𝐹. В данном разделе 

диссертации в качестве примера используется адаптивная модификация отображения 

Богданова, но для этой цели также подходит любое симметричное хаотическое 

отображение с управляемой симметрией из введенных ранее в диссертации или 

известных из литературы [79, 227].  

Исходное сообщение делится на n блоков длины 𝑁. Если длина сообщения не 

кратна 𝑁, то оно заполняется нулевыми битами. Информация о количестве битов 

добавляется в конце сообщения. 

 

Рисунок 2.24 – Общий алгоритм хэширования 

 

Для инициализации процесса хэширования используется двоичное 

представление начальных условий отображения (2.38). Согласно стандарту IEEE 754-

2008, числа с плавающей запятой состоят из знака, экспоненты и мантиссы [229]. В 

предлагаемом алгоритме из каждой переменной извлекаются наименьшие 32 бита 

мантиссы и добавляются (𝑁 −  64) нулей в конец начального блока, как это показано 

на рис. 2.25. 
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Рисунок 2.25 – Процесс инициализации 

 

Затем для каждого блока длины 𝑁 выполняется преобразование 𝐹. Оно состоит 

из нескольких этапов (рис. 2.26). Сначала применяется операция XOR к 

предыдущему хэш-значению 𝐻𝑖−1 с блоком сообщения 𝑀𝑖 . Полученный блок 

циклически сокращается до 64 бит еще одной операцией XOR. Затем 64 бита 

преобразуются в два беззнаковых целых числа. Полученные два значения 

представляются как числа с плавающей точкой двойной точности, а затем делятся на 

максимальное значение, которое может принимать беззнаковое целое число заданной 

битовой длины. Эти значения принимаются за начальную точку (𝑥0,  𝑦0) для 

адаптивного отображения, выполняемого (𝑁 −  64) раз. Для каждого запуска 

отображения можно выполнить одну или несколько итераций. Для повышения 

криптостойкости в диссертационном исследовании использовалось значение в 32 

вызова функции отображения. Наконец, как и при инициализации, из последних 

значений каждого обращения к отображению извлекаются 32 наименьших значащих 

бита. Конкатенация полученных битов является выходным значением функции 𝐹. 

 

Рисунок 2.26 – Одна итерация преобразования F. 
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Описанная хэш-функция может быть программно реализована с 

использованием любого двумерного хаотического отображения с управляемой 

симметрией. Чтобы распространить предложенный подход на 𝑚-мерную систему, 

можно изменить количество битов, используемых в блоке инициализации, на 32𝑚, а 

также заменить константу 64 на 32𝑚 на каждой итерации. Минимальная длина блока 

сообщения 𝑁 в такой хэш-функции составляет 32𝑚 бит, где 𝑚 – размерность 

системы. 

Проанализируем производительность и статистические свойства 

предложенной хэш-функции на основе отображения с управляемой симметрией. 

 

Анализ производительности алгоритма хэширования 

 

Недавние исследования показали, что производительность обычных хэш-

функций, включая известный алгоритм SHA-3, ниже, чем подходы, основанные на 

хаосе [230]. Проверим, справедливо ли это для предложенной хэш-функции. 

Реализация функции проводилась в среде NI LabVIEW 2022 и ее производительность 

сравнивалась со встроенной функцией SHA-3 из палитры Data Manipulation 

встроенного программного модуля для работы с ПЛИС NI FPGA Module [364]. Эта 

функция оперирует как над данными с фиксированной точкой, так и над данными с 

плавающей точкой. Рассмотрим хэш-функции с длиной блока 256 бит. Сравним 

зависимость времени, потраченного на хеширование, от длины хэшируемого 

сообщения для известного алгоритма SHA-3 и предложенной функции на основе 

адаптивного отображения Богданова. Полученные результаты показаны на рис. 2.27. 

Ось 𝑌 представлена в логарифмическом масштабе. Видно, что даже для небольшого 

объема входных данных временные затраты алгоритма SHA-3 более чем в 6 раз 

превышают временные затраты для предложенного подхода. Таким образом, хэш-

функция на основе симметричного адаптивного отображения Богданова оказывается 

более эффективной, чем классический алгоритм хэширования. 
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Рисунок 2.27 – Временные затраты на процесс хеширования с использованием 

алгоритма SHA-3 и предложенной функции на основе дискретного отображения 

Богданова с управляемой симметрией и размером блока 256 бит 

 

В таблице 2.3 представлены результаты сравнения скорости хэширования с 

помощью предложенного подхода и других наиболее эффективных методов среди 

алгоритмов на основе хаоса, исследованных Техом и др. в обзорной работе [208]. Для 

функции, основанной на адаптивном отображении Богданова, средняя скорость 

хеширования составила 0.9 Гбит/с. Отметим, что алгоритмы [208] и [209] 

предполагают реализацию с фиксированной точкой и быстрыми побитовыми 

операциями. Предложенный подход сопоставим по производительности с другими 

рассмотренными алгоритмами, для которых вычисления производятся с типом 

данных с плавающей точкой. 

Таблица 2.3 – Сравнение скорости хэширования 

Алгоритм Скорость (Gbps) Платформа 

Алгоритм Теха и Алавиды [208] 2.55 Intel Core-i7, 16GB RAM 

Алгоритм Теха и Тена [209] 4.04858 Intel Core-i7, 16GB RAM 

Алгоритм Ахмада [187] 0.911 Intel Core-i5, 16GB RAM 

Предложенный алгоритм 0.9 Intel Core-i7, 16GB RAM 

Алгоритм Лиу и Кадира [206] 0.697 Intel Core-i7, 16GB RAM 

Алгоритм Теха и Самсудина [217] 0.666 Intel Core-i7, 8GB RAM 
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Анализ чувствительности хэш-функции 

Для исследования чувствительности хэш-функции к хэшируемому сообщению 

было выбрано сообщение длиной 497 символов (условие 1). 

Для генерации хэша использовался следующий набор параметров 𝜖 =

 0.0025, ℎ = −1.44,𝑚 = −0.1, 𝑥0 = −0.2, 𝑦0 = −0.1. Адаптивный коэффициент 

симметрии отображения Богданова переключался по гармоническому правилу 

между 𝑠1  =  0, 𝑠2  =  0.5 при 𝑡 =  −0.5. 

Условие 1: Исходное сообщение: ”It is a period of civil war. Rebel spaceships, 

striking from a hidden base, have won their first victory against the evil Galactic Empire. 

During the battle, Rebel spies managed to steal secret plans to the Empire’s ultimate 

weapon, the DEATH STAR, an armored space station with enough power to destroy an 

entire planet. Pursued by the Empire’s sinister agents, Princess Leia races home aboard her 

starship, custodian of the stolen plans that can save her people and restore freedom to the 

galaxy.” 

Условие 2: заменить первый символ “I” в исходном сообщении на “J”. 

Условие 3: заменить слово “steal” в исходном сообщении на “steel”.  

Условие 4: заменяет точку в конце исходного сообщения на запятую. 

Условие 5: добавляет пустое место в конец исходного сообщения. 

Условие 6: изменяет массив секретного ключа x0 на x0 плюс машинный эпсилон 

ε в типе данных с плавающей точкой. 

Соответствующие хэш-значения (рис. 2.28) в шестнадцатеричном формате 

представлены следующим образом: 

Условие 1: EDDF2CA47E98F25451D0C3963518DDA8  

Условие 2: 9A38F801B1555DF3F8F1A18FB5043DA  

Условие 3: F3A51B14E5BE232FE24D33C2D64122  

Условие 4: 8F7BAC797BA2CE931CC18A745A78F74  

Условие 5: BD661E5CC6E021E2494849BE4C9E3 

Условие 6: 90143710B918BFE3C5FA66B49573E29 

Как видно, любое небольшое отличие в сообщении приводит к существенному 

изменению конечного значения хэша. Таким образом, предложенная хэш-функция 
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демонстрирует лавинный эффект и является безопасной. 

 

Рисунок 2.28 – Двоичные хэш-значения для различных условий 

 

2.6. Выводы по главе 

 

Во второй главе диссертации введено понятие численного метода 

интегрирования с переменной симметрией. Подтверждена гипотеза о возможности 

возникновения искусственных мультистабильных состояний в изначально 

моностабильных системах при дискретизации методами с переменной симметрией.  

В главе предложен новый подход к синтезу возвратных отображений гамильтоновых 

систем, основанный на применении полуявных методов численного интегрирования. 
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Созданы и описаны симметричные модификации отображений Чирикова, Богданова 

и Эно. В главе демонстрируется, что применение симметричного интегрирования 

дает зеркальную симметрию фазового пространства дискретного отображения, 

сохраняя при этом основные особенности динамики исходной системы. 

Подтверждена гипотеза что симметричные и несимметричные отображения 

характеризуются фазовыми пространствами с сопоставимой площадью хаотических 

морей и островов устойчивости, т.е. аффинности преобразования при изменении 

симметрии отображения. 

 Исследуются статистические свойства рассматриваемых симметричных и 

несимметричных отображений, продемонстрировано что статистически разница в их 

поведении ничтожна при существенных внешних различиях фазового пространства.  

Предложенные симметричные дискретные отображения могут быть 

использованы для моделирования орбит небесных тел [231-233], описания движения 

частиц в магнитной ловушке [165,166], моделирования динамики пучка в оптическом 

резонаторе [173] и т.д. Хаотические отображения также могут быть использованы для 

построения высокоразмерных моделей материалов и полей, представленных 

наборами связанных отображений. Такие приложения могут включать изучение 

реологического хаоса в жидких кристаллах [234], моделирование сферических узоров 

в полимерах [235], моделирование роста снежных кристаллов [236], предсказание 

констант стандартной модели в физике [237] и т.д. Во всех этих приложениях 

свойства лежащих в основе дискретных отображений очень важны, поскольку они 

влияют на свойства всей моделируемой системы, и поэтому управление симметрией 

может дать целый ряд интересных результатов, например, таких как искусственная 

мультистабильность или искусственная химеризация. 

Некоторые исследования [167,168,238] показывают, что функции плотности 

вероятности 𝑦, задаваемые (2.33) в простых хаотических отображениях, могут 

демонстрировать фазовые переходы между гауссовой и 𝑞-гауссовой статистикой, что 

представляет общетеоретический интерес. В главе была обнаружена определенная 

универсальность статистических свойств в простых гамильтоновых системах, на что 

указывает то, что функции плотности вероятности 𝑦 в островах стабильности 
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стандартного и связанных отображений описываются 𝑞-экспонентой с близкими 

значениями 𝑞 =  1.935 [238]. Это может мотивировать уточнение результатов, 

касающиеся таких хаотических эффектов в высокоразмерных связанных системах, 

как диффузия Арнольда, переход между сильным и слабым хаосом [169,170,239], 

мультистабильный джиттер [240], бифуркации с нарушением симметрии [241], 

полученные ранее для несимметричных отображений, а также для отображений, 

основанных на симметричном интегрировании. Более того, дискретные отображения 

и их связанные аналоги могут быть использованы для моделирования таких сложных 

систем, как колебательные химические реакции [242], а симметрия таких 

отображений может быть важным фактором для получения соответствующей модели 

сложных нелинейных явлений, таких как дефекты синхронизации [243]. 

Показано, что при реализации с переменным коэффициентом симметрии 

адаптивные хаотические отображения обладают большим пространством 

параметров, чем исходная ассиметричная модель, что имеет существенное значение 

в контексте приложений, т.к. изменение коэффициента симметрии может быть 

использовано для расширения пространства ключей в задачах хаотической 

криптографии. Это преимущество проиллюстрировано на примере создания 

хаотической хэш-функции, основанной на адаптивном дискретном отображении 

Богданова. Продемонстрировано наличие лавинного эффекта в предлагаемой хэш-

функции.  
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ГЛАВА 3. НОВЫЕ СПОСОБЫ ОБОБЩЕННОЙ И АДАПТИВНОЙ 

СИНХРОНИЗАЦИИ ХАОТИЧЕСКИХ СИСТЕМ 

 

Сихронизация хаотических систем является важной проблемой нелинейной 

динамики. С одной стороны, задача синхронизации представляет большой 

фундаментальный интерес в контексте моделирования структур связанных 

осцилляторов, с другой – имеет существенный практический потенциал применения 

в различных практических приложениях. За последние десятилетия на основе 

различных вариантов хаотической синхронизации было предложено несколько 

подходов к стеганографической передаче данных, включая хаотическую маскировку 

[244-246], переключение параметров [247-250], нелинейное смешивание [251], 

модуляцию управляющих параметров [252,253] и мн. др. В работе [244] была 

рассмотрена и исследована схема связи на основе синхронизации трехмерных 

автономных хаотических осцилляторов по типу Пекоры-Кэрролла. В статье [245] 

авторами предложена новая система связи с двухступенчатыми каскадными 

соединениями для повышения безопасности передачи данных путем хаотической 

маскировки. В 2005 году Шуджун и др. провели тщательный анализ 

криптографической стойкости систем связи на основе хаотической модуляции. 

Авторы предложили повысить устойчивость к различным атакам путем устранения 

связи между модуляционной функцией и нулевыми точками. Для усложнения атак 

был предложен подход, использующий глобальную экспоненциальную 

синхронизацию мультикоммутационной комбинации для нескольких хаотических 

систем с известными параметрами в конфигурации «ведущий-ведомый» [247,248]. В 

работе [249] новая техника адаптивной синхронизации с применением переключения 

параметров была рассмотрена для системы Лоренца и системы Рабиновича-

Фабриканта. В работе [250] проводилась оценка производительности цифровой 

хаотической системы связи с кодированием методом переключения между разными 

значениями параметров хаотической системы. Авторами продемонстрировано, что 

подобный способ модуляции обеспечивает наилучшую скорость передачи данных  

среди других широко используемых методов, основанных на хаотической 
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синхронизации. Для повышения безопасности таких систем связи было предложено 

использовать обобщенную синхронизацию со смещенным запаздыванием и 

проекционную синхронизацию (англ. generalized dislocated lag projective 

synchronization and function projective synchronization) [252, 253]. Таким образом, 

основным приложением хаотической синхронизации в настоящее время выступают 

когерентные системы связи [382], основанные на детерминированном хаосе и 

системы моделирования, основанные на решетках связанных осцилляторов.  

Вышеперечисленные методы синхронизации хаотических осцилляторов 

обладают некоторыми недостатками, которые ограничивают их широкое 

применение. Например, подходы, основанные на хаотическом маскировании и 

нелинейном смешивании, очень чувствительны к шуму в канале передачи 

синхросигнала [254-256]. Более того, качество декодированных синхроданных может 

значительно ухудшиться из-за дополнительной ошибки, вызванной различиями 

между параметрами ведущей и ведомой хаотических систем. Одним из существенных 

недостатков схем модуляции с управлением по параметру системы является 

длительный переходный процесс, возникающий при переключении значения 

параметра [92]. Он может может существенно снизить скорость синхронизации 

передатчика и приемника, замедлив тем самым скорость передачи данных. В [250] 

Миттал и др. провели сравнительный анализ скорости синхронизации различных 

моделей хаотических систем. Было показано, что для таких схем синхронизации 

переходный процесс может длиться от 5 до 100 секунд моделирования в зависимости 

от выбранной хаотической системы [257], что существенно снижает скорость 

синхронизации и критически сказывается как на времени моделирования структур 

связанных осцилляторов, так и на характеристиках приложений, основанных на 

синхронизации. В главе 2 диссертации было показано, что изменение коэффициента 

симметрии, в отличие от изменения параметра системы, не приводит к 

возникновению длительных переходных процессов в дискретных моделях 

хаотических систем. Основной идеей настоящей главы является гипотеза о 

возможности быстрой синхронизации дискретных хаотических систем с 

применением особых свойств полуявных численных методов с управляемой 
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симметрией и симметричных дискретных отображений, предложенных ранее в 

диссертационном исследовании.  

 

3.1. Адаптивная синхронизация хаотических отображений 

В разделе рассматривается адаптивная синхронизация дискретных хаотических 

возвратных отображений, считающаяся более вычислительно эффективной с 

практической точки зрения, чем обобщенная. Например, адаптивная синхронизация 

двух отображений Эно (2.26) путем управления тремя параметрами нелинейности 

может быть достигнута за 60 итераций и не требует применения каких-либо 

дополнительных численных процедур [258]. При возможности управления одним 

параметром нелинейности при остальных известных на стороне ведомой системы, 

синхронизация может происходить еще быстрее [259,260].  

Таким образом, представляет интерес разработка новых методов 

синхронизации дискретных отображений с минимизацией времени переходного 

процесса. Новые способы синхронизации дискретных хаотических отображений 

могут также внести вклад в улучшение криптографических алгоритмов и систем 

безопасной связи, основанных на детерминированном хаосе, включая методы 

создания водяных знаков [261, 262], шифрование изображений [389], защищенную 

беспроводную связь [65] и др. Также методы быстрой синхронизации могут быть 

полезны при изучении сложного коллективного поведения ансамблей связанных 

хаотических осцилляторов [263,264]. 

В главе 2 диссертации было введено понятие хаотических дискретных 

отображений с управляемой симметрией. Такие отображения обладают параметром, 

называемым коэффициентом управляемой симметрии или адаптивным 

коэффициентом симметрии [157,199]. Изучение динамики хаотических отображений 

с управляемой симметрией показывает, что изменение коэффициента симметрии 

приводит к меньшим изменениям в поведении системы чем изменение параметров 

нелинейности. Поскольку, как было доказано в разделе 2.3 диссертационного 

исследования, изменение коэффициента симметрии приводит к аффинному 

преобразованию фазового пространства, можно предположить, что синхронизация 
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адаптивных отображений с различными коэффициентами симметрии будет 

происходить быстрее, чем обычная синхронизация, основанная на оценке 

неизвестного значения параметра нелинейности. В данном разделе эта гипотеза 

экспериментально проверяется на примере адаптивного отображения Эно. Таким 

образом, основным вкладом этого раздела диссертационного исследования является 

разработка технологии быстрой адаптивной синхронизации двух симметричных 

хаотических отображений с управлением по коэффициенту симметрии. 

Адаптивное отображение Эно 

Напомним общий вид отображения Эно, описываемого следующей системой 

конечно-разностных уравнений 

 𝑥𝑛+1 = 𝑝𝑛 − 𝑥𝑛
2 + 𝐾 

𝑝𝑛+1 = −𝑥𝑛 
(3.1) 

где 𝐾 – параметр. Значения 𝐾, лежащие в диапазоне [1.5; 8] соответствуют 

хаотическому поведению (рис. 3.1).  

Одна из возможных симметричных форм отображения (3.1) была описана в 

разделе 2.2 диссертации. Запишем симметричное отображение Эно следующим 

образом: 

 𝑥𝑛+1 = 𝑝𝑛 − 0.5(𝑥𝑛
2 + 𝐾) 

𝑝𝑛+1 = −𝑥𝑛 − 0.5(𝑥𝑛+1
2 − 𝐾) 

(3.2) 

где коэффициент 0.5 соответствует полной симметрии фазового пространства. 

Отображение обладает хаотическим поведением, когда коэффициент 𝐾 ∈  (2.7;  8). 

(рис. 3.2). 

Следуя принципу адаптивной симметрии, введенной в разделе 2.1 диссертации 

и работах автора [157,199], для получения отображения Эно с управляемой 

симметрией заменим коэффициент 0.5 в системе (3.2) на коэффициент симметрии 𝑠 

 𝑥𝑛+1 = 𝑝𝑛 − 𝑠(𝑥𝑛
2 − 𝐾) 

𝑝𝑛+1 = −𝑥𝑛 − (1 − 𝑠)(𝑥𝑛+1
2 − 𝐾) 

(3.3) 

На рис. 3.1 и 3.2 приведены бифуркационные диаграммы для исходного 

отображения Эно (3.1) и его версии с управляемой симметрией (3.3) при 𝑠 =  0.5. 

Начальные условия для обеих систем были выбраны как 𝑥0  =  0.1 и 𝑝0  =  0.1, 
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соответственно. Как видно из рисунков 3.1 и 3.2, при значении 𝐾 >  2.7 обе системы 

демонстрируют близкие бифуркационные свойства. Двумерная диаграмма 

наибольшего показателя Ляпунова (LLE) показывает, что независимо от значения 

коэффициента симметрии, практически для всех значений параметра нелинейности 

𝐾 отображение (3.3) генерирует хаотические траектории (рис. 3.3). 

 

Рисунок 3.1 – Бифуркационная диаграмма оригинального отображения Эно (3.1) при 

изменении параметра нелинейности 𝐾 

 

Рисунок 3.2 – Бифуркационная диаграмма адаптивного симметричного отображения 

Эно (3.3) по параметру 𝐾 при 𝑠 =  0.5 (симметричный случай) 

 

Рисунок 3.3 – Двумерная диаграмма наибольшего показателя Ляпунова (LLE) 

для адаптивного симметричного отображения Эно (3.3). Отрицательные значения 

LLE обозначены черным цветом, положительные значения LLE – белым цветом.  
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Рассмотрим подробнее способы адаптивной синхронизации дискретных 

возвратных хаотических отображений. 

 

3.2. Адаптивная синхронизация на основе управления коэффициентом 

симметрии конечно-разностной схемы 

В диссертационном исследовании хаотические отображения 

синхронизируются методом адаптивного управления, применяемого к коэффициенту 

симметрии или параметрам нелинейности. Этот метод обычно применяется, когда 

некоторые параметры системы неизвестны [247, 265, 266], или целью является 

синхронизация различных по своей динамике хаотических систем [267-269]. 

Применим для синхронизации хаотических отображений управление с обратной 

связью к ведомой системе, следуя идеям, рассмотренным в работах [258,270-272]. 

Рассмотрим методы синхронизации различных версий отображения Эно подробнее. 

Адаптивная синхронизация стандартных дискретных отображений Эно с 

управлением по параметру бифуркации 

Рассмотрим ведущую систему (англ. Master system), заданную выражениями: 

 𝑥𝑛+1 = 𝑝𝑛 − 𝑥𝑛
2 + 𝐾, 

𝑝𝑛+1 = −𝑥𝑛, 
(3.4) 

а также ведомую систему (англ. Slave system): 

 𝑦𝑛+1 = 𝑞𝑛 − 𝑦𝑛
2 + 𝐾̂𝑛 + 𝑢1, 

𝑞𝑛+1 = −𝑦𝑛 + 𝑢2, 
(3.5) 

где 𝐾̂𝑛– приближение параметра 𝐾, который считается неизвестным, а 𝑢1, 𝑢2 – законы 

управления, применяемые к ведомой системе. Цель – синтезировать 𝑢1, 𝑢2 и закон, по 

которому рассчитывается приближение для 𝐾̂𝑛 таким образом, чтобы |𝑥𝑛 − 𝑦𝑛|→ 0, 

|𝑝𝑛 − 𝑞𝑛|→ 0, |𝐾 − 𝐾̂𝑛| → 0 при n → ∞. 

Теорема 1. Ведомая система (3.5) синхронизируется с ведущей системой (3.4) 

при любых начальных условиях по следующим законам управления 

 𝑢1 = 𝑝𝑛 − 𝑥𝑛
2 − 𝑞𝑛 + 𝑦𝑛

2, 

𝑢2 = 𝑦𝑛 − 𝑥𝑛, 
(3.6) 

При этом закон расчета приближения для заданного параметра 



201 

 K̂n+1 = K̂n + c(xn+1 − yn+1), (3.7) 

где 𝑐 >  0 – скалярный управляющий параметр. 

Доказательство. Применяя законы управления (3.6) к ведомой системе (3.5), 

система приобретает вид: 

𝑦𝑛+1 = 𝑝𝑛 − 𝑥𝑛
2 + 𝐾̂𝑛, 

𝑞𝑛+1 = −𝑥𝑛, 

Учитывая формулы, задающие погрешность синхронизации: 𝑒1,𝑛 = 𝑥𝑛 −

𝑦𝑛, 𝑒2,𝑛 = 𝑝𝑛 − 𝑞𝑛, и 𝑒3,𝑛 = 𝐾 − 𝐾̂𝑛, получим 

 𝑒1,𝑛+1 = 𝑒3,𝑛, 

𝑒2,𝑛+1 = 0, 
(3.8) 

Таким образом, две системы синхронизируются, если динамика оценки 

параметрического сближения стремится к нулю. Учитывая (3.7) и (3.8): 

𝐾̂𝑛+1 = 𝐾̂𝑛 + 𝑐(𝑥𝑛+1 − 𝑦𝑛+1)  → 

𝐾̂𝑛+1 = 𝐾̂𝑛 + 𝑐𝑒1,𝑛+1  → 

𝐾̂𝑛+1 = 𝐾̂𝑛 + 𝑐𝑒3,𝑛  → 

𝐾̂𝑛+1 = 𝐾 − 𝑒3,𝑛 + 𝑐𝑒3,𝑛 

динамика ошибки приобретает вид: 

𝑒3,𝑛+1 = (1 − 𝑐)𝑒3,𝑛. 

Таким образом, если значение 𝑐 удовлетворяет условию |1 − 𝑐| < 1, то 

динамика оценивания будет асимптотически устойчивой, а траектория ведомой 

системы будет сходиться к траектории ведущей системы. 

Замечание 1. Обратим внимание на то, как именно свойства обратной связи и 

оценка ошибки применяются в приведенной выше схеме управления по параметру. 

Псевдокод исследуемой дискретной схемы выглядит следующим образом: 

𝑥𝑛+1 = 𝑝𝑛 − 𝑥𝑛
2 + 𝐾; 

𝑝𝑛+1 = −𝑥𝑛; 

𝑢1 = 𝑝𝑛 − 𝑥𝑛
2 − 𝑞𝑛 + 𝑦𝑛

2; 

𝑢2 = 𝑦𝑛 − 𝑥𝑛; 

𝑦𝑛+1 = 𝑞𝑛 − 𝑦𝑛
2 + 𝐾̂𝑛 + 𝑢1; 
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𝑞𝑛+1 = −𝑦𝑛 + 𝑢2; 

𝐾̂𝑛+1 = 𝐾̂𝑛 + 𝑐(𝑥𝑛+1 − 𝑦𝑛+1); 

𝑥𝑛+1 = 𝑟𝑒𝑚(𝑥𝑛+1, 2) + 1; 

𝑝𝑛+1 = 𝑟𝑒𝑚(𝑝𝑛+1, 2) + 1; 

𝑦𝑛+1 = 𝑟𝑒𝑚(𝑦𝑛+1, 2) + 1; 

𝑞𝑛+1 = 𝑟𝑒𝑚(𝑞𝑛+1, 2) + 1. 

На рис. 3.4 представлены графики адаптивной синхронизации отображения Эно 

(3.1) по параметру для рассматриваемой методики при 𝑐 = 0.5, 𝐾 = 5, 𝐾̂0 = 3.  

  

(а) Сходимость параметрического 

приближения 
(б) Динамика ошибки синхронизации 

Рисунок 3.4 – Графики сходимости параметрического приближения и динамика 

ошибки синхронизации при адаптивной синхронизации двух стандартных 

отображений Эно по параметру бифуркации. Время задано как число итераций. 

 

Как видно из рисунка 3.4, 𝐾̂ сходится к целевому значению за десять итераций. 

 

Адаптивная синхронизация симметричных отображений Эно с 

управлением по коэффициенту симметрии 

Для реализации адаптивной синхронизации симметричного отображения Эно 

(3.3) с управлением по коэффициенту симметрии переформулируем ведущую 

систему следующим образом: 
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 𝑥𝑛+1 = 𝑝𝑛 − 𝑠(𝑥𝑛
2 − 𝐾), 

𝑝𝑛+1 = −𝑥𝑛 − (1 − 𝑠)(𝑥𝑛+1
2 − 𝐾), 

(3.9) 

Ведомая система примет вид: 

 𝑦𝑛+1 = 𝑞𝑛 − 𝑠̂𝑛(𝑦𝑛
2 − 𝐾) + 𝑢1, 

𝑞𝑛+1 = −𝑦𝑛 − (1 − 𝑠̂𝑛)(𝑦𝑛+1
2 − 𝐾) + 𝑢2, 

(3.10) 

где 𝑠̂𝑛 – приближенное значение неизвестного адаптивного коэффициента симметрии 

𝑠. Для синхронизации систем (3.9) и (3.10) докажем следующую теорему. 

Теорема 2. Ведущая (3.9) и ведомая (3.10) системы синхронизируются, если 

выполняются следующие законы управления: 

 𝑢1 = 𝑝𝑛 − 𝑞𝑛 + 𝑠̂𝑛(𝑦𝑛
2 − 𝐾) − 𝑠̂𝑛(𝑥𝑛

2 − 𝐾), 

𝑢2 = 𝑦𝑛 − 𝑥𝑛 + (1 − 𝑠̂𝑛)(𝑦𝑛+1
2 − 𝐾) − (1 − 𝑠̂𝑛)(𝑥𝑛+1

2 − 𝐾), 
(3.11) 

а также закон оценки отклонения при выборе значения коэффициента симметрии: 

 𝑠̂𝑛+1 = 𝑠̂𝑛 + 𝑐𝑛(𝑥𝑛+1 − 𝑦𝑛+1), (3.12) 

где 𝑐𝑛 – изменяющийся во времени параметр управления, определяемый 

выражением: 

 𝑐𝑛 = −
𝜍

𝑥𝑛
2 − 𝐾

, (3.13) 

а 0 < 𝜍 < 2 является положительной скалярной величиной. 

Доказательство. После применения законов управления (3.11) к ведомой 

системе (3.10), последняя приобретает следующий вид: 

𝑦𝑛+1 = 𝑝𝑛 − 𝑠̂𝑛(𝑥𝑛
2 − 𝐾), 

𝑞𝑛+1 = −𝑥𝑛 − (1 − 𝑠̂𝑛)(𝑥𝑛+1
2 − 𝐾), 

Учитывая динамику погрешности 𝑒1,𝑛 = 𝑥𝑛 − 𝑦𝑛, 𝑒2,𝑛 = 𝑝𝑛 − 𝑞𝑛, и 𝑒3,𝑛 = 𝑠 −

𝑠̂𝑛, легко вывести, что: 

 𝑒1,𝑛+1 = −𝑒3,𝑛(𝑥𝑛
2 − 𝐾), 

𝑒2,𝑛+1 = 𝑒3,𝑛(𝑥𝑛+1
2 − 𝐾), 

(3.14) 

Если динамика оценки параметров равна нулю, две системы могут считаться 

синхронизированными. Учитывая (3.12) и (3.14), 

𝑠̂𝑛+1 = 𝑠̂𝑛 + 𝑐𝑛(𝑥𝑛+1 − 𝑦𝑛+1)  → 

𝑠̂𝑛+1 = 𝑠̂𝑛 − 𝑐𝑛𝑒3,𝑛(𝑥𝑛
2 − 𝐾)  → 



204 

𝑠̂𝑛+1 = 𝑠 − 𝑒3,𝑛 − 𝑐𝑛𝑒3,𝑛(𝑥𝑛
2 − 𝐾). 

Таким образом, динамика ошибки оценки приближения приобретает вид: 

𝑒3,𝑛+1 = (1 + 𝑐𝑛(𝑥𝑛
2 − 𝐾))𝑒3,𝑛. 

Если 𝑐𝑛 удовлетворяет условию |1 + 𝑐𝑛(𝑥𝑛
2 − 𝐾)| < 1 на каждой итерации, 

динамика ошибки оценки приближения будет асимптотически устойчивой и будет 

достигнута синхронизация ведущей и ведомой систем. Одним из вариантов для 

достижения этих условий является применение формулы (3.13), использование 

которой допустимо, пока (𝑥𝑛
2 − 𝐾) ≠ 0. 

Замечание 2. Как было ранее сказано во 2 главе диссертации, функция 𝑟𝑒𝑚 

применяется в конце каждой итерации расчета исследуемых дискретных 

отображений, в случае адаптивной синхронизации. Подробное описание конечно-

разностной схемы синхронизирующихся отображений в виде псевдокода выглядит 

следующим образом: 

𝑥𝑛+1 = 𝑝𝑛 − 𝑠(𝑥𝑛
2 − 𝐾); 

𝑝𝑛+1 = −𝑥𝑛 − (1 − 𝑠)(𝑥𝑛+1
2 − 𝐾); 

𝑢1 = 𝑝𝑛 − 𝑞𝑛 + 𝑠̂𝑛(𝑦𝑛
2 − 𝐾) − 𝑠̂𝑛(𝑥𝑛 − 𝐾); 

𝑦𝑛+1 = 𝑞𝑛 − 𝑠̂𝑛(𝑦𝑛
2 − 𝐾); 

𝑢2 = 𝑦𝑛 − 𝑥𝑛 + (1 − 𝑠̂𝑛)(𝑦𝑛+1
2 − 𝐾) − (1 − 𝑠̂𝑛)(𝑥𝑛+1

2 − 𝐾); 

𝑞𝑛+1 = −𝑦𝑛 − (1 − 𝑠̂𝑛)(𝑦𝑛+1
2 − 𝐾); 

𝑠̂𝑛+1 = 𝑠̂𝑛 + 𝑐𝑛(𝑥𝑛+1 − 𝑦𝑛+1); 

𝑥𝑛+1 = 𝑟𝑒𝑚(𝑥𝑛+1, 2) + 1; 

𝑝𝑛+1 = 𝑟𝑒𝑚(𝑝𝑛+1, 2) + 1; 

𝑦𝑛+1 = 𝑟𝑒𝑚(𝑦𝑛+1, 2) + 1; 

𝑞𝑛+1 = 𝑟𝑒𝑚(𝑞𝑛+1, 2) + 1. 

На рис. 3.5 представлены графики сходимости приближения параметра и 

динамика ошибки адаптивной синхронизации симметричного отображения Эно по 

коэффициенту симметрии с использованием рассматриваемой методики при 𝑐𝑛 =

−0.5, 𝑆 = 0.7, 𝑆̂0 = 0.3.  
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(а) Сходимость параметрического 

приближения 
(б) Динамика ошибки синхронизации 

Рисунок 3.5 – Графики адаптивной синхронизации симметричных отображений Эно 

с применением метода управления коэффициентом симметрии 

 

Можно отметить, что ошибка синхронизации уменьшается при предлагаемом в 

диссертации способе синхронизации значительно быстрее, чем при традиционном 

управлении параметром бифуркации. Для чистоты эксперимента представляет 

интерес также исследовать процесс стандартной параметрической адаптивной 

синхронизации, примененной к новым симметричным отображениям вида (3.2). 

 

Адаптивная синхронизация симметричных отображений Эно с 

управлением по параметру бифуркации 

Пара адаптивных отображений Эно (3.2), как и две обычные системы (3.1), 

может быть синхронизирована через приближение параметра бифуркации 𝐾. 

Рассмотрим ведущую систему (3.9) и ведомую систему вида: 

 𝑦𝑛+1 = 𝑞𝑛 − 𝑠(𝑦𝑛
2 − 𝐾̂𝑛) + 𝑢1, 

𝑞𝑛+1 = −𝑦𝑛 − (1 − 𝑠)(𝑦𝑛+1
2 − 𝐾̂𝑛) + 𝑢2, 

(3.15) 

где 𝐾̂𝑛 – приближение параметра бифуркации 𝐾, который считается 

неизвестным.  
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Теорема 3. Ведущая (3.9) и ведомая (3.15) системы синхронизируются, если 

выполняются следующие законы управления: 

 𝑢1 = 𝑝𝑛 − 𝑞𝑛 + 𝑠𝑥𝑛
2 + 𝑠𝑦𝑛

2, 

𝑢2 = −𝑥𝑛 + 𝑦𝑛 − (1 − 𝑠)𝑥𝑛+1
2 + (1 − 𝑠)𝑦𝑛+1

2 , 
(3.16) 

и закон приближения параметра бифуркации: 

 𝐾̂𝑛+1 = 𝐾̂𝑛 + 𝑐(𝑥𝑛+1 − 𝑦𝑛+1), (3.17) 

где 𝑐 – управляющий параметр, определяемый выражением: 

 𝑐 =
𝜍

𝑠
, (3.18) 

и 0 < ς < 2 – положительная скалярная величина и |1 − ς| < 1. 

Доказательство. Применяя законы управления (3.16) к ведомой системе (3.15), 

последняя приобретает вид: 

𝑦𝑛+1 = 𝑝𝑛 − 𝑠𝑥𝑛
2 + 𝑠𝐾̂𝑛, 

𝑞𝑛+1 = −𝑥𝑛 − (1 − 𝑠)𝑥𝑛+1 + (1 − 𝑠)𝐾̂𝑛, 

Учитывая динамику погрешности 𝑒1,𝑛 = 𝑥𝑛 − 𝑦𝑛, 𝑒2,𝑛 = 𝑝𝑛 − 𝑞𝑛, и 𝑒3,𝑛 = 𝐾 −

𝐾̂𝑛, можно сделать вывод, что 

 𝑒1,𝑛+1 = 𝑠𝑒3,𝑛, 

𝑒2,𝑛+1 = (1 − 𝑠)𝑒3,𝑛, 
(3.19) 

Таким образом, если функция динамики оценки параметра равна нулю, две 

системы могут считаться синхронизированными. Учитывая (3.17) и (3.19), запишем: 

𝐾̂𝑛+1 = 𝐾̂𝑛 + 𝑐(𝑥𝑛+1 − 𝑦𝑛+1)  → 

𝐾̂𝑛+1 = 𝐾̂𝑛 + 𝑐𝑠𝑒3,𝑛  → 

𝐾̂𝑛+1 = 𝐾̂𝑛 + (𝑐𝑠 − 1)𝑒3,𝑛 

Тогда динамика ошибки приближения приобретает вид: 

𝑒3,𝑛+1 = (1 − 𝑐𝑠)𝑒3,𝑛. 

Если 𝑐 удовлетворяет условию |1 − 𝑐𝑠| < 1, динамика ошибки оценки 

приближения будет асимптотически устойчивой, и синхронизация будет достигнута. 

Одним из вариантов достижения этих условий является применение формулы (3.18). 

Замечание 3. Конечно-разностная схема синхронизации двух симметричных 

отображений Эно с управлением по параметру выглядит следующим образом: 
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𝑥𝑛+1 = 𝑝𝑛 − 𝑠(𝑥𝑛
2 − 𝐾); 

𝑝𝑛+1 = −𝑥𝑛 − (1 − 𝑠)(𝑥𝑛+1
2 − 𝐾); 

𝑢1 = 𝑝𝑛 − 𝑞𝑛 − 𝑠̂𝑛𝑥𝑛
2 + 𝑠̂𝑛𝑦𝑛

2; 

𝑦𝑛+1 = 𝑞𝑛 − 𝑠(𝑦𝑛
2 − 𝐾̂𝑛) + 𝑢1; 

𝑢2 = 𝑦𝑛 − 𝑥𝑛 − (1 − s)𝑥𝑛+1
2 + (1 − s)𝑦𝑛+1

2 ; 

𝑞𝑛+1 = −𝑦𝑛 − (1 − 𝑠)(𝑦𝑛+1
2 − 𝐾̂𝑛) + 𝑢2; 

𝑠̂𝑛+1 = 𝑠̂𝑛 + 𝑐𝑛(𝑥𝑛+1 − 𝑦𝑛+1); 

𝑥𝑛+1 = 𝑟𝑒𝑚(𝑥𝑛+1, 2) + 1; 

𝑝𝑛+1 = 𝑟𝑒𝑚(𝑝𝑛+1, 2) + 1; 

𝑦𝑛+1 = 𝑟𝑒𝑚(𝑦𝑛+1, 2) + 1; 

𝑞𝑛+1 = 𝑟𝑒𝑚(𝑞𝑛+1, 2) + 1. 

На рис. 3.6 представлены графики сходимости приближения параметра и 

поведения ошибки синхронизации при адаптивной синхронизации симметричных 

отображений Эно с управлением по параметру при 𝑐 =  1/𝑠, 𝐾 =  3, 𝐾̂0 = 5 и 𝑠 =

 0.5.  

  

(а) Сходимость параметрического 

приближения 
(б) Динамика ошибки синхронизации 

Рисунок 3.6 – Сходимость параметрического приближения и динамика ошибки 

синхронизации при адаптивной синхронизации симметричных отображений Эно с 

управлением по параметру бифуркации 

 

Как видно из рисунка 3.6, ошибка синхронизации при параметрической 

адаптивной синхронизации двух симметричных отображений Эно также 
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уменьшается быстрее, чем для стандартного отображения Эно, независимо от 

управляемого параметра, что является интересным результатом, свидетельствующим 

о существенной скрытой разнице в динамике адаптивного и стандартного 

отображений Эно, а также о возможном превосходстве предложенных в 

диссертационном исследовании симметричных версий возвратных хаотических 

отображений с точки зрения потенциальных приложений к задачам криптографии, 

защищенной связи и сенсорных систем нового поколения [387]. Для подтверждения 

этих свойств проведем комплексную оценку времени синхронизации симметричных 

дискретных отображений. 

 

Комплексная оценка времени синхронизации 

Чтобы оценить возможный эффект от использования симметричных 

хаотических отображений при разработке систем передачи данных, сравним время 

достижения полной синхронизации в трех рассмотренных подходах и подсчитаем 

количество итераций 𝑡𝑠𝑦𝑛𝑐ℎ, необходимых для достижения сходимости траекторий 

ведомой системы к траекториям ведущей системы с точностью до 10−16, 

соответствующей полному совпадению двух чисел, представленных с двойной 

точностью в арифметике с плавающей запятой [229]. 

В ходе эксперимента оценим зависимость времени синхронизации от 

начальных значений управляемого параметра или адаптивного коэффициента 

симметрии для ведущей и ведомой систем. Применим законы управления (3.6), (3.11) 

и (3.16) после десятой итерации моделирования ведущей и ведомой систем, и 

проведем расчеты для обоих отображений со следующими параметрами: 𝑥0 =

−0.1, 𝑝0 = 0.1 и 𝑦0 = 0.1, 𝑞0 = −0.1. С учетом графика наибольшего показателя 

Ляпунова (LLE), полученного для симметричного отображения Эно (рис. 3.3), 

коэффициент K был выбран равным 1.55. Положительные скалярные параметры в 

выражениях (3.7), (3.13) и (3.18) приняты равными 1. Параметр K варьировался в 

интервале [1.5;  8], а коэффициент симметрии s в границах интервала [0;  1]. Всего 

было выполнено 50 итераций моделирования. Полученные результаты показаны на 

рис. 3.7. 



209 

 

  

(а) Стандартное отображение Эно, 

управление по параметру бифуркации 

(б) Симметричное отображение Эно, управление 

по коэффициенту симметрии 

 

(в) Симметричное отображение Эно, управление по параметру бифуркации 

Рисунок 3.7 – Зависимость между количеством итераций, необходимых для 

достижения полной синхронизации, и начальными значениями параметра или 

адаптивного коэффициента симметрии для ведущей и ведомой систем 

 

Из рис. 3.7 (б) видно, что максимальное время (𝑡𝑠𝑦𝑛𝑐ℎ, затраченное на 

синхронизацию  для способа синхронизации на основе управляемой симметрии равно 

11 итерациям, а среднее его значение изменяется в пределах от 1 до 4 итераций. 

Синхронизация двух обычных отображений Эно в наихудшем случае была 

достигнута за 16 итераций, а среднее время синхронизации близко к 5 итерациям 

(рис. 3.7(а)). Аналогичные результаты были получены для синхронизации с 
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управлением по параметру бифуркации для симметричного отображении Эно (рис. 

3.7(в)). Таким образом, можно заметить, что 𝑡𝑠𝑦𝑛𝑐ℎ практически не зависит от 

выбранных начальных условий для всех исследуемых подходов. 

Предположим, что результаты эксперимента для симметричного отображения 

Эно могут различаться в зависимости от значения параметра 𝐾. Повторим 

эксперимент, усредняя результаты для 100 и 1000 значений параметра 𝐾, равномерно 

распределенных в интервале [1.5;  8]. На рис. 3.8 представлены полученные 

результаты. Видно, что среднее значение 𝑡𝑠𝑦𝑛𝑐ℎ для всех рассматриваемых 𝐾 в обоих 

случаях не превышает 5 итераций. При этом с увеличением числа рассматриваемых 

значений параметра нелинейности для большинства пар (𝑠0, 𝑠0) ведомая система 

может быть синхронизирована с ведущей системой всего за 3 итерации. Таким 

образом, можно сделать вывод, что синхронизация за счет управления 

коэффициентом симметрии всегда требует меньшего количества итераций для 

достижения точного совпадения траекторий дискретных отображений, чем подход, 

основанный на управлении параметром бифуркации с обратной связью.  

  

(а) Усреднение по 100 значениям К из 

интервала [1,5; 8] 

(б) Усреднение по 1000 значений К из 

интервала [1,5; 8] 

Рисунок 3.8 – Зависимость количества итераций, необходимых для достижения 

полной синхронизации, от параметра или адаптивного коэффициента симметрии 

ведущей и ведомой системы 

 

С практической точки зрения это означает, что технические системы, 
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основанные на адаптивной синхронизации отображений с управляемой симметрией, 

могут иметь меньшее время переходного процесса при переключении между двумя 

отображениями или модуляции сигнала при помощи коэффициента симметрии [273]. 

В разделе 3.2 диссертации был рассмотрен подход к адаптивной синхронизации 

дискретных отображений с параметрическим управлением. Предложен новый способ 

синхронизации дискретных симметричных отображений с адаптивным управлением 

коэффициентом симметрии. Предложенный способ синхронизации не зависит от 

выбранного способа управления параметрами и позволяет повысить скорость 

синхронизации дискретных отображений в практических приложениях за счет 

замены исходного возвратного хаотического отображения на его симметричную 

версию. На примере симметричного отображения Эно экспериментально показано 

преимущество предлагаемого подхода в скорости синхронизации. Предложенный 

способ синхронизации может быть использован в перспективных когерентных 

системах связи, а также для повышения скорости расчетов при моделировании сетей 

связанных осцилляторов с неизвестными параметрами. Представляет интерес 

распространение предложенного подхода к синхронизации на дискретные модели 

непрерывных хаотических систем, часто имеющих более богатую нелинейную 

динамику по сравнению с упрощенными возвратными отображениями. 

 

3.3. Адаптивная синхронизация конечно-разностных моделей непрерывных 

систем 

Адаптивная синхронизация непрерывных хаотических систем используется для 

решения различных практических задач во многих инженерных и научных областях, 

включая гидродинамику [274], нейронные сети [275], электромеханические системы 

[276, 383], электрические цепи [277], промышленный Интернет вещей [278] и др. Как 

уже ранее отмечалось в диссертации, одной из перспективных областей применения 

синхронизации непрерывных хаотических систем также являются безопасные 

системы связи на основе хаоса [384]. В работе [279] Ляо и Цай рассмотрели одну из 

первых схем связи, основанную на системе с адаптивным управлением на основе 

наблюдателя по скалярному синхросигналу. На примере систем типа Рёсслера и Чуа 
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авторами наглядно показано, что можно передать сообщение, синхронизируя 

системы с неизвестными параметрами. В 2004 году была предложена схема 

адаптивного комплементарного управления с переменной структурой (англ. Adaptive 

complementary variable structure control scheme) [280]. Показано, что система связи, 

использующая синхронизацию осцилляторов Дуффинга-Холмса с использованием 

этой методики, передает данные без потерь при соотношении сигнал\шум менее 

0.0005. После этого адаптивные регуляторы были успешно применены для 

синхронизации неидентичных хаотических моделей [281]. В статье [282] адаптивное 

управление синхронизацией хаотических систем было распространено на 

хаотические системы с временной задержкой, и была рассмотрена передача 

синусоидального сигнала через смешивание с хаотическим сигналом и последующее 

разделение. В работе [283] рассмотрены несколько перспективных архитектур для 

скрытой передачи данных, включая переключение, хаотическую маскировку и 

модуляцию, стратегии хаотического сдвига ключей и гибридные протоколы. Во всех 

рассмотренных методах переключение осуществлялось между двумя различными 

хаотическими системами, что затрудняло распознавание сообщений при анализе 

канала связи, но повышало риск обнаружения факта передачи. В 2017 году Шарма и 

др. описали практически реализуемый нелинейный наблюдатель скользящего режима 

управления с неизвестным параметром для нелинейных систем с ограниченными 

нелинейностями и неопределенностью [284].  

Как уже говорилось в предыдущем разделе диссертации, общей проблемой 

технических систем, основанных на хаотической синхронизации, является 

длительный период переходного процесса при кодировании сообщения через 

модуляцию бифуркационного параметра. Так, для тестовой системы Рёсслера (1.26) 

синхронизация с точностью до первого десятичного знака при различных подходах 

занимает от 10 до 20 секунд времени моделирования в зависимости от используемых 

аппаратных средств [103,282,283], что неприемлемо с практической точки зрения. 

Более того, в ряде работ показано, что передача сообщения через модуляцию 

параметра нелинейности может быть обнаружена и декодирована методом 

частотного анализа выходного сигнала передатчика [285-288].  



213 

В предыдущих разделах диссертации было показано, что изменение 

коэффициента симметрии не оказывает существенного влияния на хаотическую 

динамику дискретной системы, и такой подход может являться хорошей основой для 

скрытной передачи сообщений, однако для достижения практически целесообразной 

скорости передачи бита информации требуется сократить время синхронизации 

[103]. В разделе 3.2 диссертационного исследования продемонстрировано, что 

адаптивная синхронизация путем управления коэффициентом симметрии в 

симметричных возвратных хаотических отображениях, полученных с помощью 

разработанных в диссертации методов полуявного интегрирования, происходит 

гораздо быстрее, чем в случае синхронизации с управлением по параметру 

бифуркации [156].  

В настоящем разделе рассматривается применение методов адаптивного 

управления симметрией полуявных конечно-разностных моделей непрерывных 

хаотических систем при адаптивной синхронизации. 

  

Полуявные конечно-разностные схемы хаотических систем с управляемой 

симметрией 

Поскольку в разделе рассматривается процедура адаптивной синхронизации 

двух хаотических систем, моделируемых с помощью композиционного диагонально-

неявного метода численного интегрирования с переменной симметрией, также 

называемого методом КД с управляемой симметрией [66,103], который был введён в 

разделе 2.1, напомним основы численного интегрирования с управляемой 

симметрией.  

Метод численного интегрирования второго порядка алгебраической точности с 

управляемой симметрией Ψ с шагом интегрирования ℎ предполагает композицию 

двух сопряженных методов первого порядка [104,105] с известными функциями 

приращения Φ и Φ∗, вычисляемых для шагов интегрирования ℎ ∙ 𝑠 и ℎ ∙ (𝑠 − 1):  

 Ψℎ = Φℎ∙𝑠 ∘ Φℎ∙(𝑠−1)
∗ . (3.20) 

где коэффициент 𝑠 называется коэффициентом симметрии или адаптивным 

коэффициентом. Графическая интерпретация метода с управляемой симметрией 
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приведена на рис. 2.1 в разделе 2.1 второй главы диссертации. 

Предлагаемый метод синхронизации предполагает адаптивное управление 

коэффициентом симметрии 𝑠̂ в ведомой системе, в то время как коэффициент 

симметрии s ведущей системы неизвестен на стороне ведомой. В предыдущих 

разделах диссертации было показано, что изменение коэффициента симметрии не 

влияет существенным образом на бифуркационные и статистические свойства 

дискретной хаотической системы [66,103]. Чтобы продемонстрировать сохранение 

вышеупомянутого свойства методов для случая конечно-разностных моделей 

непрерывных хаотических систем, исследуем тестовую задачу Рёсслера (1.26), 

полуявная конечно-разностная схема которой была синтезирована в главе 1 

диссертации. Применение модификации метода КД с управляемой симметрией к 

системе (1.26) порождает композицию двух сопряженных конечно-разностных схем: 

 𝑥𝑛+𝑠 = 𝑥𝑛 + ℎ𝑠(−𝑦𝑛 − 𝑧𝑛) 

𝑦𝑛+𝑠 = 𝑦𝑛 + ℎ𝑠(𝑥𝑛+𝑠 + 𝑎𝑦𝑛+𝑠) 

𝑧𝑛+𝑠 = 𝑧𝑛 + ℎ𝑠(𝑏 + 𝑧𝑛+𝑠(𝑥𝑛+𝑠 − 𝑐)) 

(3.21) 

и 

 𝑧𝑛+1 = 𝑧𝑛+𝑠 +  ℎ(1 − 𝑠) (𝑏 + 𝑧𝑛+𝑠 (𝑥𝑛+𝑠− 𝑐)) 

𝑦𝑛+1  =  𝑦𝑛+𝑠  +  ℎ (1− 𝑠) (𝑥𝑛+𝑠  +  𝑎𝑦𝑛+𝑠) 

𝑥𝑛+1  =  𝑧𝑛+𝑠  +  ℎ (1− 𝑠)(−𝑦𝑛+1 − 𝑧𝑛+1)  

(3.22) 

Где 𝑠 – коэффициент симметрии модели. Рассмотрим концепцию адаптивной 

синхронизации на примере полуявных конечно-разностных моделей системы 

Рёсслера, полученных методом КД с управляемой симметрией. 

Адаптивная синхронизация дискретных моделей системы Рёсслера с 

управляемой симметрией 

При адаптивной синхронизации хаотических осцилляторов, как правило, 

основной задачей является синхронизация траектории ведомой системы с 

траекторией ведущей системы при дополнительном условии, что один или несколько 

параметров системы неизвестны [279]. В разделе изложена модификация данного 

подхода для управления коэффициентом симметрии в синхронизируемых полуявных 

конечно-разностных моделях непрерывных хаотических систем. Показан пример 
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управления неизвестным параметром нелинейности в случае стандартной адаптивной 

синхронизации непрерывных хаотических систем. В обоих исследуемых подходах в 

качестве тестового примера используется система Рёсслера (1.26) и ее полуявные 

модели. 

Идея, обсуждаемая в этом подразделе, основана на принципах, изложенных в 

предыдущих разделах диссертации 2.1 и 3.2, работе [272] и ряде аналогичных 

подходов, известных из литературы [258,270, 271]. Поскольку уравнения (3.21) и 

(3.22), заданные методом КД с управляемой симметрией, связаны между собой 

коэффициентом симметрии, достаточно добиться адаптивной синхронизации по 

крайней мере первых из двух сопряженных частей схемы для ведущей и ведомой 

систем. 

Рассмотрим ведущую систему – конечно-разностную модель осциллятора 

Рёсслера вида 

 𝑥1,𝑖 = 𝑥1,𝑖−1 + 𝑠ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1) 

𝑦1,𝑖 = 𝑦1,𝑖−1 + 𝑠ℎ(𝑥1,𝑖 + 𝑎𝑦1,𝑖−1) 

𝑧1,𝑖 = 𝑧1,𝑖−1 + 𝑠ℎ (𝑏 + 𝑧1,𝑖−1(𝑥1,𝑖 − 𝑐)) 

(3.23) 

Ведомая система имеет вид: 

 𝑥2,𝑖 = 𝑥2,𝑖−1 + 𝑠̂𝑖−1ℎ(−𝑦2,𝑖−1 − 𝑧2,𝑖−1) + 𝑢1,𝑖  

𝑦2,𝑖 = 𝑦2,𝑖−1 + 𝑠̂𝑖−1ℎ(𝑥2,𝑖 + 𝑎𝑦2,𝑖−1) + 𝑢2,𝑖 

𝑧2,𝑖 = 𝑧2,𝑖−1 + 𝑠̂𝑖−1ℎ (𝑏 + 𝑧2,𝑖−1(𝑥2,𝑖 − 𝑐)) + 𝑢3,𝑖 

(3.24) 

где 𝑠̂𝑖 – оценка адаптивного коэффициента 𝑠, который считается неизвестным, а 

𝑢1,𝑖 , 𝑢2,𝑖 , 𝑢3,𝑖 – входы ведомой системы. 

Целью процедуры адаптивной синхронизации является определение 

подходящих входов, а также закона оценивания для 𝑠̂𝑖 таким образом, чтобы 

траектории ведомой системы сошлись к таковым для ведущей системы, т.е. 

|𝑥1,𝑖 − 𝑥2,𝑖| → 0, |𝑦1,𝑖 − 𝑦2,𝑖| → 0, |𝑧1,𝑖 − 𝑧2,𝑖| → 0, |𝑠 − 𝑠̂𝑖| → 0, при  i → ∞. 

Для законов управления предполагается, что все состояния ведущей и ведомой 

систем, а также параметры 𝑎, 𝑏, 𝑐, ℎ известны и доступны для организации обратной 

связи. 
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Теорема 4. Ведущая (3.23) и ведомая (3.24) системы синхронизируются по 

следующим законам управления 

𝑢1,𝑖 = −𝑥2,𝑖−1 − 𝑠̂𝑖−1ℎ(−𝑦2,𝑖−1 − 𝑧2,𝑖−1) + 𝑥1,𝑖−1 + 𝑠̂𝑖−1ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1) 

𝑢2,𝑖 = −𝑦2,𝑖−1 − 𝑠̂𝑖−1ℎ(𝑥2,𝑖 + 𝑎𝑦2,𝑖−1) + 𝑦1,𝑖−1 + 𝑠̂𝑖−1ℎ(𝑥1,𝑖 + 𝑎𝑦1,𝑖−1) 

𝑢3,𝑖 = −𝑧2,𝑖−1 − 𝑠̂𝑖−1ℎ (𝑏 + 𝑧2,𝑖−1(𝑥2,𝑖 − 𝑐)) + 𝑧1,𝑖−1 + 𝑠̂𝑖−1ℎ(𝑏 + 𝑧1,𝑖−1(𝑥1,𝑖 − 𝑐)) 

(3.25) 

и закону оценки параметров вида 

 𝑠̂𝑖 = 𝑠̂𝑖−1 + 𝑐𝑖(𝑥1,𝑖 − 𝑥2,𝑖) (3.26) 

где 𝑐𝑖 – изменяющийся во времени параметр управления, задаваемый следующим 

образом: 

 𝑐𝑖 =
𝑐

ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1)
 (3.27) 

где 0 <  𝑐 <  2 – положительный скаляр, который можно использовать для 

управления скоростью синхронизации.  

Доказательство. Применяя законы управления вида (3.25) к ведомой системе 

(3.24), уравнения последней приобретают вид: 

 𝑥2,𝑖 = 𝑥1,𝑖−1 + 𝑠̂𝑖−1ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1) 

𝑦2,𝑖 = 𝑦1,𝑖−1 + 𝑠̂𝑖−1ℎ(𝑥1,𝑖 + 𝑎𝑦1,𝑖−1) 

𝑧2,𝑖 = 𝑧1,𝑖−1 + 𝑠̂𝑖−1ℎ(𝑏 + 𝑧1,𝑖−1(𝑥1,𝑖 − 𝑐)) 

(3.28) 

Ошибка синхронизации для каждой переменной состояния и параметра может 

быть записана, как 

 𝑒𝑥,𝑖 = 𝑥1,𝑖 − 𝑥2,𝑖, 

𝑒𝑦,𝑖 = 𝑦1,𝑖 − 𝑦2,𝑖, 

𝑒𝑧,𝑖 = 𝑧1,𝑖 − 𝑧2,𝑖, 

𝑒𝑠,𝑖 = 𝑠 − 𝑠̂𝑖 . 

(3.29) 

Заменяя значения каждой переменной состояния для ведущей и ведомой систем 

из (3.23) и (3.28) в выражениях для погрешности, получим, что 

 𝑒𝑥,𝑖 = 𝑒𝑠,𝑖−1ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1) 

𝑒𝑦,𝑖 = 𝑒𝑠,𝑖−1ℎ(𝑥1,𝑖 + 𝑎𝑦1,𝑖−1) 

𝑒𝑧,𝑖 = 𝑒𝑠,𝑖−1ℎ(𝑏 + 𝑧1,𝑖−1(𝑥1,𝑖 − 𝑐)) 

(3.30) 
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Таким образом, если динамика оценки величины адаптивного коэффициента s 

сходится к нулю, то можно утверждать, что погрешность синхронизации по всем трем 

переменным состояния также будет равна нулю, что означает полную синхронизацию 

ведомой и ведущей систем. Учитывая выражение (3.26) и подставляя его в (3.30), 

𝑠̂𝑖 = 𝑠̂𝑖−1 + 𝑐𝑖(𝑥1,𝑖 − 𝑥2,𝑖) ⇒ 

𝑠̂𝑖 = 𝑠̂𝑖−1 + 𝑐𝑖𝑒𝑥,𝑖 ⇒ 

𝑠̂𝑖 = 𝑠̂𝑖−1 + 𝑐𝑖𝑒𝑠,𝑖−1ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1) ⇒ 

𝑠̂𝑖 = 𝑠 − 𝑒𝑠,𝑖−1 + 𝑐𝑖𝑒𝑠,𝑖−1ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1) 

оценка погрешности приобретает вид: 

𝑒𝑠,𝑖 = 𝑒𝑠,𝑖−1(1 − 𝑐𝑖ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1)) 

Таким образом, выбирая параметр управления ci таким образом, чтобы условие 

|(1 − 𝑐𝑖ℎ(−𝑦1,𝑖−1 − 𝑧1,𝑖−1))| < 1 удовлетворялось на каждой итерации, можно 

добиться того, что динамика оценки погрешности будет асимптотически устойчивой, 

и синхронизация систем будет достигнута. Одним из вариантов этого является 

формула (3.27), которая всегда выполнима, пока выполняется условие −𝑦1,𝑖−1 −

𝑧1,𝑖−1  ≠ 0. 

Стоит обратить внимание, что в предлагаемой схеме управления переменная 

состояния 𝑦2,𝑖, 𝑧2,𝑖 и, следовательно, входы 𝑢2,𝑖, 𝑢3,𝑖 ведомой системы зависят от 𝑥2,𝑖. 

Таким образом, входы 𝑢2,𝑖, 𝑢3,𝑖 , вычисляются и применяются к этим двум состояниям 

после того, как 𝑢1,𝑖  применяется к 𝑥2,𝑖. 

 

Адаптивная синхронизация конечно-разностных моделей системы 

Рёсслера с управлением по параметру системы 

Для сравнительной оценки предлагаемого подхода к адаптивной 

синхронизации хаотических осцилляторов на основе управления коэффициентом 

симметрии, рассмотрим традиционную синхронизацию с управлением по параметру 

бифуркации. Описываемый эксперимент в целом следует идеям работы [290], где все 

три параметра системы считались неизвестными. Поскольку в предлагаемом подходе 

контролируется и оценивается только коэффициент симметрии, для корректного 
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сравнения необходимо разработать законы управления для одного параметра 

нелинейности. В настоящем исследовании в качестве неизвестного параметра 

ведомой системы (3.21) будет рассматриваться параметр b. 

Рассмотрим ведущую систему на основе непрерывной модели осциллятора 

Рёсслера вида 

 𝑥̇1 = −𝑦1 − 𝑧1 

𝑦̇1 = 𝑥1 + 𝑎𝑦1 

𝑧̇1 = 𝑏 + 𝑧1(𝑥1 − 𝑐) 

(3.31) 

и ведомую систему, описываемую следующими выражениями 

 𝑥̇2 = −𝑦2 − 𝑧2 + 𝑢1 

𝑦̇2 = 𝑥2 + 𝑎𝑦2 + 𝑢2 

𝑧̇2 = 𝑏̂ + 𝑧2(𝑥2 − 𝑐) + 𝑢3 

(3.32) 

где 𝑏̂ – оценка параметра 𝑏, который считается неизвестным, а 𝑢1, 𝑢2, 𝑢3 – входы 

ведомой системы.  

Цель процесса адаптивной синхронизации состоит в том, чтобы определить 

подходящие входы, а также закон оценки параметра 𝑏̂, чтобы траектории ведомой 

системы сходились к ведущей системе, т.е.: 

 |𝑥1 − 𝑥2| → 0, |𝑦1 − 𝑦2| → 0, |𝑧1 − 𝑧2| → 0, |𝑏 − 𝑏̂| → 0, при  t → ∞. (3.33) 

При выводе законов управления предполагается, что все состояния ведущей и 

ведомой систем, а также параметры 𝑎, 𝑐 известны и доступны для организации 

обратной связи. 

Теорема 5. Ведущая (3.31) и ведомая (3.32) системы синхронизируются по 

следующим законам управления  

 𝑢1 = 𝑒𝑦 + 𝑒𝑧 + 𝑘1𝑒𝑥 

𝑢2 = −𝑒𝑥 + 𝑘2𝑒𝑦 

𝑢3 = −𝑧2𝑥2 + 𝑧1𝑥1 + 𝑘3𝑒𝑧 

(3.34) 

и закону адаптивной оценки коэффициента 

 𝑏̇̂ = −𝑒𝑧 (3.35) 

где ошибка синхронизации определяется как 
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𝑒𝑥 = 𝑥2 − 𝑥1 

𝑒𝑦 = 𝑦2 − 𝑦1 

𝑒𝑧 = 𝑧2 − 𝑧1 

𝑒𝑏 = 𝑏̂ − 𝑏 

где 𝑘𝑖  – скалярные параметры управления, удовлетворяющие следующим условиям 

 𝑘1  <  0, 𝑎 + 𝑘2  <  0 𝑘3− 𝑐 < 0 (3.36) 

Доказательство. Запишем полные выражения для ошибок между ведущей и 

ведомой системами по всем переменным состояния: 

𝑒̇𝑥 = −𝑒𝑦 − 𝑒𝑧 + 𝑢1 

𝑒̇𝑦 = 𝑒𝑥 + 𝑎𝑒𝑦 + 𝑢2 

𝑒̇𝑧 = 𝑒𝑏 + 𝑧2𝑥2 − 𝑧1𝑥1 − 𝑐𝑒𝑧 + 𝑢3 

Замена входов системы (3.34) на функции ошибки, приведенные выше, дает: 

𝑒̇𝑥 = 𝑘1𝑒𝑥 

𝑒̇𝑦 = (𝑎 + 𝑘2)𝑒𝑦 

𝑒̇𝑧 = 𝑒𝑏 + (𝑘3 − 𝑐)𝑒𝑧 

Рассмотрим функцию (англ. Lyapunov candidate function) Ляпунова вида  

𝑉 =
1

2
(𝑒𝑥
2 + 𝑒𝑦

2 + 𝑒𝑧
2 + 𝑒𝑏

2). 

Взятие производной от 𝑉 по ошибке дает 

𝑉̇ = 𝑒̇𝑥𝑒𝑥 + 𝑒̇𝑦𝑒𝑦 + 𝑒̇𝑧𝑒𝑧 + 𝑒̇𝑏𝑒𝑏 = 𝑘1𝑒𝑥
2 + (𝑎 + 𝑘2)𝑒𝑦

2 + (𝑒𝑏 + (𝑘3 − 𝑐)𝑒𝑧)𝑒𝑧 − 𝑒𝑧𝑒𝑏

= 𝑘1𝑒𝑥
2 + (𝑎 + 𝑘2)𝑒𝑦

2 + (𝑘3 − 𝑐)𝑒𝑧
2 

и если принять параметры управления аналогично выражению (3.36), 𝑉̇ ≤ 0 

удовлетворяется. Таким образом, ошибка синхронизации сходится к нулю, и системы 

полностью синхронизированы. Теорема доказана. 

Сравнительная оценка времени адаптивной синхронизации 

Для экспериментального сравнения исследуемых подходов к адаптивной 

синхронизации конечно-разностных моделей непрерывных систем оценивалось 

максимальное время моделирования, необходимое для синхронизации ведущей и 

ведомой систем с заданной точностью. Во всех рассмотренных случаях система 
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Рёсслера моделировалась с помощью метода КД с управляемой симметрией, где в 

случае управления параметром бифуркации коэффициент симметрии 𝑠 был выбран 

равным 𝑠 =  0.5. Начальные значения управляемых параметров были выбраны как 

𝑠 =  0.1, 𝑠̂ =  0.9 и 𝑏 =  0.2, 𝑏̂ = 0.4, соответственно. Оценки измеренного времени 

синхронизации усреднялись для набора из 1000 начальных условий, 𝑥0, 𝑦0, 𝑧0, 

случайно выбранных на интервале [0;  10]. Значения оптимальных коэффициентов 

синхронизации для законов (3.34) и (3.25) подбирались по методике, описанной в 

работе [291]. Все вычислительные эксперименты проводились с использованием 

данных, представленных числами с плавающей точкой и двойной точностью [93]. 

Полученные результаты показаны на рис. 3.9. ||𝐸𝑟𝑟𝑜𝑟|| обозначает векторную норму 

ошибки между значениями переменных состояния ведущей и ведомой систем. 

  

(a) Поведение ошибки при адаптивной 

синхронизации моделей Ресслера с 

управлением параметром бифуркации 

(b) Поведение ошибки при адаптивной 

синхронизации моделей Ресслера с 

управлением коэффициентом симметрии 

Рисунок 3.9 – Сравнительная оценка исследуемых способов адаптивной 

синхронизации по критериям отношения времени синхронизации к достигаемой 

точности.  

 

Из рис. 3.9 можно видеть, что в обоих подходах графики практически 

совпадают с линейным законом, что, с учетом логарифмической шкалы рисунков по 

оси абсцисс, означает экспоненциальную сходимость. Для параметрического 

управления увеличение точности синхронизации на порядок достигается за 5 секунд 
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моделирования, в то время как управление коэффициентом симметрии справляется с 

этим менее чем за 0.05 секунды. Таким образом, скорость синхронизации 

предложенного подхода на основе управления коэффициентом симметрии может 

быть до 100 раз выше, чем традиционного метода адаптивной синхронизации с 

управляемым параметром нелинейности. С практической точки зрения можно 

предположить, что внедрение конечно-разностных схем с управляемым 

коэффициентом симметрии может значительно увеличить характеристики 

технических систем, основанных на синхронизации нелинейных осцилляторов. 

Для того, чтобы оценить влияние разброса между начальным и целевым 

значениями управляемого параметра системы на время синхронизации была 

проведена следующая серия вычислительных экспериментов. Начальные значения 

контролируемых параметров ведомой и ведущей систем для обоих методов 

синхронизации задавались с расхождением в 𝑖-м десятичном знаке, где 𝑖 ∈  [1;  10]. 

Затем оценивалось время моделирования, необходимое для приведения значения 

ошибки синхронизации к искомому с точностью 10−14. Как видно из полученных 

результатов (рис. 3.10), для подхода на основе управления коэффициентом 

симметрии время синхронизации не зависит от начальных значений ведущей и 

ведомой систем, в отличие от подхода на основе управляемого параметра. 

  

(a) Синхронизация с управлением 

параметром бифуркации 

(b) Синхронизация с управлением 

коэффициентом симметрии 

Рисунок 3.10 – Сравнительная оценка двух способов адаптивной синхронизации при 

начальном разбросе управляемого параметра.  
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Таким образом, экспериментально подтверждены теоретические 

предположения диссертационного исследования о превосходстве полуявных 

симметричных конечно-разностных моделей хаотических осцилляторов над 

традиционными моделями с точки зрения процесса синхронизации.  

Можно сделать вывод, что предложенный в разделе способ адаптивной 

синхронизации с управлением по коэффициенту симметрии демонстрирует 

значительно более высокую скорость синхронизации, чем традиционное управление 

параметром бифуркации, и практически не зависит от изначального разброса 

параметра симметрии. Кроме того, важно подчеркнуть, что вычислительные затраты 

на шаге моделирования примерно одинаковы для обоих исследованных подходов.  

 

3.4. Быстрая синхронизация хаотических осцилляторов, основанная на 

свойстве обратимости решения во времени 

 

Несмотря на то, что в предыдущих трех разделах диссертации было 

рассмотрено множество эффективных методов синхронизации, некоторые проблемы 

в этой области остаются нерешенными, например, надежная синхронизация 

дискретных моделей на основе неполных, зашумленных или недостаточных массивов 

измеренных данных. К тому же, с точки зрения практических приложений теории 

хаоса, адаптивная синхронизация не всегда эффективна и физически реализуема в 

аппаратуре. Поэтому в диссертационном исследовании рассматривается проблема 

неадаптивной обобщенной синхронизации хаотических осцилляторов. 

С тех пор как в 1990 году в журнале Physical Review Letters была опубликована 

знаменитая работа Пекоры и Кэрролла [289], неадаптивная хаотическая 

синхронизация стала одним из краеугольных методов нелинейной науки. Было 

найдено множество применений такого способа синхронизации в системах 

защищенной связи, прогнозировании временных рядов, дистанционном и 

компрессионном зондировании, нейроинформатике и т.д. [103, 292-294]. 

Традиционный подход к хаотической синхронизации подразумевает сходимость 

процесса синхронизации на некотором интервале, который может быть относительно 
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большим, даже, когда используются весьма эффективные конечно-временные 

методы синхронизации, представленные в работах [295-297], или методы адаптивной 

синхронизации, например, синхронизация с контролем симметрии, предложенная в 

настоящей работе. Скорость синхронизации в традиционных подходах 

экспоненциальна, но в большинстве практических приложений крайне желателен 

неадаптивный алгоритм синхронизации со сверхэкспоненциальной сходимостью во 

временной области. 

Например, быстрая однонаправленная синхронизация двух систем может быть 

полезна, когда необходимо восстановить траектории идентифицируемой системы в 

фазовом пространстве с известными параметрами, но возможны только 

кратковременные наблюдения или измерения переменных состояния, которые 

дополнительно обременены неоднородностью или зашумлением данными. Такая 

ситуация характерна для астрономии, например, при наблюдении экзопланет и комет 

транзитным методом [298,299]. В системах защищенной связи и алгоритмах по типу 

Compressed sensing (англ.) методы сверхэкспоненциальной синхронизации могут 

стать решающим шагом на пути разработки перспективных алгоритмов быстрой 

коммуникации, обработки и передачи данных [103,300,301]. 

На данный момент единственным описанным в литературе способом 

достижения сверхэкспоненциальной синхронизации нелинейных осцилляторов 

является применение методов глобальной оптимизации [302]. Тем не менее, многие 

практические реализации не позволяют применять подобное вычислительно сложное 

и ненадежное решение. Один из подходов к решению задачи сверхэкспоненциальной 

быстрой синхронизации может быть основан на свойстве обратимости во времени 

решения симметричной консервативной системы, присущей многим задачам 

небесной динамики, термодинамики и оптики [303,304]. Имея всего несколько точек 

переменной состояния, записанных во время наблюдения, можно полностью 

синхронизировать модель ведомой системы с измеренными данными, запуская 

процесс синхронизации поочередно вперед и назад во времени, симметрично 

относительно доступного набора реальных данных. Этот подход требует нахождения 

коэффициента синхронизации (или матрицы таких коэффициентов), положительного 
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для прямого направления и отрицательного для обратного, обеспечивающего нужную 

сходимость процесса, а также применения специальных обратимых во времени 

методов интегрирования, обеспечивающих сохранение геометрических свойств 

модели. На роль таких методов хорошо подходят предлагаемые в диссертационном 

исследовании полуявные методы КД. Более того, как далее будет показано, 

предлагаемые алгоритмы интегрирования позволяют распространить новый способ 

синхронизации на весь класс нелинейных динамических систем, описываемых в 

нормальной форме Коши, вне зависимости от степени диссипативности [356]. 

Рассмотрим предлагаемый подход более детально. 

Возвратная синхронизация хаотических систем 

Рассмотрим обратимую во времени или неравномерно консервативную 

динамическую систему, определяемую автономным обыкновенным 

дифференциальным уравнением вида: 

𝐱̇𝑚(𝑡) = 𝑓(𝐱𝑚(𝑡)). 

Предположим, что решение 𝐗𝑚 = (𝑥1, 𝑥2…𝑥𝑛) этой так называемой ведущей 

системы известно на определенном временном интервале [𝑡1, 𝑡𝑛]. Обозначим вектор 

переменных состояния ведомой системы как 𝐱𝑠, запишем ее уравнение: 

 𝐱̇𝑠 = 𝑓(𝐱𝑠) − 𝐾
+𝐞, (3.37) 

где 𝐞 = 𝐱𝑠 − 𝐱  – ошибка синхронизации, а 𝐾+ – положительно определенная матрица 

коэффициентов для прямого направления синхронизации. 

Версия системы (3.37) для обратного во времени решения определяется 

уравнением: 

 𝐱̇𝑠 = −(𝑓(𝐱𝑠) + 𝐾𝐞), (3.38) 

Во время фазы прямой синхронизации ведомая система синхронизируется с 

исходным вектором значений выбранной переменной состояния ведущей системы 

𝐗𝑚
+ = (𝑥1, 𝑥2…𝑥𝑛−1), а во время фазы обратной синхронизации – с обратным по 

времени вектором 𝐗𝑚
− = (𝑥𝑛, 𝑥𝑛−1…𝑥2). Таким образом, информация о ведущей 

системе, содержащаяся в массиве значений 𝐗𝑚, может быть использована наиболее 

полно. На рисунке 3.11 показана схема предлагаемого в диссертации способа 

возвратной синхронизация с временной симметрией на ограниченном временном 
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интервале. Траектория ведомой системы (отмечена красным) итеративно 

приближается к траектории ведущей системы, где 𝑖 обозначает номер итерации 

синхронизации. 

 

Рисунок 3.11 – Схема предлагаемого способа синхронизации, использующего 

свойство обратимости решения во времени. 

 

На рисунке 3.12 показана структурная схема алгоритма синхронизации с 

обратимостью во времени. Количество прямых и обратных итераций процесса 

синхронизации определяется требованиями к сходимости траекторий ведомой и 

ведущей систем. Сначала сигнал от ведущей системы 𝐱𝐨𝐮𝐭 записывается в виде 

массива 𝐗𝐦 = (𝐱1, 𝐱2…𝐱𝑛). Во время процедуры прямой синхронизации сигнал 

ведущей системы 𝐗𝐦(1. . 𝑛 − 1) помогает перевести ведомую систему в состояние, 

более близкое к состоянию ведущей системы, при этом последняя точка с индексом 

𝑛 не используется. Фазовые переменные ведомой системы служат в качестве 

выходных данных 𝐱𝐨𝐮𝐭 для прямой фазы синхронизации. Эти значения используются 

в качестве начальных условий в процедуре обратной фазы синхронизации. Во время 

этой процедуры обращенный массив 𝐗𝐦(2. . 𝑛) используется в качестве сигнала 

синхронизации для ведомой системы с обращенным во времени решением, а 

конечные значения фазовых переменных последней являются результатом этой 

процедуры. Затем полученные во время обратной фазы значения снова передаются на 
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вход этапа прямой синхронизации, пока не будет выполнено заданное количество 

итераций, и так далее. 

 

Рисунок 3.12 – Структурная схема синхронизации c временной симметрией 

 

Продемонстрируем, почему матрица синхронизации 𝐾+, используемая во 

время прямой фазы синхронизации, должна быть определена положительно, а 

используемая во время обратной фазы матрица 𝐾− должна быть определена 

отрицательно. Для аналитического доказательства используем теорию устойчивости 

по Ляпунову. 

Теорема 6. Пусть существует функция Ляпунова 𝑉(𝑡) с неположительной 

производной: 

 V̇ = 𝐹(𝑡, 𝐱, 𝐞) − 𝐾+𝐞⊤𝐞 ≤ 0, (3.39) 

что достигается за счет того, что 𝐹(𝑡, 𝐱, 𝐞) = 0. Данное предположение встречается в 

ряде практических примеров, например, в работе [305]. Неравенство (3.39) 

подразумевает, что 𝐾+ является положительно определенным. Таким образом, для 

обратного направления синхронизации: 

V̇(−𝑡) = −V̇(𝑡) = −𝐹(𝑡, 𝐱, 𝐞) + 𝐾−𝐞⊤𝐞 = −𝐾𝐞⊤𝐞 ≤ 0, 

что подтверждает необходимость использования отрицательно определенной 

матрицы синхронизации 𝐾− на обратной фазе. Теорема доказана. 

Алгоритмическая реализация этого процесса, тем не менее, сильно зависит от 

выбора метода численного интегрирования. Этот метод, примененный к системе 

(3.37), должен обеспечивать выполнение условия:  

𝐱𝑠,𝑛+1 = 𝐱𝑠,𝑛 + ℎΦℎ(𝐱𝑠,𝑖 , 𝐾
+), 𝑖 ∈ ℤ, 𝑖 ≤ 𝑛 + 1, 

а будучи примененным к системе (3.38), должен давать: 

𝐱𝑠,𝑛−1 = 𝐱𝑠,𝑛 − ℎΦ−ℎ(𝐱𝑠,𝑖 , −𝐾
−), 𝑖 ∈ ℤ, 𝑖 ≥ 𝑛 − 1, 
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что верно только в том случае, если Φℎ
−1 = Φ−ℎ, подразумевая при этом равенство 

−𝐾− = 𝐾+ и локальную обратимость моделируемой системы в пределах заданного 

интервала времени. Из этого ясно, что метод должен быть симметричным и 

обратимым во времени [306,307]. В противном случае обратимость решения может 

быть нарушена, и симметричная синхронизация не будет гарантирована.  

Существует ряд методов, обладающих свойством обратимости во времени, 

включая неявный метод средней точки, неявный метод трапеций, и основанные на 

них композиционные методы Йошиды [38], описанные в первой главе диссертации. 

В настоящем диссертационном исследовании введен полуявный композиционный 

метод КД, который представляет собой более вычислительно простой, чем 

вышеупомянутые неявные методы, алгоритм численного решения ОДУ [104], 

симметричность и обратимость которого были доказаны в первой главе диссертации. 

Проиллюстрируем предложенный метод быстрой синхронизации с 

обратимостью решения на примере синхронизации тестовой хаотической задачи. 

Одной из хорошо известных систем, обладающих хаотическим поведением и 

обратимостью во времени, является термостат Нозе-Гувера (1.37), описываемый 

следующей системой дифференциальных уравнений:  

 ẋ = 𝑦
ẏ = −𝑥 + 𝑧𝑦

ż = 1 − 𝑦2
. (3.40) 

Применим схему синхронизации с временной симметрией для этой модельной 

системы. Сначала докажем, что система Нозе-Гувера может быть синхронизирована 

только с помощью переменной состояния 𝑦. Определим приближенную функцию 

полной энергии термостата Нозе-Гувера, которая напоминает классический 

гамильтониан, следующим образом: 

𝐻 =
1

2
𝑥2 +

1

2
𝑦2 +

1

2
𝑧2. 

Его производная по времени равна 

Ḣ = ẋ𝑥 + ẏ𝑦 + ż𝑧 = 𝑦𝑥 − 𝑥𝑦 + 𝑧𝑦2 − 𝑧 − 𝑧𝑦2 = −𝑧. 

Система Нозе-Гувера является неравномерно консервативной нелинейной 

системой, что означает, что среднее значение 𝐻 по времени равно нулю [308]: 
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 ⟨Ḣ⟩ = −⟨𝑧⟩ = 0.  (3.41) 

Рассмотрим два осциллятора Нозе-Гувера, соединенных однонаправленной 

синхронизацией. Уравнение (3.40) будет обозначать ведущую систему, а уравнение 

для ведомой системы запишем следующим образом: 

 ẋ𝑠 = 𝑦𝑠
ẏ𝑠 = −𝑥𝑠 + 𝑧𝑠𝑦𝑠 − 𝐾

+𝑒𝑦

𝑧̇𝑠 = 1 − 𝑦𝑠
2.

,  (3.42) 

где 𝐾+ > 0 – коэффициент синхронизации, а 𝑒𝑦 = 𝑦𝑠 − 𝑦 – ошибка между 

переменными 𝑦 ведомой и ведущей систем. Из (3.40) и (3.42) следует, что уравнения 

для ошибок между ведущей и ведомой системами для 𝑒𝑦 и двух других ошибок 𝑒𝑥 =

𝑥𝑠 − 𝑥, 𝑒𝑧 = 𝑧𝑠 − 𝑧 имеют вид: 

 𝑒̇𝑥 = 𝑒𝑦
𝑒̇𝑦 = −𝑒𝑥 + 𝑧𝑠𝑦𝑠 − 𝑧𝑦 − 𝐾

+𝑒𝑦

𝑒̇𝑧 = 𝑦2 − 𝑦𝑠
2.

  (3.43) 

В соответствии с прямым методом анализа устойчивости по Ляпунову, 

определим кандидат-функцию Ляпунова для системы ошибок (3.43) следующим 

образом: 

 
𝑉 =

1

2
𝑒𝑥
2 +

1

2
𝑒𝑦
2 +

1

2
𝑒𝑧
2. (3.44) 

Производная (3.44) по времени равна 

V̇ = 𝑒̇𝑥𝑒𝑥 + 𝑒̇𝑦𝑒𝑦 + 𝑒̇𝑧𝑒𝑧 = −𝐾
+𝑒𝑦

2 + (𝑦𝑠𝑧 − 𝑦𝑧𝑠)𝑒𝑦 . 

Можно видеть, что предложенная кандидат-функция Ляпунова равна нулю при 

нулевом аргументе и строго положительна при любом ненулевом аргументе, поэтому, 

исходя из (3.41), получаем: 

⟨V̇⟩ = −𝐾+⟨𝑒𝑦
2⟩ < 0, ∀𝑒𝑦 ≠ 0. 

Следовательно, ошибка асимптотически устойчива, и связанные подобным 

образом системы будут синхронизироваться. Рассмотрим систему, состоящую из 

двух соединенных термостатов Нозе-Гувера с обращением решения во времени, с 

уравнением для ведущей системы: 
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ẋ = −𝑦
ẏ = 𝑥 − 𝑧𝑦

ż = 𝑦2 − 1
, 

отличающийся от (3.40) знаками у всех переменных, и аналогично преобразованную 

ведомую систему: 

ẋ𝑠 = −𝑦𝑠
ẏ𝑠 = 𝑥𝑠 − 𝑧𝑠𝑦𝑠 − 𝐾

−𝑒𝑦 .

𝑧̇𝑠 = 𝑦𝑠
2 − 1

 

Поскольку система Нозе-Гувера является обратимым во времени осциллятором 

[309], кандидат-функция Ляпунова для модифицированной пары систем 𝑉𝑟𝑒𝑣 будет 

похожа на (3.44), соответственно приходим к следующему выводу:  

⟨V̇𝑟𝑒𝑣⟩ = −𝐾
−⟨𝑒𝑦

2⟩ < 0, ∀𝑒𝑦 ≠ 0, 

Таким образом, система Нозе-Гувера может быть синхронизирована в обоих 

направлениях, что делает возможной синхронизацию с временной симметрией. 

Использование метода интегрирования с обратимостью во времени [306] для 

дискретизации ведущей и ведомой систем позволяет построить эффективную 

симметричную схему синхронизации с временной симметрией при компьютерном 

моделировании. Применяя метод КД к выражению (3.42), мы получаем следующую 

конечно-разностную схему для ведомой системы: 

𝑥
𝑠,𝑛+

1
2
= 𝑥𝑠,𝑛 +

ℎ

2
𝑦𝑠,𝑛

𝑦
𝑠,𝑛+

1
2
=

𝑦𝑠,𝑛 +
ℎ
2
(−𝑥

𝑠,𝑛+
1
2
− 𝐾+𝑒𝑦,𝑛)

1 −
ℎ
2
𝑧𝑠,𝑛

𝑧𝑠,𝑛+1 = 𝑧𝑛 + ℎ(1 − 𝑦
𝑠,𝑛+

1
2

2 )

𝑦𝑠,𝑛+1 = 𝑦
𝑠,𝑛+

1
2
+
ℎ

2
(−𝑥

𝑠,𝑛+
1
2
+ 𝑦

𝑠,𝑛+
1
2
𝑧𝑠,𝑛+1 − 𝐾

+𝑒𝑦,𝑛)

𝑥𝑠,𝑛+1 = 𝑥
𝑠,𝑛+

1
2
+
ℎ

2
𝑦
𝑠,𝑛+

1
2

. 

Для оценки возможности использования предлагаемого способа 

синхронизации для диссипативных хаотических систем, была выбрана 
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диссипативная система Рёсслера (1.26). Уравнение ведомой системы при этом 

выглядит следующим образом:   

 ẋ𝑠 = −𝑦𝑠 − 𝑧𝑠
ẏ𝑠 = 𝑥𝑠 + 𝑎𝑦𝑠 + 𝐾

+(𝑦 − 𝑦𝑠)
𝑧̇𝑠 = 𝑏 + 𝑧𝑠(𝑥𝑠 − 𝑐).

 (3.45) 

Конечно-разностная схема метода КД для ведомой системы Рёсслера может 

быть записана, как:  

𝑥
𝑠,𝑛+

1
2
= 𝑥𝑠,𝑛 +

ℎ

2
(−𝑦𝑠,𝑛 − 𝑧𝑠,𝑛)

𝑦
𝑠,𝑛+

1
2
= 𝑦𝑠,𝑛 +

ℎ

2
(𝑥
𝑠,𝑛+

1
2
+ 𝑎𝑦𝑠,𝑛 + 𝐾𝑒𝑦)

𝑧
𝑠,𝑛+

1
2
= 𝑧𝑠,𝑛 +

ℎ

2
(𝑏 + 𝑧𝑠,𝑛(𝑥𝑠,𝑛+1

2
− 𝑐))

𝑧𝑠,𝑛+1 =

𝑧
𝑠,𝑛+

1
2
+
ℎ
2
𝑏

1 −
ℎ
2 (𝑥𝑠,𝑛+12

− 𝑐)

𝑦𝑠,𝑛+1 =

𝑦
𝑠,𝑛+

1
2
+
ℎ
2
(𝑥
𝑠,𝑛+

1
2
+ 𝐾𝑒𝑦)

1 −
ℎ
2
𝑎

𝑥𝑠,𝑛+1 = 𝑥
𝑠,𝑛+

1
2
+
ℎ

2
(−𝑦𝑠,𝑛+1 − 𝑧𝑠,𝑛+1)

 

где 𝑒𝑦 = 𝑦𝑛 − 𝑦𝑠,𝑛 и 𝐾 выбирается как 𝐾+, если ℎ > 0 в прямом направлении, и 𝐾−, 

если ℎ < 0 в обратном направлении. 

Для полноты исследования рассмотрим другую диссипативную хаотическую 

систему, обладающую двухвитковым аттрактором – систему Лоренца [310]: 

 ẋ = 𝜎(𝑦 − 𝑥)
𝑦̇ = 𝑥(𝜌 − 𝑧) − 𝑦
ż = 𝑥𝑦 − 𝑏𝑧

  

при значении параметров 𝜎 =  10, 𝜌 =  28, 𝑏 =  8/3 эта система 

демонстрирует хаотическое поведение. Выражения для ведомой системы при 

синхронизации имеют вид: 
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 ẋ𝑠 = 𝜎(𝑦𝑠 − 𝑥𝑠)

𝑦̇𝑠 = 𝑥𝑠(𝜌 − 𝑧𝑠) − 𝑦𝑠 + 𝐾
+(𝑦 − 𝑦𝑠)

ż𝑠 = 𝑥𝑠𝑦𝑠 − 𝑏𝑧𝑠

 (3.46) 

Конечно-разностная схема, полученная методом КД для ведомой системы 

(3.46), выглядит следующим образом:  

𝑥
𝑠,𝑛+

1
2

= 𝑥𝑠,𝑛 +
ℎ

2
𝜎(𝑦𝑠,𝑛 − 𝑥𝑠,𝑛)

𝑦
𝑠,𝑛+

1
2
= 𝑦𝑠,𝑛 +

ℎ

2
(𝑥
𝑠,𝑛+

1
2
(𝜌 − 𝑧𝑠,𝑛) − 𝑦𝑠,𝑛 + 𝐾𝑒𝑦)

𝑧
𝑠,𝑛+

1
2

= 𝑧𝑠,𝑛 +
ℎ

2
(𝑥
𝑠,𝑛+

1
2
𝑦
𝑠,𝑛+

1
2
− 𝑏𝑧𝑠,𝑛)

𝑧𝑠,𝑛+1 =

𝑧
𝑠,𝑛+

1
2
+
ℎ
2
𝑥
𝑠,𝑛+

1
2
𝑦
𝑠,𝑛+

1
2

1 +
ℎ
2
𝑏

𝑦𝑠,𝑛+1 =

𝑦
𝑠,𝑛+

1
2
+
ℎ
2
(𝑥
𝑠,𝑛+

1
2
(𝜌 − 𝑧𝑠,𝑛+1) + 𝐾𝑒𝑦)

1 +
ℎ
2

𝑥𝑠,𝑛+1 =

𝑥
𝑠,𝑛+

1
2
+
ℎ
2
𝜎𝑦𝑠,𝑛+1

1 +
ℎ
2
𝜎

,

 

где 𝑒𝑦 = 𝑦𝑛 − 𝑦𝑠,𝑛 и 𝐾 выбирается как 𝐾+, если ℎ > 0 в прямом направлении, и 𝐾−, 

если ℎ < 0 в обратном направлении. 

 

Экспериментальные результаты исследования нового способа 

синхронизации хаотических систем  

Продемонстрируем, что прямо-возвратная синхронизация с временной 

симметрией может быть более эффективной с точки зрения минимизации длины 

фрагмента синхронизируемых данных, необходимого для устранения ошибки между 

ведущей и ведомой системами, чем классический подход Пекоры-Кэрролла. 

 

Термостат Нозе-Гувера 

Для численных экспериментов использовались следующие параметры 

моделирования: шаг интегрирования ℎ =  0.01, начальные условия для ведущей 
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системы – (𝑥0, 𝑦0, 𝑧0) = (3,−3, 0), ведомой системы – (𝑥0, 𝑦0, 𝑧0) = (5,2,0). В 

соответствии с подходом, описанным в [311], значение коэффициента синхронизации 

было установлено, как 𝐾 = 5.  

Эксперименты показали, что как скорость сходимости, так и ошибка 

синхронизации существенно зависят от начального состояния главной системы, как 

показано на рис. 3.13 и рис. 3.14. Было рассчитано 300 итераций прямой и обратной 

синхронизации, 𝑊𝑇 =  1 сек; ℎ = 0.01 сек; 𝐾+ = 5; 𝐾− = 5; 𝑋0 = (3,−3,0); 𝑇𝑇 =

1000 сек; 𝐶𝑇 = 2000 сек. 

 

Рисунок 3.13 – Исследование обратимости системы Нозе-Гувера. Цвет точек 

отображает ошибку синхронизации при старте с выбранной точки аттрактора. 

 

Цвет на рис. 3.13 обозначает относительную логарифмическую ошибку, 

полученную после 300 итераций прямой и обратной синхронизации 

 Δlog
10
(‖𝐸𝑟𝑟𝑜𝑟‖) = log

10
𝑒1 − log

10
𝑒0, (3.47) 

где 𝑒0 – норма ошибок в начале процесса синхронизации, а 𝑒1 – норма ошибок, 

достигнутая после завершения работы алгоритма синхронизации. 

Для ведущей системы были использованы начальные условия 𝑋0. Во время 

моделирования был пропущен переходный период времени 𝑇𝑇, и была вычислена 

траектория на следующие 𝐶𝑇 секунд. В каждой точке после переходного процесса 
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применялась предлагаемая синхронизация с временной симметрией в пределах 

временного окна длиной 𝑊𝑇.  Из рис. 3.13 можно видеть, что относительная 

логарифмическая погрешность везде отрицательна, что означает, что нет точек, в 

которых синхронизация не удалась. Тем не менее, существует огромная разница 

между максимальной и минимальной погрешностями, достигнутыми в ходе 

эксперимента, которая указывает на существенную зависимость скорости 

сходимости от начальных условий ведущей системы. Таким образом, можно считать 

подтвержденной работоспособность предложенного подхода к синхронизации 

хаотических осцилляторов. 

Другим немаловажным фактором, оказывающим влияние на скорость 

симметричной прямо-возвратной синхронизации, является размер окна, в котором 

запускаются итерации алгоритма. Влияние размера окна на сходимость ошибки 

синхронизации показано на рис. 3.14. В верхней панели рисунка 3.14 показаны три 

варианта сечения Пуанкаре для системы Нозе-Гувера при 𝑧 =  0 с цветами, 

обозначающими логарифм евклидовой нормы разности между ведущей и ведомой 

системами после 30 итераций прямой и обратной синхронизации. Нижний график 

показывает зависимость ошибки синхронизации от изменения времени и начальных 

условий.  
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Рисунок 3.14 – Зависимость ошибки синхронизации от состояния ведущей системы 

при различной длине интервала симметричной синхронизации. 

 

В ходе экспериментального исследования не было найдено убедительных 

доказательств того, что какие-либо из известных метрик оценки хаотических систем 

позволяют прогнозировать, из какой точки фазового пространства исследуемая 

система будет синхронизироваться лучше или хуже: предсказать сходимость 

обратного решения оказались неспособны ни локальные показатели Ляпунова, ни 

локальная энтропия Колмогорова-Синая, ни дивергенция потока ∇ ⋅ 𝑓 = 𝑧 и т.д. 

Таким образом, можно предположить, что скорость сходимости решений при 

симметричной синхронизации является особым свойством системы, связанным с 

локальной диссипативностью. Создание новой метрики хаотической динамики, 

основанной на вышеупомянутом свойстве, представляет большой практический 

интерес, но выходит за рамки настоящего диссертационного исследования.  

Из рис. 3.14 также видно, что с увеличением интервала симметричной 

синхронизации алгоритму становится доступно больше информации о ведущей 

системе, что позволяет улучшить скорость синхронизации. При этом периода, 
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равного 10 секундам, достаточно чтобы обеспечить полную синхронизацию систем 

для практически всех возможных начальных условий. 

На рисунке 3.15 показано сравнение классического способа синхронизации 

Пекоры-Кэрролла и предлагаемой в диссертационном исследовании симметричной 

синхронизации с обратимостью во времени. При 𝑡 = 10 𝑐 запускаются оба процесса 

синхронизации. Обычной схеме Пекоры-Кэрролла требуется более 40 секунд (4000 

точек) сигнала ведущей системы для достижения уровня ошибки в 10−5, в то время 

как всего 8 итераций синхронизации с временной симметрией в течение интервала 

времени 𝑡 ∈ [10, 30] секунд приводят к ошибке синхронизации ниже погрешности 

округления, которая составляет 10−16 для чисел двойной точности. Таким образом, в 

эксперименте наблюдается искомая сверхэкспоненциальная синхронизация. Д

 Динамика ошибки при синхронизации с временной симметрией показана на 

правой панели рисунка 3.15. Скорость синхронизации в обоих направлениях 

практически одинакова и составляет около 10−2.5 на итерацию, что гарантирует 

сходимость через 8 итераций. Для обычной схемы синхронизации по Пекоре-

Кэрроллу массив синхросигнала должен быть по меньшей мере в 7.5 раз длиннее, 

чтобы достичь того же уровня ошибки, т.е. 150 секунд (15000 точек) вместо 20 секунд 

(2000 точек) для синхронизации с временной симметрией. При этом, начиная с 

определенной длины массива синхросигнала наступление полной синхронизации при 

использовании стандартного подхода не гарантируется. 

 

Рисунок 3.15 – Сравнение предлагаемой синхронизации с временной симметрией с 

традиционным методом Пекоры-Кэрролла 
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Количественное сравнение обратимой симметричной синхронизации, 

предложенной в диссертационном исследовании, с классическим способом 

синхронизации по Пекоре-Кэрроллу при различном числе точек и разреженности 

синхроданных представлено в таблице 3.1. 

 

Таблица 3.1. Cравнение методов синхронизации при шаге ℎ = 0.01 секунд и целевой 

ошибке синхронизации 10−15 (полная обобщенная синхронизация). 

Тип синхронизации Разреженность, % Количество точек Число итераций 

Пекоры-Кэрролла 

0 12750 –  

50 6750 – 

80 2700 – 

Предложенный 

способ 

0 1000 6 

50 500 22 

80 200 70 

 

Из таблицы 3.1 видно, что синхронизация по методу Пекоры-Кэрролла достигла 

целевого уровня ошибки синхронизации в 10−15 за 127.5 секунд для полных данных, 

и за 135 и 161 секунду для разреженности 50% и 80% соответственно. 

Разреженность данных была достигнута за счет искусственного прореживания 

исходного синхросигнала: 50% – путем выбора каждой второй точки, 80% – 

выборкой каждой пятой точки. Предлагаемый в диссертационном исследовании 

метод синхронизации требует 10 секунд синхросигнала, если коэффициент 

децимации меньше 8 (разреженность 87.5%), при этом количество итераций 

значительно увеличивается с 6, для случая данных без прореживания, до 22 и 70, в 

случае разреженности данных в 50% и 80%, соответственно. Тем не менее, 

количество точек, необходимое для синхронизации с целевым уровнем ошибки 

синхронизации в 10−15 при использовании предлагаемого алгоритма, составляет 

менее 1/10 от количества точек, используемых традиционным методом Пекоры-

Кэрролла, что обеспечивает сверхэкспоненциальную скорость синхронизации. 
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В диссертационном исследовании была исследована и подтверждена 

способность предложенного метода возвратной симметричной синхронизации 

сходиться в случае зашумления разреженных синхронизируемых данных (рис. 3.16). 

Два осциллятора Нозе-Гувера успешно синхронизировались на 10-секундном 

интервале, в котором 20 используемых точек синхронизации были выбраны 

неравномерно и дополнительно искажены аддитивным белым гауссовым шумом 

(англ. Additive white Gaussian noise, AWGN). 

 

Рисунок 3.16 – Синхронизация с временной симметрией двух хаотических систем 

Нозе-Гувера при одновременном зашумлении и разрежении синхроданных 

 

В заголовке панелей на рис. 3.16 указан номер итерации 𝑖, показывающий 

момент времени, отображаемый конкретной панелью. Так, когда 𝑖 = 0, показано 

начальное состояние до начала процесса синхронизации. Конечное 

синхронизированное состояние показано в панели с 𝑖 = 25. Точки выборки, 

используемые для синхронизации, обозначены круглыми оранжевыми маркерами и 

выбраны случайным образом из сигнала 𝑦𝑚𝑎𝑠𝑡𝑒𝑟 , показанного бледно-желтым цветом. 

Также на рисунке отображено поведение двух других фазовых переменных 𝑥𝑚𝑎𝑠𝑡𝑒𝑟 и 

𝑧𝑚𝑎𝑠𝑡𝑒𝑟, но они не используются при синхронизации и приведены для иллюстрации 

сходимости траекторий двух систем. Начальные траектории ведомой системы 

показаны в виде зеленой, красной и синей линий. На панели 𝑖 = 0 видно, что ведущая 
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и ведомая системы полностью рассинхронизированы, а панель 𝑖 = 25 демонстрирует, 

что достигнута синхронизация. На последней панели рисунка 3.16 приведена 

‖𝑅𝑀𝑆(𝑒)‖ – среднеквадратичная ошибка ведомой системы относительно ведущей. 

Пунктирная линия показывает стандартное отклонение 𝜎 гауссовского шума. 

Среднеквадратичная ошибка достигает уровня приблизительно 0.04, в то время как 

стандартное отклонение шума составляет 0.1, что позволяет использовать 

предложенный алгоритм также для снижения уровня шума в хаотических сигналах, 

или как часть более сложных алгоритмов подавления шума, таких как расширенный 

фильтр Калмана или фильтр Калмана-Бьюси. Для последнего применения 

коэффициенты 𝐾+ и 𝐾− должны быть адаптивными и изменяться в процессе 

синхронизации в соответствии с оценкой ошибки сигнала, при этом ведомая система 

будет играть роль наблюдателя. 

 

Симметричная возвратная синхронизация на примере системы Рёсслера 

В предыдущем подразделе была продемонстрирована возможность 

симметричной возвратной синхронизации двух консервативных хаотических систем 

на примере термостата Нозе-Гувера. Оценим применимость предлагаемого в 

диссертационном исследовании способа синхронизации для решения задачи 

синхронизации диссипативных систем на примере хаотической системы Рёсслера 

(3.45). 

Численные результаты оценки обратимости при синхронизации дискретных 

моделей системы Рёсслера, полученных полуявным методом КД, приведены на рис. 

3.17, где цвет обозначает ошибку синхронизации. В эксперименте использовались 

следующие параметры: начальные условия для ведущей системы 𝑋0 = (3,−3,0), 

время переходного процесса 𝑇𝑇 =  1000 с., время моделирования 𝐶𝑇 =  2000 с., 

размер окна 𝑊𝑇 =  1 с., коэффициенты синхронизации были взяты разными для 

прямого и обратного направления синхронизации, и равнялись 𝐾+ = 2, 𝐾− = 10. 

Размер шага моделирования равен ℎ = 0.01 с., количество итераций прямой и 

обратной фаз синхронизации равно 400.  
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Рисунок 3.17 – Исследование обратимости системы Рёсслера. Цвет точек 

отображает ошибку синхронизации при старте процесса с выбранной точки 

аттрактора 

 

Несмотря на принципиальные различия в динамике, дискретная система 

Рёсслера, так же как система Нозе-Гувера (рис. 3.13), не имеет областей аттрактора, 

где ведомая система не могла бы синхронизироваться с ведущей при использовании 

предлагаемого подхода симметричной синхронизации, но разнообразие в поведении 

ошибки показывает, что есть области фазового пространства, где синхронизация 

будет быстрой и надежной (показаны синим цветом на рис. 3.17), и области, где 

синхронизация происходит медленно и неэффективно (показаны красным цветом). 

Тот факт, что система Рёсслера сама по себе не является обратимой во времени и при 

этом синхронизируется с обращением решения во времени, является крайне 

интересным феноменом и требует дополнительного изучения. Возможным 

объяснением такого поведения является частичное наследование дискретной 

моделью свойства обратимости от используемого полуявного численного метода КД, 
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или же существование в фазовом пространстве исходной системы участков, где 

решение принципиально обратимо. Это подтверждает выдвинутое в 

диссертационном исследовании предположение о существенном влиянии способа 

дискретизации на динамику конечно-разностных моделей непрерывных хаотических 

систем. Тем не менее, существует определенная разница между синхронизацией 

обратимых во времени систем Нозе-Гувера и локально обратимых систем Рёсслера: 

увеличивая окно симметричной синхронизации в случае обратимой системы, мы 

достигаем повышения скорости синхронизации, а в случае локально обратимой 

системы Рёсслера существует определенный оптимальный размер окна, в котором 

возможна синхронизация, и дальнейшее увеличение размера окна не приводит к 

росту сходимости алгоритма.  

 

Симметричная возвратная синхронизация осцилляторов Лоренца 

Проверим справедливость сделанных в предыдущем подразделе выводов на 

примере тестовой системы Лоренца (3.46) с двухвитковым аттрактором. Дизайн 

эксперимента для системы Лоренца аналогичен таковому для систем Нозе-Гувера и 

Рёсслера, описанному в предыдущих разделах диссертации. Дискретизация системы 

проводилась полуявным методом КД второго порядка алгебраической точности. 

Численные результаты оценки обратимости при синхронизации дискретных 

моделей системы Лоренца приведены на рис. 3.18, где цвет обозначает ошибку 

синхронизации после определенного числа итераций. Система исследовалась с 

использованием следующих параметров моделирования: начальные условия для 

ведущей системы 𝑋0 = (3,−3,0), время переходного процесса 𝑇𝑇 =  1000 с., время 

моделирования 𝐶𝑇 =  200 с., размер окна 𝑊𝑇 =  0.15 с., коэффициенты 

синхронизации одинаковы для прямого и обратного направления и составляют 𝐾+ =

 𝐾−  =  40. Размер шага интегрирования равен ℎ = 0.001 с., а количество итераций 

симметричной возвратной синхронизации равно 200. 

Исходная непрерывная система Лоренца, как и система Рёсслера, 

рассмотренная в предыдущем подразделе, также необратима. При заданных выше 

параметрах моделирования на графике (рис. 3.18) присутствуют области, в которых 
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процесс синхронизации завершился неудачей. Эти области соответствуют значениям 

ошибок синхронизации Δlog10(‖𝐸𝑟𝑟𝑜𝑟‖) ≥ 0 и обозначены на рисунке 3.18 бледно-

синим цветом. 

 

Рисунок 3.18 – Исследование обратимости системы Лоренца при синхронизации. 

Цвет точек отображает ошибку синхронизации при старте с выбранной точки 

аттрактора 

 

Между тем, на рис. 3.18 существуют довольно крупные области, где процесс 

симметричной синхронизации обеспечивает полную обобщенную синхронизацию, 

достигая уровня ошибки в 10−15, что находится на уровне машинного шума. Как и в 

случае с аттрактором Рёсслера, для системы Лоренца существует определенный 

диапазон размеров окна 𝑊𝑇, при котором синхронизация возможна, и при большем 

или меньшем времени 𝑊𝑇 симметричная синхронизация невозможна. 
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Оценка влияния численных методов на обратимость моделей 

непрерывных хаотических систем 

В разделе 3.4 диссертации было выдвинуто предположение, что только 

симметричный метод интегрирования, обладающий свойством обратимости решения 

во времени, может гарантировать минимальную ошибку между ведущей и ведомой 

системами, если он применяется к консервативным хаотическим системам. Тем не 

менее, поскольку синхронизация с обратимостью во времени оказалась возможной и 

для диссипативных систем, представляет интерес оценка влияния численного метода 

на эффективность реверсивной синхронизации. В настоящем подразделе диссертации 

описан вычислительный эксперимент, для которого были взяты три ранее 

исследованные системы – термостат Нозе-Гувера, система Рёсслера и осциллятор 

Лоренца, для которых выполнена синхронизация с обратимостью во времени с 

использованием шести различных методов интегрирования: 

1. Полуявный симметричный метод КД второго порядка точности, 

предложенный в главе 1 диссертации; 

2. Композиционный симметричный метод s3or4 с методом КД в качестве 

опорного интегратора;  

3. Неявный симметричный метод средней точки (IMP), который обладает 

высокой численной устойчивостью и сходимостью даже на жестких задачах [98]; 

4. Метод явной средней точки, соответствующий для случая автономной 

системы  методу Рунге-Кутты 2 порядка (RK2); 

5. Явный несимметричный метод Рунге-Кутты 4 порядка (RK4); 

6. Явный несимметричный метод Дормана-Принса 8 порядка (DOPRI78).  

Эксперименты проводились в среде MATLAB 2023b под управлением ОС 

Windows 10, при моделировании использовались числа двойной точности.  

Параметры моделирования для системы Нозе-Гувера: размер окна 

симметричной синхронизации 𝑊𝑇 = 1.0 с.; начальные условия ведущей системы 

𝑋0 = (3,−3,0); коэффициенты синхронизации 𝐾+ = 𝐾− = 5; время переходного 

процесс 𝑇𝑇 = 50.5 с. 
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Параметры моделирования для системы Рёсслера: размер окна симметричной 

синхронизации 𝑊𝑇 = 1.0 сек; начальные условия ведущей системы 𝑋0 = (3,−3,0); 

коэффициенты синхронизации 𝐾+ = 2; 𝐾− = 10; время переходного процесса 𝑇𝑇 =

54.21 с.  

Параметры моделирования для системы Лоренца: размер окна симметричной 

возвратной синхронизации 𝑊𝑇 = 0.15 с.; начальные условия ведущей системы 𝑋0 =

(3,−3,0); коэффициент синхронизации 𝐾+ = 𝐾− = 40; время переходного процесса 

𝑇𝑇 = 44.79 с. для шага ℎ =  0.01 с. и 𝑇𝑇 = 50.2 с. для шага ℎ =  0.001 с. 

Результаты экспериментов по синхронизации тестовых систем, 

дискретизированных разными методами интегрирования, приведены на рисунке 3.19. 

 

Рисунок 3.19 – Исследование свойств симметричных и несимметричных методов 

численного интегрирования при синхронизации трех выбранных тестовых задач. 

Рассматривалось два случая с шагом интегрирования ℎ =  0.01 с. и ℎ =  0.001 с. 

 

На каждой панели рисунка 3.19 количество итераций отложено по оси 𝑥, а ось 

𝑦 отображает достигаемую ошибку синхронизации как log10(𝑅𝑀𝑆(‖𝐸𝑟𝑟𝑜𝑟‖)). Из 

рисунка 3.19 видно, что методы RK2 и RK4 не могут достичь приемлемой точности 

возвратной синхронизации, но все же позволяют снизить погрешность до 
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определенного уровня. Обратимые во времени методы КД, s3or4 с методом КД в 

качестве опорного интегратора и метод неявной средней точки IMP дают 

сопоставимые результаты, как и явный несимметричный метод DOPRI78, который 

указывает, что не только свойство симметричности, но и порядок точности 

численного метода оказывает заметное влияние на результаты процесса 

синхронизации с обратимостью во времени. Однако следует отметить, что при 

использовании методов численного интегрирования высокого порядка точности 

влияние ошибки округления может повлиять на процесс синхронизации из-за 

большого количества арифметических операций на шаге решения, а также накладные 

расходы на выполнение итераций симметричной синхронизации могут стать 

неприемлемыми в контексте технических приложений. 

 

3.5. Выводы по главе 

 

В главе предложены новые способы адаптивной и обобщенной синхронизации 

хаотических осцилляторов – феномена, имеющего существенное значение для науки 

и практики. Предложенный способ синхронизации хаотических систем с временной 

симметрией является обобщением широко используемой синхронизации по способу 

Пекоры-Кэрролла и представляет собой простое и эффективное решение для 

достижения сверхэкспоненциальной скорости синхронизации на основе 

ограниченного интервала известных данных о динамике ведущей системы. Стоит 

особо отметить высокую эффективность симметричной возвратной синхронизации 

при зашумлении и прореживании синхроданных, что важно с точки зрения таких 

приложений, как когерентные системы связи и идентификация нелинейных 

процессов [365,370]. Эффективность предложенного метода синхронизации 

проверена на примерах консервативной системы Нозе-Гувера и диссипативных 

систем Рёсслера и Лоренца. Показано, что использование полуявных численных 

методов, обладающих свойством обратимости решения во времени, позволяет не 

только эффективно организовать процесс возвратной синхронизации 

консервативных систем, но дает возможность применить данный подход к 
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диссипативным системам. Исследовано влияние численных методов на процесс 

возвратной синхронизации. Обнаружено новое интересное свойство хаотических 

систем: в фазовом пространстве диссипативных хаотических осцилляторов есть 

области, где обратимая во времени синхронизация за короткий промежуток времени 

позволяет достичь максимально высокой точности, и есть области, где обратимая во 

времени синхронизация невозможна или имеет неудовлетворительно низкую 

скорость. В исследуемых непрерывных системах эти области непрерывно перетекают 

одна в другую, что указывает на то, что наблюдаемое явление является не 

особенностью, связанной с организацией вычислений, а неотъемлемым свойством 

хаотических систем. Предварительные исследования показали, что области 

обратимости решения не могут быть выявлены анализом локальных показателей 

Ляпунова, энтропией и другими известными метриками хаотической динамики. 

Возможными областями применения предложенного метода сверхэкспоненциальной 

синхронизации могут быть связанные осцилляторы, нейроморфное проектирование, 

системы связи [385], задачи идентификации [370, 376] и т.д. В третьей главе 

диссертации также предложены новые эффективные способы адаптивной 

синхронизации возвратных хаотических отображений и конечно-разностных моделей 

непрерывных хаотических систем, основанные на управлении параметром 

симметрии в дискретных хаотических осцилляторах, полученных с помощью 

полуявных методов. В серии вычислительных экспериментов продемонстрировано 

преимущество адаптивной синхронизации по коэффициенту симметрии над 

распространенным подходом с управлением параметром бифуркации. 

Экспериментально подтверждены теоретические предположения диссертационного 

исследования о превосходстве полуявных симметричных конечно-разностных 

моделей хаотических осцилляторов над моделями, полученными известными 

численными методами, с точки зрения скорости синхронизации. Доказан ряд теорем 

о сходимости решений ведущей и ведомой системы при управлении различными 

параметрами ведомого осциллятора. 
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ГЛАВА 4. КОМПЛЕКС ПРОГРАММНЫХ СРЕДСТВ ВЫСОКОТОЧНОГО 

МОДЕЛИРОВАНИЯ НЕЛИНЕЙНЫХ СИСТЕМ 

 

Как уже отмечалось в предыдущих главах диссертации, бифуркационный 

анализ является важнейшим инструментом современной нелинейной динамики. 

Одномерные и многомерные бифуркационные диаграммы позволяют выявить тонкие 

особенности поведения исследуемой системы, такие как хаотические и 

периодические режимы, скрытые аттракторы, мультистабильность и неподвижные 

точки. При этом во многих случаях построение бифуркационных диаграмм с высоким 

разрешением может быть сложной вычислительной задачей, особенно при 

многопараметрическом исследовании. Следует отметить, что бифуркационный 

мультипараметрический анализ является задачей с естественным параллелизмом и, 

следовательно, может быть эффективно решен с использованием гибридных 

вычислительных архитектур, использующих возможности графического процессора. 

В последней главе диссертации предлагается усовершенствованный алгоритм и 

специальное программное обеспечение для построения бифуркационных диаграмм с 

использованием вычислений на графическом процессоре GPU на основе 

высокоэффективных полуявных решателей обыкновенных дифференциальных 

уравнений, предложенных в диссертационном исследовании. Обработка временных 

рядов в предложенном программном обеспечении основана на извлечении 

амплитудных и фазовых характеристик с использованием плотностного алгоритма 

пространственной кластеризации с присутствием шума (англ. Density-based spatial 

clustering of applications with noise – DBSCAN) для определения периодичности 

колебаний. Демонстрируются особенности применения предлагаемых решений на 

наборе тестовых хаотических систем. Эффективность алгоритмов анализа 

исследуется в сравнении с традиционными решениями, основанными на 

использовании центрального процессора, и несколькими другими подходами, 

известными из литературы. Наглядно демонстрируется, что предложенный алгоритм 

превосходит известные решения как по скорости вычислений, так и по точности. 

 



247 

4.1. Современные инструменты моделирования нелинейных систем 

 

Компьютерное исследование нелинейных систем имеет существенное значение 

практически во всех научных областях, помогая ученым понимать и прогнозировать 

сложные природные явления, такие как погода [310,312-314], изменение климата 

[315,316], динамика численности населения [317-319], эпидемии и эпизоотии [320], а 

также описывать искусственные технические объекты, включая электрические цепи 

[30,321,322], защищенные средства коммуникации и локации [323-325], 

механические устройства [326] и многое другое.  

За последние несколько десятилетий в отрасли сформировался классический 

набор инструментов для определения характеристик детерминированных 

нелинейных динамических систем, который включает в себя инструменты для 

бифуркационного анализа и расчет спектра Ляпунова [327,328-330], в частности, 

анализ наибольшего показателя Ляпунова (LLE) [331-333], рекуррентный анализ 

[334,335], отображения Пуанкаре и анализ возвратных преобразований [159,336], 

анализ и визуализацию бассейнов притяжения [337,338], и др. Всесторонний анализ 

множества аттракторов не может опираться только на аналитические методы с 

оценкой особых точек, он также должен включать численные методы для детального 

сканирования фазового или параметрического пространства в поисках скрытой 

динамики системы. Последний способ анализа подразумевает построение 

многопараметрических бифуркационных диаграмм, которые отражают изменения в 

динамике исследуемой хаотической системы при переборе двух или более 

параметров. При этом численный анализ нелинейных систем по-прежнему остается 

вычислительно сложной задачей при моделировании на настольных ПК, поскольку 

большинство доступных инструментов и программное обеспечение используют в 

основном вычислительные ресурсы центрального процессора [339]. Следует 

отметить, что мультипараметрический анализ динамических систем, как правило, 

является задачей с естественным параллелизмом, подразумевая многократный запуск 

моделирования одной и той же системы с разным набором параметров или начальных 

условий, что открывает широкие возможности для сокращения общего времени 
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расчетов за счет применения парадигмы параллельных вычислений. 

Распараллеливание обычно предполагает использование большого количества 

вычислительных компонентов, то есть множества потоков, ядер, процессоров, 

поэтому особый интерес в качестве целевой платформы здесь представляют 

графические процессоры (англ. Graphic processing unit, GPU). 

Технологии параллельных и массово-параллельных вычислений, такие как 

Nvidia CUDA или AMD ROCm, в последнее время стали играть решающую роль в 

повышении производительности вычислительных систем. Изначально графические 

процессоры разрабатывались для ускорения обработки изображений и реализации 

частиц в игровых приложениях, и обладают встроенной поддержкой параллельных 

вычислений. В последние десятилетия графические процессоры быстро завоевали 

популярность как недорогие и мощные параллельные процессоры благодаря своей 

огромной вычислительной мощности. Например, Nvidia разработала интерфейс 

прикладного программирования (API) для общих вычислений, предполагающий 

использование графических процессоров для выполнения кода общего назначения. 

Этот продукт известен как CUDA (Compute Unified Device Architecture) и является 

программным API, поддерживаемым аппаратным обеспечением Nvidia. Многие 

языки программирования, такие как C, C++, C#, Fortran, Java, Python и Julia, 

позволяют использовать этот API за счет использования библиотек CUDA [340].  

Наиболее наглядными инструментами многопараметрического 

бифуркационного анализа являются диаграммы, построенные на 

двухпараметрической сетке, где периодичность динамических режимов обозначена 

цветом, также известные как параметрические динамические карты. Чтобы получить 

подобные диаграммы в высоком разрешении, необходимо смоделировать 

исследуемую систему для каждой пары параметров при достаточно мелкой сетке и 

построить сечение Пуанкаре по полученным временным рядам. При подобном 

исследовании количество циклов моделирования может быть очень большим, а время 

расчета на обычном ПК составлять несколько дней или недель. Одной из наиболее 

актуальных программ с открытым исходным кодом для нелинейной динамики и 

анализа хаоса является JuliaDynamics, разработанная усилиями исследователей 
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Массачусетского технологического института [341] и общества научных 

исследований имени Макса Планка [342]. Этот пакет включает в себя библиотеку 

DiffEqGPU.jl [343] для параллельного моделирования динамических систем на GPU. 

Тем не менее, на момент написания диссертации (2024 г.) это решение не 

обеспечивало эффективного подхода к построению всего многообразия известных 

двухпараметрических бифуркационных диаграмм. 

Другие программные продукты, разработанные для построения 

бифуркационных диаграмм, также имеют известные ограничения. Среди 

существующих решений поддержка распараллеливания с использованием 

технологии Nvidia CUDA указана в пакете [344], однако предложенный алгоритм 

подсчета периодов оперирует только информацией об амплитудных значениях 

локальных максимумов, которая в некоторых случаях оказывается недостаточной для 

качественного определения и классификации динамических режимов в отсутствие 

инструментов фазового анализа [345]. 

При этом разработка комплексов программ моделирования динамических 

систем с хаотическим поведением, эффективно реализующих преимущества 

параллельных вычислений на графических сопроцессорах, остается сложной 

алгоритмической задачей [386]. В числе известных проблем предметной области 

можно отметить решение задачи поиска мультистабильности, показанное в главе 2 

диссертации. При реализации подобных рекуррентных алгоритмов эффективные 

вычисления на графических процессорах не всегда возможны или выгодны с точки 

зрения вычислительной сложности [346]. Например, методика построения диаграмм 

продолжения (CBD), описанная в главе 2, ликвидирует естественный параллелизм в 

задаче анализа, делая ее строго последовательной, т.к. следующее начальное значение 

зависит от результатов предыдущего моделирования [163,321]. Другой серьезной 

проблемой, связанной с технологией GPU/CUDA, может быть ограниченный объем 

доступной графической памяти видеокарты [347]. Неэффективное использование 

графической памяти приводит к увеличению количества обменов данными между 

хост-компьютером и GPU и значительно сокращает получаемый выигрыш в 

производительности [344, 348, 349]. 



250 

Суммируя все вышесказанное, можно сказать, что ограничения для создания 

алгоритмов и программного обеспечения для параллельного моделирования, и 

анализа нелинейных систем с использованием графических процессоров, можно 

разделить на две группы – технологические и математические. Математические 

проблемы, включая создание подходящего опорного интегратора, пригодного для 

реализации на вычислителях с параллельной архитектурой, были во многом решены 

в рамках настоящей диссертационной работы, что позволило создать эффективные 

программные решения, представленные в настоящей главе. В главе представлено 

несколько эффективных программных реализаций алгоритмов для 1D-, 2D- и 

многомерного бифуркационного анализа на основе математического обеспечения, 

предложенного и описанного в настоящем диссертационном исследовании, с 

использованием технологии параллельных вычислений на GPU. Предложенные 

инструменты верифицированы и протестированы на наборе тестовых нелинейных 

систем с хаотическим поведением. Продемонстрирована возможность нахождения 

скрытых режимов колебаний даже в хорошо изученных хаотических системах с 

помощью разработанного инструментария моделирования и анализа хаотических 

систем. 

 

4.2. Выявление скрытых особенностей хаотических систем с помощью 

высокопроизводительных инструментов бифуркационного анализа 

 

Алгоритм расчета локальных экстремумов решения  

Определение периода колебаний с использованием оценки временных рядов 

является важным этапом рассматриваемых в главе алгоритмов анализа нелинейных 

систем. Данная процедура выполняется в три этапа, как показано на рис. 4.1. Сначала 

выполняется моделирование выбранной динамической системы в сочетании с 

проверкой на наличие фиксированной точки и общую устойчивость, затем 

происходит извлечение данных об амплитуде и фазе с помощью модуля обнаружения 

пиков, и, наконец, подсчитываются кластеры решений для определения 

периодичности [386]. В предлагаемом распределенном процессе построения 
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бифуркационной диаграммы каждый поток графического процессора выполняет эти 

этапы последовательно. Далее приведено подробное описание каждого этапа. 

 

Рисунок 4.1 – Блок-схема алгоритма построения бифуркационной диаграммы в 

предлагаемом инструменте. 

 

Моделирование исследуемой динамической системы основано на итеративном 

выполнении соответствующей опорной конечно-разностной схемы, полученной с 

использованием метода численного интегрирования. Как уже было показано в 

диссертации, выбор метода интегрирования и реализация конечно-разностной схемы 

могут повлиять как на качество решения с точки зрения соответствия дискретной 

модели непрерывному прототипу, так и на общую производительность программных 

инструментов построения диаграмм [350,351]. Ранее в диссертационном 

исследовании предложено семейство композиционных решателей ОДУ, основанных 

на полуявном самосопряженном методе КД второго порядка [103, 358]. Как было 

показано в главе 1, полуявные численные методы сочетают в себе высокую 

численную устойчивость неявных методов с высокой производительностью и 

низкими вычислительными затратами явных методов. Одной из интересных 

особенностей метода КД, показанной ранее в главе 2 диссертации, является 
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возможность управления симметрией между сопряженными полуявными и 

диагонально-неявными частями. Эта особенность позволяет получать новые свойства 

в дискретных моделях [338] непрерывных нелинейных систем или управлять их 

динамикой [352], гибко настраивая геометрические характеристики решения. 

Выбранный полуявный решатель ODE подробно описан в 1 главе диссертации и 

работе [103], но для целей сравнения в настоящей главе также приведены результаты 

сравнительного анализа с использованием явного метода Рунге-Кутты четвертого 

порядка. Ключевым ограничением использования полуявных методов является 

необходимость аналитического разрешения диагональной неявности, поскольку 

использование сложных в вычислительном отношении итераций метода Ньютона 

может снизить преимущества полуявного подхода. Однако в главе 1 показано, что 

итерации метода с фиксированной точкой обеспечивают хорошую сходимость 

полуявных методов за счет одномерной неявности и могут заменять метод Ньютона 

в практических приложениях. 

В дополнение к численной метрике, соответствующей периодичности решения, 

в кодировку двухпараметрических диаграмм включены два дополнительных 

обозначения: 0 для фиксированной точки и INF (бесконечность) для нестабильной 

траектории. С целью расчета данных значений введены дополнительные тесты, 

которые предшествуют этапу определения пика. Проверка на фиксированные 

значения включает в себя поиск нескольких последних точек временного ряда в 

заданной окрестности. Неустойчивость считается обнаруженной при условии, что 

последняя точка временного ряда превышает заданное пороговое значение.  

На рисунке 4.2 проиллюстрировано извлечение амплитуды и фазы локальных 

экстремумов (пиков)я из рассчитанных временных рядов решения системы при 

построении бифуркационных диаграмм. В качестве примера используется система 

Рёсслера (1.26). Временной интервал переходного процесса, который установлен 

равным 125 с. и обозначен на рисунках 4.2(a)-4.2(c) прозрачным цветом, опускается 

при анализе, чтобы избежать искусственного завышения количества периодов и 

влияния начальных условий. Пиковый детектор выдает значения амплитуды и фазы, 

на основании которых вычисляются интервалы между пиковыми значениями 
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(межпиковые интервалы). Пиковые значения и межпиковые интервалы используются 

в алгоритме в качестве основных характеристик исследуемого процесса, тем самым 

формируя характеристическую плоскость, которая является эффективным в 

вычислительном отношении аналогом классического сечения Пуанкаре (рис. 4.2(d)). 

По отдельности каждая из этих характеристик, как правило, пиковые значения, может 

быть использована для построения однопараметрических бифуркационных 

диаграмм, как показано на рис. 4.2(e) и 4.2(f).  

Как видно из бифуркационных диаграмм, показанных на рис. 4.2(e) и 4.2(f), при 

значении параметра системы 𝑏 =  0.33, возникает колебательный режим с периодом 

3. При значении параметра 𝑏 =  0.305 (а также 𝑏 =  0.1), на обеих диаграммах видны 

только пять ветвей решения, в то время как истинный период равен 6. Если 

использовать две характеристики по отдельности, то истинное значение периода 

может остаться ненайденным, т.к. при построении диаграммы с использованием 

только пиковых значений фазовая бифуркация может быть скрытой, и наоборот, 

фазовые диаграммы не способны учесть малые отклонения амплитуд. Как работает 

пример подобного анализа для системы Рёсслера (1.26), можно увидеть на рисунке 

4.2, который наглядно иллюстрирует оба случая. 

Недостатки алгоритма анализа, представленного в работе [321], в значительной 

степени связаны с невозможностью обнаружения фазовых бифуркаций. Напротив, в 

предлагаемом в диссертационном исследовании программном обеспечении 

количество периодов оценивается с помощью алгоритма DBSCAN [353]. В отличие 

от наиболее популярных методов кластеризации, таких, как 𝑘-средних (англ. K-

means), который предполагает, что кластеры должны иметь определенную форму, 

DBSCAN может обнаруживать кластеры произвольной формы, что является 

существенным преимуществом. При этом параметры DBSCAN должны быть 

тщательно подобраны для определения большого количества кластеров в 

хаотических режимах, а также для поддержания точности оценки периодических 

режимов. Результатом работы функции кластеризации является одно значение, 

обозначающее количество кластеров, которое может быть отображено цветом на 

двухпараметрической диаграмме. На рис. 4.2(h) выделенная линия для параметра 𝑎 =
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 0.2 соответствует изображенным однопараметрическим диаграммам 4.2(e)-4.2(g). 

Таким образом, периодические режимы кодируются низкими значениями, а 

нерегулярные режимы, в том числе хаотические, – высокими значениями. 

 

Рисунок 4.2 – Результаты моделирования и анализа системы Рёсслера (1.26) с 

помощью разработанного программного обеспечения. Фазовые плоскости и 

временные ряды представлены для следующего набора параметров: (a) 𝑏 =  0.33, 

(b) 𝑏 =  0.305, (c) 𝑏 =  0.2. (d) Бифуркационная диаграмма, построенная по 

пиковым значениям и межпиковым интервалам для различных значений параметра. 

(e) Бифуркационная диаграмма, построенная только с помощью амплитудного 

анализа. (f) Бифуркационная диаграмма, построенная с помощью фазового анализа 

(g) Диаграмма оценки числа кластеров по DBSCAN (h) Двухпараметрическая 

бифуркационная диаграмма. Цвет соответствует числу кластеров решения. 
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Моделирование и анализ нелинейных систем с использованием GPU  

Учитывая специфику графических вычислителей GPU, обозначим основные 

компоненты предлагаемого алгоритма, лежащего в основе программного 

обеспечения моделирования нелинейных систем. Алгоритм включает в себя 

следующие этапы:  

1. Ввод и адаптация моделируемой динамической системы и параметров 

моделирования. 

2. Расчет максимального разрешения диаграммы, Вычисление 

максимального разрешения диаграммы, которое может быть обработано с помощью 

графического процессора за один запуск. 

3. Выделение памяти графического процессора и копирование 

необходимых параметров для расчета. 

4. Распределенное моделирование системы с получением временных рядов. 

5. Копирование данных из графического процессора в оперативную память. 

6. Сохранение и визуализация полученных результатов. 

Если требуемое разрешение бифуркационной диаграммы слишком велико, то 

расчет решений на графическом процессоре и копирование данных из графического 

процессора в оперативную память выполняются несколько раз. 

Реализация на CUDA требует специальной техники программирования, 

поскольку традиционные стили кода не всегда могут быть применимы на этой 

платформе. В диссертационной работе программа моделирования на CUDA 

реализована с использованием C/C++. Несмотря на то, что платформа CUDA 

поддерживает языки C/C++, для компиляции отдельных разделов программного кода 

требуется специальный компилятор NVCC. Этот компилятор поставляется 

компанией Nvidia в составе Nvidia CUDA Toolkit. В ходе обширной 

экспериментальной работы была определена оптимальная структура предлагаемой 

программной библиотеки, и результаты показали, что наилучшим решением является 

четкое отделение кода CUDA от основного кода C/C++ для достижения лучшей 

масштабируемости, производительности и удобства пользования программой. Такой 

подход обеспечивает полную независимость кода, исполняемого на CPU от кода, 
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исполняемого на GPU, что позволяет использовать это решение модульно в 

сторонних проектах. 

Структура программы состоит из следующих файлов. 

1. cudaLibrary.cu – исходный файл библиотеки CUDA.  

2. cudaLibrary.cuh – исходный файл заголовка библиотеки CUDA. 

3. cudaMacros.cu – исходный файл библиотеки CUDA, содержащий 

вспомогательные макросы.  

4. cudaMacros.cuh – исходный файл заголовка библиотеки CUDA, 

содержащий вспомогательные макросы. 

5. hostLibrary.cu – исходный файл для обычного компилятора C/C++. Он не 

содержит кода для CUDA, требующего применения специального компилятора. 

6. hostLibrary.cuh – исходный файл заголовка для обычного компилятора 

C/C++. Он не содержит кода CUDA, который требует специального компилятора, и 

может быть присоединен к любому обычному проекту на C/C++. 

Структура программного обеспечения с включением предлагаемой библиотеки 

CUDA показана на рис. 4.3.  

 

Рисунок 4.3 – Потенциальная схема программного обеспечения с использованием 

предлагаемой библиотеки CUDA.  

 

При разработке специализированной библиотеки программ для CUDA было 

приложено много усилий для оптимизации рассмотренных в диссертации алгоритмов 
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моделирования и анализа нелинейных динамических систем. В результате 

разработанная библиотека представляет собой хорошо масштабируемую систему, 

которую ученые могут легко использовать для внедрения своих собственных 

инструментов анализа. Для этого достаточно реализовать необходимые алгоритмы в 

библиотеке CUDA, а затем внедрить новую функцию анализа, используя готовые 

реализации. Таким образом, можно менять компоненты системы, начиная от конечно-

разностной схемы для моделирования и заканчивая различными алгоритмами 

кластеризации при многомерном анализе нелинейных систем. 

Предлагаемая реализация подразумевает обработку существенного объема 

экспериментальных данных и построение бифуркационных диаграмм с высоким 

разрешением, поэтому в работе были исследованы различные методы организации 

структур памяти для хранения информации. В ходе тестирования программы было 

обнаружено, что в среднем бифуркационная диаграмма с высоким разрешением 

может занимать более 8 ГБ памяти. Поскольку моделирование и анализ нелинейных 

систем требует повышенной точности представления данных, при создании 

программной библиотеки использовался тип данных с плавающей запятой двойной 

точности (64 бита). Проблема обработки большого массива данных была решена 

алгоритмически. Перед каждым выполнением алгоритма анализа определяется 

доступная глубина памяти графического процессора, а затем оценивается, сколько 

информации может быть обработано оперативной памятью и графическим 

процессором одновременно. Поскольку итоговые данные после даже двух итераций 

общего цикла алгоритма анализа могут превышать доступное пространство 

оперативной памяти, после каждой итерации результат сохраняется в постоянном 

запоминающем устройстве путем записи в файл по указанному пути. 

В качестве основной структуры данных для хранения всей информации был 

выбран обычный векторный массив. Хотя последние усовершенствования в 

технологии CUDA позволяют работать с многомерными массивами, матрицами и 

пользовательскими типами данных непосредственно в графической памяти, 

использование данных функций значительно усложняет разработку и унификацию 

архитектуры программы CPU-GPU. Применение классических одномерных массивов 
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(векторов данных), с одной стороны, повышает риск ошибок, связанных с адресацией 

и индексацией массива, но при этом сокращает использование памяти по сравнению 

с применением сложных пользовательских типов данных. Рассмотрим некоторые 

аспекты структуры данных и распределения памяти в предлагаемом программном 

обеспечении более подробно. 

При выполнении алгоритма анализа текущий итерируемый параметр системы 

вычисляется по следующей формуле: 

 
𝑎 = 𝑙 + (

𝑖𝑑𝑥

𝑁𝑝𝑡𝑠
𝑛  𝑚𝑜𝑑 𝑁𝑝𝑡𝑠) ∗ (

𝑟 − 𝑙

𝑁𝑝𝑡𝑠 − 1
), (4.1) 

где 𝑎 – вычисляемый итерируемый параметр,  

𝑖𝑑𝑥 – номер текущего потока,  

𝑁𝑝𝑡𝑠 – разрешение диаграммы,  

Параметры 𝑟 и 𝑙 – определяют диапазон повторяемого параметра, а 𝑛 обозначает 

номер переменной состояния моделируемой системы.  

Такой подход эффективно использует ресурсы графического процессора, 

поскольку в памяти устройства хранятся данные не обо всех повторяемых значениях 

параметров. По сути, формула 4.1 является сверткой пространства параметров 

системы.  

 

Расчет и распределение памяти графического процессора 

Среда CUDA предоставляет специальную функцию, возвращающую общий 

доступный и свободный объем памяти графического процессора. При разработке 

программы учитывался только объем свободной памяти. Чтобы защитить устройство 

от случайного переполнения памяти, алгоритм не допускает использования более 

95% от известного объема свободной памяти. Полученное значение объема 

умножается на коэффициент ограничения объема памяти, выбранного из диапазона 

[0, 1], который установлен пользователем программы. С помощью этого параметра 

можно строго ограничить объем памяти, который будет использоваться для 

вычислений, и избежать замедления работы других приложений на данном 

компьютере.  
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Объем доступной памяти GPU не всегда достаточен для сохранения 

результатов всего необходимого объема вычислений, поэтому необходимо оценить, 

сколько точек бифуркационной диаграммы может поместиться в выделенной памяти 

графического процессора. Общее количество точек диаграммы 𝑁𝑠𝑡, которые 

графический процессор сможет рассчитать одновременно, вычисляется следующим 

образом: 

 
𝑁𝑠𝑡 = ⌊

𝑀𝑓
𝑀𝑎
⌋, (4.2) 

где 𝑀𝑓 – общий объем доступной памяти, а 𝑀𝑎 – объем памяти, необходимый для 

хранения результатов вычисления точки бифуркационной диаграммы. 

 

Получение, передача и хранение результатов с использованием GPU  

Каждая точка бифуркационной диаграммы вычисляется путем запуска 

процедуры моделирования в одном потоке с заданным по формуле (4.1) набором 

параметров, как показано на рис. 4.4. 

 

Рисунок 4.4 – Организация процесса параллельных вычислений в соответствии с 

параметрами, указанными в массивах исходных данных. 

 

Каждый поток моделирует исходную систему ОДУ выбранным численным 

методом с индивидуальным набором параметров и начальных условий, не зависящих 

от соседних потоков. На рисунке 4.4 показан случай для набора параметров при 

двухпараметрическом анализе. 
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Для дальнейшей обработки, например, обнаружения пиков и кластеризации, 

результат каждого потока сохраняется в предварительно зарезервированном 1D-

массиве данных, структура которого представлена на рис. 4.5. 

 

Рисунок 4.5 – Структура массива данных, получаемого в процессе моделирования и 

разделенного на секции для отдельных временных интервалов. 

 

Предлагаемый метод разделения исходных данных позволяет наиболее полно 

использовать доступную память графического процессора. При этом разные потоки 

не конфликтуют при записи в один и тот же массив, поскольку каждый поток имеет 

свой собственный сектор памяти для использования. 

Следующим этапом анализа после моделирования системы и расчета 

временных рядов для каждой переменной состояния, является нахождение пиков и 

межпиковых интервалов, которые являются конечным результатом в случае, когда 

требуется построить одномерную бифуркационную диаграмму, и кластеризация по 

алгоритму DBSCAN при построении 2D- или 3D-бифуркационной диаграммы. 

Реализованные функции анализа перезаписывают результат в исходный массив с 

временными рядами, что значительно сокращает объем потребляемой памяти. 

Полученный конечный результат передается из графического процессора в 

оперативную память и затем записывается в файл. Эти данные могут быть 

визуализированы, например, в среде MATLAB, для контроля результатов 

моделирования. Специализированное ПО для визуализации результатов 

моделирования в ходе диссертационного исследования не разрабатывалось. 
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Некоторые параметры алгоритма, заданные по умолчанию 

Как было сказано ранее, реализованный программный инструмент заранее 

рассчитывает объем доступной памяти на устройстве. В формулах оценки памяти 

используются некоторые значения параметров по умолчанию, которые обеспечивают 

устойчивую работу библиотеки: 

1. Объем доступной графической памяти GPU в ПК умножается на 

фиксированный коэффициент, равный 0.8, т.к. для устройства с графическим 

процессором требуется необходимый запас памяти. Даже если пользователь не будет 

открывать сторонние ресурсоемкие программы во время вычислений, без этой 

константы может произойти переполнение доступной памяти из-за низкой 

предсказуемости работы операционной системы, что может привести к ошибкам и 

даже сбоям в работе ПК.  

2. В программах по технологии CUDA количество выполняемых потоков 

определяется размером сетки (количеством блоков в сетке) и размером блока 

(количеством потоков в блоке). Многие из реализованных алгоритмов были 

разработаны с использованием общей памяти, которая выделяется в пределах одного 

блока. Доступный размер блока определяется аппаратными ограничениями 

конкретной модели графического процессора. По этой причине размер блока в 

разработанном комплексе программ рассчитывается динамически с учетом 

характеристик доступного графического процессора, при этом размер сетки 

вычисляется по следующей формуле: 

 
𝑔𝑆 =

𝑁𝑝𝑡𝑠 + 𝑏𝑠 − 1

𝑏𝑠
, (4.3) 

где 𝑔𝑆 – размер сетки, 𝑏𝑆 – размер блока.  

Важно помнить об этом при использовании библиотеки, поскольку 

соотношение размера сетки и количества потоков в блоке может существенно 

повлиять на производительность программы.  

Проведем оценку предложенных в диссертации алгоритмов и программного 

обеспечения экспериментально, используя набор тестовых систем, приведенных в 

таблице 4.1.  
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Таблица 4.1. Тестовые системы и наборы параметров 

Название 

системы 

Система уравнений Значение 

параметров 

Начальные 

условия 

Время 

моделирования, 

сек 

Система 

Лоренца 

[310] 

{

𝑥̇ = 𝜎(𝑦 − 𝑥)

𝑦̇ = 𝑥(𝑟 − 𝑧) − 𝑦
𝑧̇ = 𝑥𝑦 − 𝑏𝑧

 

𝜎 =  10 

𝑟 =  20 

𝑏 =  
8

3
 

(1, 1, 1) 879.684 

Система 

Чена [161] {

𝑥̇ = 𝑎(𝑦 − 𝑥)

𝑦̇ = (𝑐 − 𝑎)𝑥 − 𝑥𝑧 + 𝑐𝑦
𝑧̇ = 𝑥𝑦 − 𝑏𝑧

 

𝑎 =  40 

𝑏 =  3 

𝑐 =  28 

(1, 1, 1) 1805.391 

Система 

Гокилдир

има [354] 

{

𝑥̇ = 𝑦𝑧

𝑦̇ = −𝑥 − 𝑏𝑦3

𝑧̇ = −𝑎 − 𝑥𝑦
 

𝑎 =  4.6 

𝑏 =  1 

(0.01, 0, 0) 106.313 

Система 

Рёсслера 

[30] 

{

𝑥̇ = −𝑦 − 𝑧
𝑦̇ = 𝑥 + 𝑎𝑦

𝑧̇ = 𝑏 + 𝑧(𝑥 − 𝑐)
 

𝑎 =  0.2 

𝑏 =  0.2 

𝑐 =  5.7 

(1, 1, 1) 99.033 

Система 

Пала-

Махачека 

[321] 
{
 
 

 
 𝑥̇ =

1

𝐿
(𝑦 − 𝑥𝑧𝑚)

𝑦̇ =
1

𝑅𝐶
(𝑅 + 1 − 𝑦 − 𝑅𝑥)

𝑧̇ = 𝑥2 − 𝑧

 

𝑅 =  15 

𝐿 =  1 

𝐶 =  3.14 

𝑚 =  −
2

3
 

(0.5, 4, 1) 814.771 

Модель JJ 

с RCL-

шунтиров

анием 

[355] 

𝑥̇ = 𝑦

𝑦̇ =
1

𝛽𝐶
(𝑖 − 𝐺𝑦 − sin(𝑥) − 𝑧)

𝑧̇ =
1

𝛽𝐿
(𝑦 − 𝑧)

 

где 𝐺 = {
0.367 𝑖𝑓 |𝑦| > 6.9
0.0478 𝑒𝑙𝑠𝑒

 

𝛽𝐿  =  2.5 

𝛽𝐶 =  0.707 

𝑖 =  1.2 

(0, 0, 0.1) 186.803 
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4.3. Экспериментальные результаты исследования хаотических систем с 

применением разработанного комплекса программ 

 

Двумерные диаграммы, соответствующие тестовым системам из табл. 4.1 

показаны на рис. 4.6. Для всех численных экспериментов были выбраны следующие 

параметры моделирования: размер шага интегрирования ℎ =  0.01, время 

переходного процесса 𝑇𝑇 =  2000 сек, время моделирования 𝑅𝑇 =  1000 сек. 

Программа была протестирована на ПК со следующей конфигурацией: Intel Core i9-

12900K CPU 3.2 GHz, Nvidia GeForce RTX 4090 GPU (16384 CUDA ядер и 24 GB 

памяти GDDR6X), 64 GB DDR4 RAM, 2 TB SSD (5100 MB/s на запись и 7000 MB/s 

на чтение).  

 

Рисунок 4.6 – Двумерные бифуркационные диаграммы систем из таблицы 4.1 
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Оценка эффективности и сравнение с существующими решениями  

Сравним предлагаемый программный инструмент с существующими 

решениями, описанными в литературе. Аналогично работе [321], представим 

результаты и время выполнения бифуркационного анализа для нелинейной 

хаотической системы при тех же условиях. В работе [321], был использован явный 

метод Рунге-Кутты четвертого порядка с шагом интегрирования ℎ =  0.005. 

Результаты сравнения времени выполнения бифуркационного анализа при различном 

разрешении диаграмм представлены в таблице 4.2. Следует отметить, что в 

исследовании [321], двухмерный бифуркационный анализ был проведен с 

использованием вычислительного кластера с тремя вычислительными устройствами 

CUDA Nvidia Tesla K80.  

Таблица 4.2. Результаты сравнения методов  

бифуркационного анализа на основе GPU. 

Разрешение OpenMP, c. 

[321] 

Расчет на GPU, с. 

[321] 

Предлагаемый 

подход, с. 

384 × 384 377.58 53.09 18.367 

768 × 768 1470.04 226.64 71.949 

1152 × 1152 3279.87 386.97 153.010 

384 × 384 1519.08 195.78 65.752 

768 × 768 5871.89 904.74 260.983 

1152 × 1152 13159.54 1516.07 582.484 

 

Результаты оценки времени выполнения при выполнении анализа с 

использованием CPU и GPU представлены на рис. 4.7. Согласно полученным 

результатам, предлагаемый комплекс программ позволяет ускорить процедуру 

бифуркационного анализа примерно в 100 − 1000 раз по сравнению с традиционным 

моделированием на CPU. 
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Рисунок 4.7 – Оценка ускорения процедуры анализа на CPU и GPU для системы 

Пала-Махачека [321], при использовании классического метода RK4 и 

предложенного в диссертационном исследовании метода КД. 

 

Видно, что применение полуявного метода КД позволяет существенно ускорить 

вычисления даже при выполнении анализа на CPU. 

 

Выбор опорного интегратора  

Напомним, что для разработки программного обеспечения в данном 

исследовании была предложена схема полуявного интегрирования по методу КД. В 

этом численном методе переменные состояния вычисляются последовательно, а 

ранее вычисленные значения используются для аппроксимации следующих 

значений. Основы полуявного интегрирования были изложены в главе 1 настоящей 

диссертации. Использование полуявного численного интегрирования требует 

задания особой конечно-разностной схемы, поэтому необходимо соответствующим 

образом изменить функцию calculateDiscreteModel в файле cudaLibrary.cu. 

Продемонстрируем, как можно построить 1D- и 2D-бифуркационные диаграммы, 

используя конечно-разностную модель системы Рёсслера (1.26), полученную 

полуявным методом КД с управляемой симметрией [103]. Соответствующая конечно-

разностная модель может быть представлена следующим образом: 
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 ℎ1 = ℎ𝑠;     ℎ2 = ℎ(1 − 𝑠); 

𝑥𝑛+𝑠 = 𝑥𝑛 + ℎ1(−𝑦𝑛 − 𝑧𝑛); 

𝑦𝑛+𝑠 = 𝑦𝑛 + ℎ1(𝑥𝑛+𝑠 + 𝑎𝑦𝑛); 

𝑧𝑛+𝑠 = 𝑧𝑛 + ℎ1(𝑏 + 𝑧𝑛(𝑥𝑛+𝑠 − 𝑐)); 

𝑧𝑛+1 = 𝑧𝑛+𝑠 + ℎ2(𝑏 + 𝑧𝑛+1(𝑥𝑛+𝑠 − 𝑐)); 

𝑦𝑛+1 = 𝑦𝑛+𝑠 + ℎ2(𝑥𝑛+𝑠 + 𝑎𝑦𝑛+1); 

𝑥𝑛+1 = 𝑥𝑛+𝑠 + ℎ2(−𝑦𝑛+1 − 𝑧𝑛+1), 

(4.4) 

где 𝑠 – коэффициент симметрии, а 𝑎, 𝑏, 𝑐 – параметры системы. 

Пример, показывающий применение конечно-разностной модели (4.4) в 

качестве функции вычисления опорной системы, приведен в Приложении A.1. 

Примеры того, как вызывать реализованные функции анализа для расчета 1D- и 2D-

бифуркационных диаграмм, приведены в Приложениях A.2 и A.3 соответственно. 

 

Обнаружение скрытых аттракторов  

Построение бифуркационных диаграмм высокого разрешения позволяет 

выявить уникальные и скрытые особенности хаотических систем. Исследуем 

хаотическую систему, описанную в работе [354] с использованием разработанных 

инструментов анализа. Фазовые портреты исследуемой системы, полученные с 

помощью предлагаемого комплекса программ, показаны на рис. 4.8. 

 

Рисунок 4.8 – Фазовые портреты исследуемой системы Чена 
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Особые точки системы можно вычислить, подставив значения 𝑥 ̇ =  0, 𝑦̇  =

 0 и 𝑧̇  =  0 и решив следующую систему алгебраических уравнений: 

 

{

𝑦𝑧 = 0;

−𝑥 − 𝑏𝑦3 = 0
−𝑎 − 𝑥𝑦 = 0

 (4.5) 

Решение вышеупомянутой системы дает четыре особые точки: 

 
𝐸1 = (−𝑏√

𝑎3

𝑏3
;

4

 √
𝑎

𝑏

4
;  0);  

𝐸2 = (𝑏√
𝑎3

𝑏3
;

4

− √
𝑎

𝑏

4
;  0); 

𝐸3 = (𝑖𝑏√
𝑎3

𝑏3
;

4

 𝑖√
𝑎

𝑏

4
;  0); 

𝐸1 = (−𝑖𝑏√
𝑎3

𝑏3
;

4

− 𝑖√
𝑎

𝑏

4
;  0); 

(4.6) 

Якобиан моделируемой системы (4.4) может быть записан следующим образом:  

 

𝐽 = (

0 𝑧 𝑦

−1 −3𝑏𝑦2 0
−𝑦 −𝑥 0

) (4.7) 

Соответствующее характеристическое уравнение может быть найдено в форме  

|𝐽 −  𝜆𝐼|  =  0: 

 𝜆3 + 3𝑏𝜆2𝑦2 + 𝜆(𝑦2 + 𝑧) + 3𝑏𝑦4 − 𝑥𝑦 = 0 (4.8) 

Учитывая 𝑥𝑦 =  −𝑎 и 𝑏𝑦3 = −𝑥 из выражения (4.5), характеристическое 

уравнение можно переписать следующим образом: 

 𝜆3 + 3𝑏𝜆2𝑦2 + 𝜆(𝑦2 + 𝑧) + 3𝑏𝑦4 + 4𝑎 = 0. (4.9) 

Для 𝐸1 и 𝐸2, выразим  

 
𝜆3 + 3√𝑎𝑏𝜆2 + 𝜆√

𝑎

𝑏
+ 4𝑎 = 0. (4.10) 

Для 𝐸3и 𝐸4, выразим  

 
𝜆3 − 3√𝑎𝑏𝜆2 − 𝜆√

𝑎

𝑏
+ 4𝑎 = 0. (4.11) 

при 𝑎 >  0 и 𝑏 >  0 собственные значения особых точек 𝐸1 и 𝐸2 представлены 

одним действительным положительным собственным значением и парой 
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комплексно-сопряженных значений с отрицательными действительными частями, 

которые соответствуют точке типа седло-фокус. Типы точек равновесия 𝐸3 и 

𝐸4зависят от параметров 𝑎 и 𝑏, как показано на рис. 4.9. 

 

Рисунок 4.9 – Анализ типа точек равновесия 𝐸3 и 𝐸4 относительно параметров 𝑎 и 𝑏. 

Красные области соответствуют седловой бифуркации, а желтые – бифуркации по 

типу седло-фокус 

 

Для более детального исследования системы проведем двумерный 

бифуркационный анализ с высоким разрешением, используя разработанные в 

диссертации программные инструменты. Двумерные бифуркационные диаграммы с 

различными параметрами 𝑎 и 𝑏 показаны на рис. 4.10. 

 

Рисунок 4.10 – 2D-бифуркационная карта системы [354] со значением 𝜖 =  0.01. 
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Используя разработанные программные средства для построения двумерных 

бифуркационных диаграмм высокого разрешения, составим фрагмент 2D-

бифуркационной диаграммы системы (рис. 4.15), где удается найти два относительно 

узких диапазона параметров, в которых сосуществуют четыре различных аттрактора. 

Фазовые портреты для первого случая, показывающие четыре различных аттрактора, 

показаны на рис. 4.11. 

 

Рисунок 4.11 – Фазовые портреты системы [354] при 𝑎 =  0.226331 𝑎𝑛𝑑 𝑏 =

 0.189993, начинающиеся с разных наборов начальных условий. 

 

Начальными условиями для аттракторов красного, голубого, черного и синего 

цветов являются (0.01;  0;  0), (−0.01;  0;  0), (0.1;  0;  0) и (−0.1;  0;  0), 

соответственно. 

Области притяжения для первого случая для начальных условий (0.01;  0;  0) 

показаны на рис. 4.12.  
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Рисунок 4.12 – Области притяжения в окрестности 𝐸1 при 𝑎 =  0.226331 и 𝑏 =

 0.189993 при начальных условиях (0.01;  0;  0) 

 

Белый цвет соответствует области, в которой система находится в состоянии 

равновесия. Фазовые портреты для второго случая, когда сосуществуют четыре 

различных аттрактора, показаны на рис. 4.13. 

 

Рисунок 4.13 – Фазовые портреты для системы [354] при 𝑎 =  0.214444 𝑎𝑛𝑑 𝑏 =

 0.176627. Начальными условиями для аттракторов красного, голубого, черного и 

синего цветов являются (0.01;  0;  0), (−0.01;  0;  0), (0.1;  0;  0) и (−0.1;  0;  0), 

соответственно.  
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Области притяжения для второго случая, где сосуществуют четыре различных 

аттрактора, показаны на рис. 4.14. 

 

Рисунок 4.14 – Области притяжения в окрестности 𝐸1 при 𝑎 =  0.214444 и 𝑏 =

 0.176627 

 

Белый цвет соответствует области, в которой система находится в состоянии 

равновесия. Кроме того, с помощью разработанных процедур анализа был определен 

диапазон параметров, в котором могут наблюдаться скрытые колебания, как показано 

на рисунках 4.15-4.17. 

 

Рисунок 4.15 – Фрагмент 2D-бифуркационной диаграммы системы [354] 

Начальными условиями для аттракторов голубого, черного и синего цветов 

являются значения (0.01;  0;  0), (0.1;  0;  0) и (−0.1;  0;  0), соответственно. 
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Рисунок 4.16 – Фазовые портреты для системы [354] при 𝑎 =  0.210028 и 𝑏 =

 0.190272 

 

 

Рисунок 4.17 – Области притяжения в окрестности 𝐸1 при 𝑎 =  0.210028 и 𝑏 =

 0.190272 

 

 Белый цвет соответствует области, в которой система находится в состоянии 

равновесия. Черный и синий цвета соответствуют паре симметричных аттракторов, а 

голубой – обнаруженному скрытому аттрактору. Таким образом, используя 

разработанный набор инструментов с высоким разрешением, получилось обнаружить 

скрытую динамику в хаотической системе, недавно предложенной в статье [354], о 

которой авторы работы не сообщали. Это подтверждает возможность нахождения 



273 

тонких особенностей динамики хаотических систем с помощью предлагаемого 

комплекса программных средств. 

4.4. Выводы по главе 

В четвертой главе представлен алгоритм многопараметрического 

бифуркационного анализа, значительно превосходящий существующие 

программные решения как по скорости расчета, так и по эффективности анализа. 

Предлагаемый алгоритм сочетает в себе эффективный в вычислительном отношении 

полуявный решатель ОДУ на основе метода КД, используемый для моделирования 

непрерывных динамических систем, с детектором пиков для выделения амплитудных 

и фазовых характеристик на основе плотностного алгоритма пространственной 

кластеризации с присутствием шума для определения периодичности решения. 

Разработанный комплекс программ для моделирования и анализа хаотической 

динамики является простым в использовании и вычислительно эффективным 

благодаря использованию графического процессора. Предлагаемые программные 

средства были протестированы на наборе тестовых динамических систем. Показано, 

что применение предложенных методов анализа с высоким разрешением позволяет 

обнаруживать скрытые аттракторы в хаотических системах. 

Таким образом, одним из результатов диссертационного исследования является 

дополнение существующего инструментария нелинейной динамики практичным и 

удобным программным инструментом для моделирования и анализа нелинейных 

систем с хаотическим поведением. Основные результаты данной главы могут быть 

сформулированы следующим образом: 

1. Предложен быстрый параллельный алгоритм построения многомерных 

бифуркационных диаграмм с использованием технологии CUDA. 

2. Показано, что применение полуявных методов численного решения ОДУ 

в практических приложениях позволяет существенно повысить скорость и 

адекватность моделирования.  

3. Общая производительность и вычислительная эффективность 

предложенных алгоритмов исследованы в сравнении с известными методами 

моделирования и анализа.  
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4. С помощью бифуркационного анализа высокого разрешения, 

выполненного с помощью разработанного программного обеспечения, обнаружено 

несколько ранее неизвестных режимов колебаний в пятичленной трехмерно-

хаотической системе с кубической нелинейностью [354].  
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ЗАКЛЮЧЕНИЕ 

 

В диссертационной работе выдвинут и экспериментально подтвержден ряд 

гипотез: 

 Гипотеза о большей длительности периода хаотических колебаний в 

дискретных системах, полученных полуявными методами и эквивалентности 

полуявного интегрирования дополнительному постоянному возмущению, 

вносимому в динамику системы. 

 гипотеза о соответствии полуявных численных методов требованию 

адекватности передачи динамических режимов непрерывного прототипа в 

дискретной модели, а также их пригодности в качестве опорных методов для 

экстраполяционных и композиционных схем. 

 Гипотеза о большей скорости адаптивной синхронизации дискретных 

хаотических систем, синтезированных с применением полуявных методов 

интегрирования с управляемой симметрией. 

 Гипотеза о возможности управления свойствами дискретной хаотической 

модели через изменение симметрии полуявной конечно-разностной схемы. 

 Гипотеза о том, что симметричные и несимметричные отображения 

характеризуются фазовыми пространствами с сопоставимой площадью 

хаотических морей и островов устойчивости, т.е. об аффинности 

преобразования при изменении симметрии возвратного отображения. 

 Гипотеза о возможности возникновения искусственных мультистабильных 

состояний в изначально моностабильных системах при дискретизации 

методами с переменной симметрией.   

Продемонстрировано соответствие полуявных методов численного 

интегрирования критериям, предъявляемым к математическому аппарату 

моделирования хаотических систем.  

Доказан ряд теорем: теорема о геометрической симметрии фазового 

пространства дискретных возвратных хаотических отображений, полученных 

полуявными методами интегрирования, теорема об адаптивной синхронизации 
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дискретных хаотических систем с управлением по параметру нелинейности, теорема 

об адаптивной синхронизации дискретных возвратных отображений с управлением 

по параметру симметрии и теорема об возможности обращения во времени процесса 

синхронизации симметричных моделей хаотических систем.  

Основные результаты и выводы по работе 

В диссертационном исследовании получены следующие результаты:  

1. Решена задача синтеза математического описания новых классов методов 

численного интегрирования обыкновенных дифференциальных уравнений: 

одношаговых диагонально-неявных методов, а также экстраполяционных 

одношаговых решателей на их основе. Установлено, что предлагаемые полуявные 

одношаговые методы численного интегрирования позволяют достичь прироста 

вычислительной эффективности решателей ОДУ при компьютерном моделировании 

нелинейных систем с хаотическим поведением, при этом позволяя повысить 

адекватность дискретных моделей прототипу при долгосрочном моделировании. 

Подтверждена возможность создания на основе предложенных полуявных опорных 

методов эффективных экстраполяционных и композиционных схем численного 

интегрирования высокого порядка алгебраической точности.  

2. Сформулировано математическое описание полуявных 

экстраполяционных многошаговых методов численного решения ОДУ с полуявными 

опорными интеграторами различных типов. Данный класс методов объединяет 

преимущества экстраполяционных решателей, такие, как естественный параллелизм, 

возможность имплементации с произвольным порядком точности, простота схемы на 

основе опорного метода, и многошаговых методов численного интегрирования – 

малые вычислительные затраты. В серии вычислительных экспериментов показано, 

что предложенные способы управления шагом позволяют достичь превосходства 

адаптивных многошаговых алгоритмов численного решения нелинейных систем 

ОДУ в вычислительной эффективности над известными явными и неявными 

многошаговыми схемами, такими как методы Адамса, методы Мултона и формула 

дифференцирования назад. 
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3. Предложена методика расчета и визуализации многомерных областей 

устойчивости численных методов, существующих для уравнений второго порядка и 

более. Разработано программное обеспечение визуализации многомерных областей 

устойчивости полуявных методов, где дополнительным измерением служит 

симметрия матрицы тестовой динамической системы. Созданы алгоритмы 

построения областей устойчивости одношаговых экстраполяционных методов, где 

дополнительными измерениями служат количество стадий экстраполяции и 

симметрия дискретной модели. Введено понятие области предпочтительности, как 

более жесткого ограничения, накладываемого на выбор метода и шага 

интегрирования. Проведено сравнение численной устойчивости предлагаемых 

опорных полуявных одношаговых алгоритмов с распространенными алгоритмами, 

входящими в состав инструментальных пакетов моделирования. 

4. Предложен способ синтеза адаптивных математических моделей с 

хаотическим поведением на основе полуявных численных методов с управляемой 

симметрией. Создано и исследовано семейство дискретных возвратных отображений 

c управляемой геометрией фазового пространства. 

5. Предложены новые способы управления шагом интегрирования 

полуявных методов с новыми механизмами оценки локальной погрешности 

численного решения. Показано, что предлагаемые способы управления шагом 

обеспечивают лучшую вычислительную эффективность адаптивных 

композиционных решателей ОДУ по сравнению с известными. 

6. Разработан новый способ быстрой синхронизации дискретных 

хаотических систем с использованием свойства обратимости решения во времени, 

присущего полуявным методам интегрирования. Предложена модификация способа 

адаптивной синхронизации хаотических систем на основе управления параметром 

симметрии, превосходящая по скорости синхронизацию с управлением параметром. 

7. Разработано программное обеспечение, позволяющее проводить 

сравнительное исследование вычислительной эффективности одношаговых и 

многошаговых решателей ОДУ как с переменным, так и с постоянным шагом 

интегрирования при различных способах оценки погрешности. Создан комплекс 
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виртуальных приборов оценки геометрических свойств дискретных моделей, 

полученных различными численными методами, в том числе, с возможностью 

проверки свойств методов на длительных интервалах моделирования. 

Продемонстрировано, что общая производительность и вычислительная 

эффективность предложенных алгоритмов моделирования превосходят известные 

программные решения в области моделирования и анализа хаотических систем.  

Обозначены области практических приложений полуявных численных методов 

и дискретных отображений на их основе. Получены доказательства применимости 

свойств таких отображений к задаче поиска скрытых аттракторов в хаотических 

системах, а также синтеза хэш-функций и генерации псевдослучайных 

последовательностей. 
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Свидетельства о регистрации программ для ЭВМ 
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