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Abstract—Under consideration are the numerical methods for simulation of a fluid flow in a frac-
tured porous media. The fractures are taken into account explicitly using a discrete fracture model.
The formulated single-phase filtering problem is approximated by an implicit finite element method
on unstructured grids that resolve fractures at the grid level. The systems of linear algebraic
equations (SLAE) are solved by the iterative methods of domain decomposition in the Krylov
subspaces using the KRYLOV library of parallel algorithms. The results of solving some model
problem are presented. A study is conducted of the efficiency of the computational implementation
for various values of contrast coefficients, which significantly affect the condition number and the
number of iterations required for convergence of the method.
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INTRODUCTION

When developing some oil and gas fields, a realistic description is necessary of the fluid behavior in

the reservoir. From this point of view, description of fractures in explicit form is more accurate compared

to traditional dual porosity models [1]. One of these methods is the discrete fracture model (DFM) in

which it is assumed that fractures have a dominant effect on fluid flows. Although the total volume of

fractures is very small, but, since their aperture is low and oil is not stored in them in practice, the main
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flow occurs exactly along the fractures due to greater permeability. Usually, the fractures are represented

explicitly by the objects of dimension of an order of magnitude lower than that of the reservoir [2–5].

The fracture discrete model is considered as a method which is well-applicable for a formation with

low degree of the fracture development, especially when the reservoir has several large cracks which

control the flow direction. The conceptual model of discrete fractures was introduced in [6]. A model that

is currently actively applied is presented in [7], where the problem was solved by using the finite element

method, while assuming that the porous medium is a two-dimensional plane, whereas the fractures are

one-dimensional lines with high permeability. Application of a discrete model of fractures and methods

for the numerical solution of two-phase filtration problems is considered in [6–15].

After approximation of the differential problem, it is necessary to solve SLAE with large number of

unknowns. Due to the presence of fractures, the problem under consideration becomes identical to the

problem with highly inhomogeneous coefficients. Consequently, the condition number of the resulting

matrix increases due to the large difference between the permeability coefficients of the porous medium

and the fracture network; and the greater the difference between the coefficients, the greater the condition

number becomes. It is well-known that the matrix condition number directly affects the number of

iterations when solving a system of equations by the iterative methods.

The article deals with numerical studying the features of a solution of the SLAE resulting from the

implicit finite element approximation of a poorly conditioned problem using the iterative methods of

domain decomposition in the Krylov subspaces [16]. In the numerical implementation of SLAE we used

the two-level iterative methods from the KRYLOV library of parallel algorithms [17–23]. To solve the

problems under study, the Schwartz additive method is used that acts as a preconditioner for the original

matrix in the FGMRes method. We present the results of numerical experiments with different contrast

of the permeability coefficients of the porous media and fractures.

1. STATEMENT OF THE PROBLEM

Consider the continuity equation in a domain Ω ∈ Rd describing the single-phase motion of a fluid in

a porous medium:

∂(ϕρ)
∂t

+ div(ρu) = 0, x ∈ Ω, 0 < t ≤ T < ∞, (1)

where ϕ is the reservoir porosity, ρ is the fluid density, p is pressure, k = k(x) is the permeability tensor

of the porous medium, µ is the fluid viscosity, u is the flow velocity of the fluid described by the Darcy’s

law

u = −k

µ
grad p, x ∈ Ω. (2)

Since the fracture thickness is several orders of magnitude smaller than the size of Ω, consideration

of fractures at the grid level leads to the problems of large dimensions. We consider further an alternative

approach used for studying the filtering problems in fractured media. This approach is based on the

representation of cracks by a special interface condition on some inner boundary γ of the domain Ω ⊂ Rd,

where d = 2, 3.

Usually, the fracture Ωf is rather thin, and so, following [24], we can replace the d-dimensional

equation in Ωf ⊂ Rd by some (d− 1)-dimensional equation on the surface γ ⊂ Rd−1 by integrating
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the mass conservation equations and the Darcy’s law over the fracture thickness. Let the fracture have

thickness b = b(s) and

Ωf = {x ∈ Ω | x = s + enf , s ∈ γ, −b/2 < e < b/2},
where γ is a smooth surface, and nf is the normal to γ. We integrate the mass conservation equation

over the thickness and write it as the equation on the surface γ:

b/2∫

−b/2

∂(ϕρ)
∂t

dnf +

b/2∫

−b/2

divτ u dnf +

b/2∫

−b/2

divnf
u dnf =

b/2∫

−b/2

f dnf ,

where divτ and divnf
stand for the operators of tangential and normal divergence on γ respectively;

f =
∑

i

qiδε(x− xi)

is the cumulative intensity of sources/sinks in the neighborhood of xi; qi is the intensity of the ith

source/sink, where

δε(x− xi) =





1/(πε2), |x− xi| ≤ ε,

0, |x− xi| > ε,

and ε is the well radius.

Let pf and uf be the average pressure and velocity along γ:

pf =
1
b

b/2∫

−b/2

p dnf , uf =

b/2∫

−b/2

uf,τ dnf ,

where u = uf,nf
+ uf,τ , while uf,nf

and uf,τ are the normal and tangential components of the velocity.

Since
b/2∫

−b/2

divnf
u dnf = [u · nf ], [u · nf ] = u+ · nf − u− · nf ,

where u+ and u− are the velocity values to the left and to the right of γ, we have the following equation

on γ:

∂(ϕρ)
∂t

+ divτ uf + [u · nf ] = f, x ∈ γ. (3)

The Darcy’s law can be written as follows:

uf,τ = −kf,τ

µ
gradτ pf , uf,nf

= −kf,nf

µ
gradnf

pf , (4)

where kf,nf
and kf,τ are the normal and tangential components of the permeability coefficient kf .

Integrating (4) over the fracture thickness, we infer that

uf = −b
kf,τ

µ
gradτ pf , x ∈ γ, (5)

{u · nf} = −kf,nf

bµ
[p], x ∈ γ, (6)
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[p] = (p+ − p−) is the pressure jump, and {u · nf} = (u+ · nf + u− · nf )/2 is the average velocity.

To determine the average pressure along the fracture, we can use the linear approximation as

pf = {p}+
dµ

kf,nf

[u · nf ], x ∈ γ. (7)

Thus, we obtain the connected system of equations described by the d-dimensional equation (1)

in the domain Ω and (d− 1)-dimensional equation in the fracture with some internal source depending

on the flow from the matrix of the porous medium into the fractures:

∂ϕfρ

∂t
+ divτ uf + [u · nf ] = f, x ∈ γ,

uf = −b
kf,τ

µ
gradτ pf , x ∈ γ,

(8)

where b is the thickness of the fracture, kf is the permeability of the fractures, while pf and uf stand for

the pressure and velocity of the fluid flow respectively. The derivation and description of the model under

consideration can be found in [24–29] in more detail.

In what follows, we will consider the case of an incompressible fluid flow ρ = const in an elastic

deformable porous medium:

∂ϕ

∂t
= crϕ0

∂p

∂t
, (9)

where ϕ0 is the porosity at some given p0, and cr is the compressibility of the porous medium.

Inserting the Darcy’s law (2) into the continuity equation (1), we arrive to the following parabolic

equation that is resolved with respect to pressure [1, 30]:

c
∂p

∂t
− div

(
k

µ
grad p

)
= 0, x ∈ Ω, (10)

where c = crϕ0.

By analogy, for the flow in the fracture network, we obtain

cf
∂pf

∂t
− div

(
b

kf

µ
grad pf

)
+ [u · nf ] = f, x ∈ γ. (11)

Note that the flow exchange between the fracture and the matrix of porous medium is also present

in the equation for the matrix of the porous medium in the form of an interface condition which appears

in the problem approximation. (This model of mixed dimension describing the flow in a fractured porous

medium is widely known [24–29].)

Let us complement (10) with the initial condition, the Neumann boundary condition, and the interface

condition:

p(x, 0) = p0(x), x ∈ Ω, pf (x, 0) = p0(x), x ∈ γ, (12)

u · n = 0, x ∈ ∂Ω, uf · n = 0, x ∈ ∂γ, (13)

{u · nf} = −σ(p− pf ), σ = kf,nf
/(bµ), x ∈ γ, (14)

where n is the outer normal to the boundary of the domain.
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2. FINITE-ELEMENT APPROXIMATION

Consider a spatial discretization by the finite element method for the systems of equations (10)

and (11) with interface condition (14). To approximate the fractures, we use the discrete model of

cracks [25]. This approach is based on the representation of fractures on an unstructured grid by the

faces of finite elements.

Let Th be some partition of the domain into the elements K (grid cells). In the case of highly

permeable fractures, we assume that p+ = p− = pf [24] and
∫

K

∇ · u z dx = −
∫

K

u · ∇z dx +
∫

γ

[u · nf ]z ds.

Then, taking into account the interface conditions for the matrix of the porous medium, we arrive at
∫

Ω

c
∂p

∂t
z dx +

∫

Ω

(
k

µ
grad p, grad z

)
dx−

∫

γ

[u · nf ]z ds = 0 (15)

and for the fractures∫

γ

cf
∂pf

∂t
zf ds +

∫

γ

(
b
kf

µ
grad pf , grad zf

)
ds +

∫

γ

[u · nf ]zf ds =
∫

γ

fzf ds. (16)

For pf = p, using the superposition method, we have
∫

Ω

c
∂p

∂t
z dx +

∫

Ω

(
k

µ
grad p, grad z

)
dx

+
∑

j

(∫

γj

cf
∂p

∂t
zf ds +

∫

γj

(
b
kf

µ
grad p, grad zf

)
ds

)
=

∑

j

∫

γj

fzf ds, (17)

where j = 1,Mf and Mf is the number of discrete fractures. The derivation of the approximation can be

found in [25] in more detail.

For approximation in time we use a purely implicit discretization of the equations
∫

Ωm

c
pn+1 − pn

τ
z dx +

∑

i

∫

γi

cf
pn+1 − pn

τ
zf ds +

∫

Ω

(
k

µ
grad pn+1, grad z

)
dx

+
∑

i

∫

γi

(
b
kf

µ
grad pn+1, grad zf

)
ds =

∑

i

∫

γi

fnzf ds, (18)

where γi is the domain of crack i, τ is the time step, and n is the number of the time layer.

We will use the simplest continuous linear finite functions of the first order as the basis functions.

To use the standard Galerkin method, we write the solution of the problem and test functions in the form

ph =
N∑

i=1

piϕi, vh =
N∑

i=1

ϕi,

where ϕi are piecewise-linear basis functions, whereas N is the number of nodes in the computational

grid Th. Thus, (18) is reduced to the system of algebraic equations

(M + τA)pn+1 = Mpn, (19)
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Fig. 1. DFM approximation.

M and A are symmetric matrices of mass and rigidity respectively having the form

M =

{
mij =

∫

Ω

cϕiϕj dx +
∑

k

∫

γk

cfψiψj dx

}
,

A =

{
aij =

∫

Ω

k

µ
∇ϕi · ∇ϕj dx +

∑

k

∫

γk

kf

µ
∇ψi · ∇ψj dx

}
,

where ψi are the linear basis functions defined only on the fractures.

To illustrate the DFM method by an example, we consider approximation of the matrix of the mass

in the case of two triangular finite elements K1 and K2 on whose intersection there is some one-

dimensional fracture E (see Fig. 1). Here the elements of the matrix have the following form:

mK1
ij =

∫

K1

cϕiϕj dx, i, j = 1, 2, 3, mK2
ij =

∫

K1

cϕiϕj dx, i, j = 2, 3, 4,

mE
ij =

∫

E

cfψiψj dx, i, j = 2, 3.

These quantities together form the elements of local mass matrices:




mK1
11 mK1

12 mK1
13 0

mK1
21 mK1

22 + mK2
22 mK1

23 + mK2
23 mK2

24

mK1
31 mK1

32 + mK2
32 mK1

33 + mK2
33 mK2

34

mK2
42 mK2

43 mK2
44




+




0 0 0 0

0 mE
22 mE

23 0

mE
32 mE

33 0

0 0 0 0




=




mK1
11 mK1

12 mK1
13 0

mK1
21 mK1

22 + mK2
22 + mE

22 mK1
23 + mK2

23 + mE
23 mK2

24

mK1
31 mK1

32 + mK2
32 + mE

32 mK1
33 + mK2

33 + mE
33 mK2

34

0 mK2
42 mK2

43 mK2
44



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3. SOLUTION OF ALGEBRAIC SYSTEMS

At each step n of numerical integration in time of the original initial boundary value problem, it is

necessary to solve a SLAE of type (19). This procedure is carried out iteratively until the condition

of sufficient smallness of the Euclidean norm of the residual vector be fulfilled:

‖rn+1,k‖ ≤ εn‖rn+1,0‖, εn ¿ 1, k = 1, . . . , mn+1, (20)

where k is the number of the current iteration and

rn+1,k = fn −
(

1
τ
M + A

)
pn+1,k, fn = g − 1

τ
Mpn. (21)

By (21), the following relationship holds [19] for an approximate solution pn+1
ε = pn+1,m+1 of

algebraic system (19):

1
τ
M + Apn+1

ε = g +
1
r
Mpn − rn+1

ε , rn+1
ε = rn+1,mn

ε . (22)

On the other hand, the following equality is fulfilled for the vector (p)n+1
h whose components are the

values of the exact solution at the nodes of the space-time grid:(
1
τ
M + A

)
pn+1

h = g +
1
τ
Mpn

h + ψn, (23)

where ψn = ψn
τ + ψn

n = O(τ + h) is the vector of the total temporal and spatial approximation errors.

Hence, for the vector of the total error of the numerical solution zn+1 we have(
1
τ
M + A

)
zn+1 =

1
τ
Mzn + ψn + rn+1

ε , zn+1 = pn+1
h − pn+1

ε . (24)

From this the recurrent inequalities for the vector norms follow:

‖zn+1‖ ≤ ‖(I + τM−1A)−1‖(‖zn‖+ τ‖M‖ · ∥∥ψn + rn+1
ε

∥∥)
, (25)

whence under natural assumptions on the positive semi-definiteness of M−1A and boundedness of the

norm of M−1, the boundedness of the error norm ‖zn+1‖ follows in the numerical integration of the

original problem in some bounded time interval because n = T/τ .

Owing to the relations under consideration, we need to perform balancing between the values of

spatial and temporal approximations, and also the final discrepancy of the iterative solution of the

SLAE for each n. An important question for reducing the number of iterations mn is the choice of

an appropriate initial approximation pn+1,0. For sufficiently small gridsize τ , the simplest method is to

define pn+1,0 = pn. A natural development of this approach consists in using some predictor-corrector

scheme; i.e., firstly, apply an explicit scheme instead of (19):

pn+1 = pn + τM−1(g −Apn). (26)

To solve the given rather large SLAU with the sparse matrix stored initially in a compressed format

(specifically, Compressed Sparse Row, CSR) in the memory of one processor, the KRYLOV library is

applied. This includes the following technological stages:

1. Balanced algebraic-geometric decomposition of the computational domain (with some given

number of grid layers of intersection of the subregions); i.e., in fact, conducting the partition of the

matrix into the block rows of about the same size and distribution of the so-obtained subsystems among

various MPI processes with simultaneous modification of the near-boundary equations to implement
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various types of the interface conditions (Dirichlet, Neumann, or Newton-Robin) on adjacent nodes of

the contacting subdomains.

2. The organization of synchronous solution of the formed algebraic subsystems in the subdomains

on the corresponding multi-core processors with the implementation of “internal” parallelization using

multi-threaded computations, wherein the preconditioned iteration algorithms in the Krylov subspaces

are used, and the interface data is buffered for the preparation of subsequent economical exchanges

between the neighboring MPI processes.

3. Execution of the external iterative process for the subdomains based on the block method of

Schwarz–Jacobi in the Krylov subspaces using the accelerating procedures of coarse-grid correction

or aggregation based on some low-rank approximation of the original matrix.

It is obvious that, in multiple solving of SLAE at different time steps, the repeated procedures are

performed once before the start of the main calculations. It is also natural that, in mass calculations of

the problems of the same type, the optimal planning of a machine experiment requires the preliminary

studies on selection of the algorithmic parameters with the development of practical recommendations

which can significantly improve the efficiency of simulation.

4. NUMERICAL STUDY OF THE SIMULATION RESULTS

Let us consider the numerical solution of the problem (10)–(13) of single-phase filtration with some

network of fractures in the two-dimensional and three-dimensional settings. The porous medium is

assumed homogeneous, but due to the presence of fractures the entire domain Ω is highly inhomoge-

neous. The difference between the permeability of the porous medium and that of fractures defines this

inhomogeneity. Let η = kf/k be the parameter of the medium inhomogeneity. To study the effect of η

on the convergence of the iterative method, we consider various values η = 105, 106, 107, and 108, and

increase only kf according to the formula kf = kη. Assume that the thickness αi of fracture i is identical

for all i, namely, let α = 0.01 m.

The approximation of equations and the construction of matrices is carried out on the FEniCS

computing platform [13] with open source code (LGPLv3). The solution of SLAE is implemented by

the two-level iterative processes in the Krylov subspaces with a preconditioner which is constructed by

using the additive Schwartz method and the decomposition of the computational domain (with parallel

calculations) with parameterized intersection of subdomains and implemented in the KRYLOV library

[17–19]. As the external and internal iterative method we use FGMRES; the Eisen preconditioner is

used in the subdomains (a modification of the Eisenstadt incomplete factorization algorithm).

For numerical experiments, we take the following input data: ϕm = 0.4, ϕf = 1, cR = 10−9 Pa−1,

k = 10−15 m2, µ = 2 · 10−3 Pa · s, τ = 1 day, and p0 = 10 MPa.

5.1. Numerical Study in Two-Dimensional Case

In this study we use the model of a real formation located in northwestern China [21]. We consider

the problem in the two-dimensional formulation with one source, which simulates a well (Fig. 2, a). The

domain is the square with the sides of 4 km and has a network of fractures. We construct the grid with

13568 vertices and 26814 triangular elements (Fig. 2, b) using the free software Gmsh [27]. The grid is

constructed so that the fractures are the faces of triangular elements.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 4 2018
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Fig. 2. Geometry and grid in 2D.

Table 1. Average number of iterations Niter depending on η

η 1 2 3 4

Niter 3.11 6.12 19.35 53

The right-hand side in (10) is the source f = −PI(pn(x)− pb) (pb = 105 Pa is the bottom hole

pressure, and PI is the Pisman coefficient) and has the form

PI =
2πkH3

µ log(re/rw)
, (27)

where rw = 0.1 m is the radius of the well, re = He−π/2 ≈ 0.20788H is the equivalent radius (Pisman

radius or the feed contour radius of the well), H3 is the well height, and H is the distance from the well

center to the nearest node.

The dependence of the average number of iterations Niter on the medium contrast parameter η is

presented in Table 1 and Figs. 3, a and b. As we know, the inhomogeneity of the medium entails some

increase in the condition number and the number of iterations as evidenced by the presented data.

In Figs. 3, c and d, there are the dependences of the flow rate and average pressure respectively on the

parameter η at every time.

In DFM, the fractures are highly permeable voids, and they determine the main direction and density

of the fluid flow. Fig. 4 shows the distribution of the pressure field p at the final time depending on η,

where at its large values, the main flow goes along the cracks.

5.2. Numerical Experiments for 3D

In the case of three-dimensional simulation, the fractures are represented as two-dimensional planes.

When constructing the three-dimensional geometry, the geometry of two-dimensional problem is taken

as a basis (Fig. 2, a). The domain is the parallelepiped with sides of 4 km and height of 300 m. The

fractures are located vertically in the middle of the domain and have height of 200 m (Fig. 5, a).
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Fig. 3. Number of iterations (a), execution time (b), flow velocity (c), and average pressure (d)

in dependence on η.

To study the effect of the parameter η on the solution of the problem, we generate the following two

grids with different numbers of nodes and tetrahedral elements:

Grid 1: 720822 nodes and 3759775 elements (Fig. 5, b);

Grid 2: 1621228 nodes and 9358641 elements (Fig. 5, c).

Problem (10)–(13) was solved on the computing cluster NKS-1P of the Siberian Supercomputer

Center, 20 nodes with Intel Xeon E5-2697v4 (2.6 GHz, 16 cores) were used. The domain is divided into

the subdomains whose number is equal to the number of parallel MPI processes. Table 2 presents the

average number of iterations and execution times (in seconds) depending on η, where we observe that the

task running on 16 MPI processes shows the faster work. As the number of MPI processes increases, the

number of iterations increases, but the execution time required for solving the linear system decreases.

It also follows from the results that increasing the number of MPI processes decreases the solution time

gap for different parameters of permeability kf of the fractures.

Fig. 6 shows solutions to the problem at time t = 1 year for different values of the parameter η on

Grid 2.

CONCLUSION

We considered a discrete fracture model (DFM), which simulates the fractures explicitly. A strong

influence of fractures on the fluid flow rate at high values of permeability was shown. The KRYLOV

parallel algorithm library was used to solve the SLAE. The direct dependence of the number of iterations

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 4 2018
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Fig. 4. Pressure distribution at t = 10 years.

Fig. 5. Geometry of the grid in the 3D domain.

and the solution time on the fracture permeability was shown. A numerical study of the effect of

the fracture permeability on the convergence of the iterative method for the filtering problem in two-

dimensional and three-dimensional productions was carried out.
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Fig. 6. Pressure distribution at t = 1 year on Grid 2 with different η.

Table 2. Average number of iterations Niter and solution time tsol depending on η

Grid η Number of processes

1 2 4 8 12 16

1 Niter 7.31 8.31 19.79 19.82 19.8 19.77

tsol 8.18 2.28 2.67 1.57 1.3 1.2

Сетка 1 2 Niter 20.86 20.77 56.35 55.21 54.66 52.72

N = 720822 tsol 22.01 5.71 7.73 3.9 2.79 2.14

3 Niter 63.35 62.01 194.59 191.27 184.71 177.79

tsol 68.1 17.08 27.2 12.7 8.34 5.79

1 Niter 8.47 26.63 30.86 37.82 38.27 37.31

tsol 24.38 19.45 10.01 7.04 6.25 4.34

Сетка 2 2 Niter 24.73 33.55 49.28 90.1 91.24 91.37

N = 1621228 tsol 67.05 24.03 15.69 16.03 13.42 8.6

3 Niter 73.36 77.76 199.84 564.15 416.8 347.4

tsol 202.03 61.43 65.29 95.24 56.75 28.07
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