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Abstract

Spectral methods based on integral transforms may be efficiently used to solve differential
equations in some special cases. This paper considers a different approach in which algo-
rithms are proposed to calculate integral Laguerre transform by solving a one-dimensional
transport equation. In contrast to the direct calculation of improper integrals of rapidly os-
cillating functions, these procedures make it possible to calculate the expansion coefficients
of a Laguerre series expansion with better stability, higher accuracy, and less computational
burden.
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1. Introduction

The Laguerre integral transform has been used in various fields of mathematical simu-
lation to solve acoustics and elasticity equations [1, 2, 3, 4], Maxwell and heat conduction
equations [5, 6], and spectroscopy problems [7]. The Laguerre transform has proved to be a
very efficient tool in constructing a stable algorithm of wave field continuation when solving
inverse problems of seismic prospecting [8, 9] and many others. The Laguerre transform
has served as a basis for the development of numerical methods of inversion of Laplace
[10, 11, 12] and Fourier [13] transforms. In numerically solving differential equations by ap-
plying the Laguerre transform in time and approximating space derivatives one has to solve
definite well-conditioned systems of linear algebraic equations. For the latter one can use
fast convergent algorithms of computational linear algebra [14, 15]. In addition, in contrast
to the Fourier transform, to calculate the coefficients of the Laguerre series one and the same
operator, which does not depend on the number of the harmonic being calculated, is inverted
several times. On the contrary, the operator obtained by the Fourier transform will depend
on the frequency. This property of the Laguerre transform allows using efficient parallel
preconditioning procedures to solve systems of linear algebraic equations, for instance, on
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the basis of the dichotomy algorithm [2, 16, 17], which was specially developed to invert one
and the same matrix for different right-hand sides.

Consider Laguerre functions [18], which are defined as

ln(t) = e−t/2Ln(t), t ≥ 0 (1)

where Ln(t) is the Laguerre polynomial of degree n, which is defined by the Rodrigues
formula

Ln(t) =
et

n!

dn

dtn
(

tne−t
)

=
1

n!

(

d

dt
− 1

)n

tn.

We will use L2[0,∞) to denote the space of square integrable functions f : [0,∞) → R

L2[0,∞) =

{

f :

∫

∞

0

|f(t)|2dt < ∞
}

.

The Laguerre functions are a complete orthonormal system in L2[0,∞)

∫

∞

0

lm(t)ln(t)dt =

{

0, m 6= n,
1, m = n,

(2)

This guarantees that for any function f(t) ∈ L2[0,∞) there is a Laguerre expansion

f(t) ∼ η
∞
∑

m=0

āmlm(ηt), t ≥ 0, η > 0,

ām =

∫

∞

0

f(t)lm(ηt)dt,

(3a)

(3b)

where η is a scaling parameter for the Laguerre functions to increase the convergence rate
of the series (3a).

The Laguerre function values for large n are bounded from above, since an asymptotic
representation [19]

ln(t) =
1

π1/2(nt)1/4

(

cos(2
√
nt− π/4)

)

+O

(

1

n3/4

)

, t ∈ [a, b], 0 < a < b < ∞, (4)

is valid. However, one of the problems of numerical implementation of the transform (3b) is
that in calculating the Laguerre functions for t > 1 the values of the Laguerre polynomials
Ln(t) rapidly increase with increasing n, which leads to an error of ”overflow”. On the
contrary, in calculating the multiplier exp(−t/2) there may be an error of ”underflow”. For
small n and t the Laguerre functions can be calculated by the formula

ln(t) =
[

e−t/4L̃n(t)
]

e−t/4. (5)
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Specifically, first we calculate the expression in the square brackets using a second order
recurrence formula [20]:

(n+ 1)L̃n+1(t) = (2n+ 1− t)L̃n(t)− nL̃n−1(t), n ≥ 1,

L̃1(t) = (1− t)e−t/4, L̃0(t) = e−t/4.

(6)

Then, multiplying the result by the second exponential multiplier, we calculate the Laguerre
function. If the calculations are made at 128-bit real computer precision, this method
excludes situations of the ”overflow” and ”underflow” types for n-values that do not exceed
several thousand and t < 20, η < 1200. Since high-precision arithmetic is used, as a
rule, with software (but not hardware), the use of high precision considerably decreases the
efficiency of calculations. Therefore, to save the calculation time 128-bit arithmetic should
only be used to calculate the Laguerre functions, whereas the summation in approximating
the integral (3b) can be made using standard 64-bit precision.

Another problem of implementing the Laguerre transform is caused by the fact that
the Laguerre functions of the n-th order on the interval 0 < t < 4n oscillate [21], and
the strongest oscillations are near zero (see Fig. 1). This brings up a problem of finding a
method to integrate rapidly oscillating functions. To overcome this difficulty, an algorithm
to calculate the integral (3b) is proposed in [22]. This algorithm is based on quadratures
of high-order accuracy, which make it possible to calculate the Laguerre series expansion
coefficients whose number n is not greater than several hundreds. However, one should take
into account that the quadratures of high orders are defined on nonuniform grids, which may
not allow their use if the function to be approximated is given in the form of a time series
for equal-spaced time intervals. For analytical functions, approaches based on the Laplace
transform and Cauchy’s integral formula can be used [11]:

ān =
1

2πI

∫

Cr

[

f̂((1 + z)/2(1− z))

1− z

]

z−(n+1)dz. (7)

Here the expression in the square brackets is a generating Laguerre function, which is ana-
lytical in the circle Cr of radius r with the center at the origin of coordinates, and f̂(s) is
the Laplace transform for the function f(t). The imaginary unit is denoted by I =

√
−1.

In calculating the integral (7), the necessary preliminary Laplace transform for a function
expanded into a Laguerre series makes it difficult to use this algorithm.

Another method of calculating the expansion coefficients is given by an integral of the
form [13]

ān =
1

2π

∫ 2π

0

[

1

2

(

1 + I cot
z

2

)

f

(

1

2
cot

z

2

)]

e−inzdz. (8)

Note that the cotangent function has singularities at points 0 and π. This complicates the
calculation of the expansion coefficients if the function being approximated is discrete. One
more method based on the Laplace and Fourier transforms was proposed in [10]. Thus, the
above-mentioned approaches are most suited for approximating smooth analytical functions,
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Figure 1: Laguerre functions of various orders for the transformation parameter η = 60.

for which the Laplace or Fourier transform is known. However, in solving applied problems
the initial data may be specified in the form of time series with low smoothness, which calls
for the development of additional procedures for this case.

In this paper, a new method to calculate the Laguerre series coefficients is proposed. It
is based on solving a one-dimensional transport equation. This is a distinguishing feature of
the approach, since the integral transforms are used, as a rule, to solve differential equations.
In contrast to this, the one-dimensional transport equation is solved to implement the inte-
gral Laguerre transform. With this approach to the problem, a stable and rather accurate
algorithm which is less expensive than the direct calculation of the integral (3b) is proposed.
In addition, an efficient variant of the method will be considered for the approximation of
functions on large intervals.
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2. Expansion algorithms

2.1. Main formulas

Consider the following initial boundary value problem for a one-dimensional transport
equation:











∂v

∂t
− ∂v

∂x
= 0, t > 0, −∞ < x < +∞,

v(x, 0) = f(x).

(9)

On taking the Laguerre transform in time of the problem (9), it can be written in the form
[4]

(η

2
− ∂x

)

v̄m = −Φ(v̄m), (10)

where

Φ(v̄m) = −f + η
m−1
∑

j=0

v̄j . (11)

Taking into consideration
Φ(v̄m) = ηv̄m−1 + Φ(v̄m−1),

let us turn to another form of (10)











(η

2
− ∂x

)

v̄0 − f = 0,
(η

2
− ∂x

)

v̄m =
(

−η

2
− ∂x

)

v̄m−1, m = 1, 2, ...

(12a)

(12b)

Then, taking the Fourier transform in the variable x, we have











(η

2
− Ik

)

V̄0(k)− f̃(k) = 0,
(η

2
− Ik

)

V̄m(k) =
(

−η

2
− Ik

)

V̄m−1(k), m = 1, 2, ...,

(13a)

(13b)

where k is the wavenumber. Expressing the sought-for function in explicit form, we have

V̄m(k) = f̃(k)
(

−η

2
− Ik

)m

/
(η

2
− Ik

)m+1

. (14)

Again, consider the problem (9), but with periodic boundary conditions of the form
v(0, t) = v(T, t), where T determines the boundary of the interval of approximation of the
function f(t), t ∈ [0, T ]. In this case the solution to equation (10) has the form of summation
of solutions of the form (14) for a discrete set of frequencies, kj = 2πj/T , j = 0, 1, ..., Nx:

v̄m(p) ≈
Nx
∑

j=0

Ṽm(kj) exp

(

I
2πjp

T

)

. (15)
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Subject to the solution (15) for the transport equation, the function f(t), given as an initial
condition, will move in the direction x = 0. By writing the solution to the transport
equation at the point x = 0, we see that the sought-for coefficients of the expansion (3b) for
the function f(t) can be calculated as ām = v̄m(0).

Although the expansion coefficients are calculated by formulas (14), (15) with O(nNx)
arithmetic operations, that is, the algorithm is not fast, the above method, proposed for
implementing the Laguerre transform, has some important advantages over the direct cal-
culation of the improper integral of the rapidly oscillating function (3b). First, from the
definition of the absolute value of a complex number we have the identity

∣

∣

∣

(

−η

2
− Ik

)

/
(η

2
− Ik

)∣

∣

∣
≡ 1,

which guarantees stability of the calculation and the absence of ”overflow” or ”underflow”
situations for any T and n, which is a problem in calculating the Laguerre functions by
formula (1). Second, as it will be shown below, the calculations by formulas (14),(15) can be
made with single 32-bit real precision, which increases the accuracy of the calculations by
using higher vectorization. On the contrary, the considerable spread in the Laguerre function
values calls for 64-bit precision calculations. Third, despite the presence of strong oscillations
of the Laguerre functions at the origin of coordinates (Fig. 1), the spectral approach does
not require using nonuniform grids or quadratures of high-order accuracy to retain a given
accuracy on the entire approximation interval. From a practical viewpoint, it is much more
convenient to specify the number of harmonics Nx of the Fourier series instead of the grid
size, since the boundaries of the spectrum of the function being approximated are, as a rule,
either known beforehand or can be determined in an efficient way.

A shortcoming of the computational model being considered is that this method of
calculating the expansion coefficients of the Laguerre series adds a fictitious periodicity of
the form f(t) = f(t + bT ), where b is any nonnegative integer. To remove the undesirable
periodicity, two fundamentally different approaches will be proposed below.

2.2. Energy-dependent truncation of Laguerre Series

Consider an approach which allows removing the fictitious periodicity in the calculation of
the expansion coefficients of the Laguerre series by formula (15). Fig. 2b shows the Laguerre
series expansion coefficients for the function f(t) in Fig. 2b specified by the formula

f(t) = exp

[

−(2πf0(t− t0))
2

g2

]

sin(2πf0(t− t0)), (16)

where t0 = 0.5, g = 4, f0 = 30. It is evident from Fig. 2b that to exclude the undesirable
periodicity it is sufficient to increase the calculation interval from [0, T ] to [0, 3T ] assuming
that for t ∈ [T, 3T ] the function is zero. Then, once the expansion coefficients have been
calculated, remove the coefficients with numbers m > m0 ≈ 400. In the calculations for
smaller approximation intervals, for instance [0, T ] or [0, 2T ], the fictitious periods of the
function in the spectral domain cannot be separated, since the abrupt truncation of the
series will cause oscillations in the entire approximation interval.
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Figure 2: a) Function (16) and its approximation by formula (15) for intervals of various lengths, b) Laguerre
spectrum.

To automatically determine the number of the remaining expansion coefficients, we use
Parseval’s relation

∫

∞

0

v2(t)dt =
∞
∑

m=0

(v̄m)
2 . (17)

On the basis of this relation the maximum number of the Laguerre series coefficients m0 is
determined from the condition

argmin
m0

∣

∣

∣

∣

∣

∫ T

0

v2(t)dt−
m0
∑

m=0

(v̄m)
2

∣

∣

∣

∣

∣

. (18)

Now let us formulate an algorithm of expanding the function f(t) in a Laguerre series.

Algorithm 1 to approximate a function f(t) on the interval t ∈ [0, T ] by a Laguerre
series:

1. Calculate f̃ = FFT (f) on the basis of a fast algorithm of the discrete Fourier trans-
form.

2. Calculate the expansion coefficients of the series (3a) by formula (15) and the equality
ām = v̄m(0).

3. On the basis of formula (18), leave intact only the first m0 coefficients of the series
(3a).

The above-considered a posteriori method of removing the fictitious periodicity is not
convenient from a practical viewpoint, since the spectra of nonsmooth functions may be
rather large. This may not allow separating the first period of the function being approxi-
mated from the subsequent fictitious periods in the spectral domain. Also, in approximating
functions of various smoothness it is not clear how many times the approximation interval
must be increased to reliably remove the fictitious periodicity. In this case too great increase
in the approximation interval length may cause a considerable increase in the computational
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costs. To solve these problems, an alternative procedure of removing the fictitious periodicity
not requiring a posteriori analysis of the Laguerre spectrum will be developed.

2.3. Shift and Conjugation procedures

Let us develop two auxiliary procedures to modify the Laguerre series coefficients, which
we call shift and conjugation. These will allow us to propose an alternative procedure of
removing the fictitious periodicity, as well as a procedure of reducing the computational
costs when a function is expanded in a series for large approximation intervals.

Consider an analytical solution to the following initial boundary value problem


























∂v

∂t
+

∂v

∂x
= 0, t > 0, x > 0,

v(0, t) = f(t), t ≥ 0,
v(x, 0) = 0, x ≥ 0,
f(0) = 0.

(19)

As in solving the problem (9), we again apply the Laguerre transform in time to the transport
equation, and obtain the equation

(η

2
+ ∂x

)

v̄m = −Φ(v̄m).

For the boundary conditions (19) to be satisfied, we use the Laguerre transform but not the
Fourier transform to calculate the functions v̄m(x), that is, search for a solution of the form

v̄m(x) = κ
∞
∑

j=0

Wm,jlj(κx), m = 0, 1, 2..., (20)

where the transformation parameter κ > 0. Then, on applying the Laguerre spatial trans-
form to equation (19), we have
{

(η + κ)Wm,0 = (−η + κ)Wm−1,0 + 2
(

f̄m − f̄m−1

)

, m = 0, 1, ...,

(η + κ)Wm,j + 2Υ(Wm,j) = (−η + κ)Wm−1,j + 2Υ(Wm−1,j), m = 0, 1, ...; j = 1, 2, ..,

(21a)

(21b)
where

Υ (Wm,j) = κ

j−1
∑

i=0

Wm,i = κWm,j−1 +Υ (Wm,j−1) , (22)

and Wm,j ≡ 0, f̄m ≡ 0, ∀ m < 0.

Taking (22) into account, equation (21b) takes the following form:

(η + κ)Wm,j+(η − κ)Wm−1,j = (η − κ)Wm,j−1+(η + κ)Wm−1,j−1, m = 0, 1, ...; j = 1, 2, ... .
(23)
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Taking κ = η, we finally obtain
{

Wm,0 =
(

f̄m − f̄m−1

)

, m = 0, 1, ...,
Wm,j = Wm−1,j−1, m = 0, 1, ...; j = 1, 2, ...

(24)

Based on (3a), (20) and (24), the final solution to problem (19) in the time domain is as
follows:

v(x, t) = κ

∞
∑

m=0

(

η

m
∑

j=0

Wm−j,0lj(κx)

)

lm(ηt). (25)

Changing the order of summation, we can also write

v(x, t) = η
∞
∑

j=0

(

κ
∞
∑

m=0

Wm,0lm+j(ηt)

)

lj(κx). (26)

It follows from formulas (25) and (26) that the expressions in the brackets are the Laguerre
series coefficients. Then, taking into account the relations (24), we introduce two transforms
with a parameter τ ≥ 0:

S {ām; τ} =

m
∑

j=0

(ām−j − ām−j−1) lj(ητ) ,

Q {āj; τ} =
∞
∑

m=0

(ām − ām−1) lm+j(ητ), where ā−1 ≡ 0.

(27a)

(27b)

One can see in Fig. 3 for formula (27a) that the expansion coefficients ḡm = S
{

f̄m; τ
}

correspond to a function g(t) = f(t − τ), where f(t) ≡ 0 for t < 0. One can see in Fig. 4
for formula (27b) that the expansion coefficients h̄m = Q

{

f̄m; τ
}

approximate a function
h(t) = f(τ − t), where f(t) ≡ 0 for t < 0. The transform S {·; τ} will be called a shift.
The transform Q {·; τ} will be called conjugation for the interval [0, τ ], since the transform
Q {·; τ} is an analog of complex conjugation for the coefficients of the trigonometric Fourier
series. To implement the transforms (27a) and (27b), O(n logn) operations are needed, if we
use algorithms based on the fast Fourier transform [23] to calculate the linear convolution
(27a) and the correlation (27b).

2.4. Time-dependent truncation of Laguerre Series

To remove the fictitious periodicity of the function being approximated, a procedure
was developed in Section 2.2. This procedure, by analyzing the Laguerre series spectra,
limits the number of expansion coefficients to separate the first period of the function being
approximated from all subsequent fictitious periods. Here we propose another algorithm to
remove the periodicity with less computational costs without any additional increase in the
approximation interval.

Consider a procedure which, for a given parameter τ > 0, transforms the Laguerre
series coefficients to make the series for the function f(t) approximate the function r(t) =

9



Figure 3: a) Function (16) and b) Laguerre spectrum for various values of parameter τ of shift operator
S{f̄m; τ}.

Figure 4: a) Function (16) and b) Laguerre spectrum for various values of parameter τ of conjugation
operator Q{f̄m; τ}.

H(−t + τ)f(t), where H(t) is the Heaviside function. This is equivalent to nullifying the
values of the series ∀ t > τ > 0. This can be achieved by successively applying two
conjugation operations of the form Q2 {·; τ} ≡ Q {Q {·; τ} ; τ} to the Laguerre series. It
follows from Fig. 5a that once the operation Q2

{

f̄m; 1/2
}

is applied, the values of the series
become zero, ∀ t > 1/2. The local smoothness of the function r(t) in the vicinity of the point
t = 1/2 decreases, which increases the spectrum width (Fig. 5b). However, if there are no
additional discontinuities of the function and its derivatives at the point t = τ (Fig. 6a), the
spectrum width does not increase. As a result, one can preliminarily calculate the expansion
coefficients by formula (15), and then apply the operation Q2 {·;T} to remove the fictitious
periodicity. The operation Q2 uses O(n logn) arithmetic operations, which is much less
than the computational costs for formula (15). Therefore, the total costs of the approach
being proposed will increase insignificantly. To avoid any additional discontinuities and
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Figure 5: Function (16) before and after applying the operator Q2
{

f̄m; 1/2
}

and b) Laguerre spectrum.

Figure 6: a) Function (16) before and after applying the operator Q2
{

f̄m; 0.7
}

and b) Laguerre spectrum.

decreases in the smoothness of the function being approximated and, hence, increases in the
Laguerre spectrum width, the function being expanded in the series is locally multiplied by
an exponentially attenuating multiplier on the right boundary of the approximation interval.

In solving practical problems of seismic prospecting, it is often necessary to perform
integral transforms for a set of independent time series, called seismic traces. In this case
the procedure of removing the periodicity can be implemented in a more efficient way. For
this formula (15) is rewritten in matrix form as follows:













ā0
ā1
...

ān−1

ān













=

















1
(−ik0+η/2)

1
(−ik1+η/2)

... 1
(−ikNx

+η/2)

(−ik0−η/2)

(−ik0+η/2)2
(−ik1−η/2)

(−ik1+η/2)2
...

(−ikNx
−η/2)

(−ikNx
+η/2)2

... ... ... ...
(−ik0−η/2)n

(−ik0+η/2)n+1

(−ik1−η/2)n

(−ik1+η/2)n+1 ...
(−ikNx

−η/2)n

(−ikNx
+η/2)n+1





























f̃0
f̃1
...

f̃Nx−1

f̃Nx













= MF̃ . (28)
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Consider the matrix M̌ whose columns are obtained from the columns of the matrix M by
applying the operations Q2 {·;T}. Instead of applying the operation Q2 {·;T} to the calcu-
lated coefficients ān, one can preliminarily calculate the matrix M̌ and then calculate the
expansion coefficients without the fictitious periodicity. This method is used if the number
of columns of the matrix M is much less than the number of functions to be approximated.

Now let us formulate algorithms to approximate a function f(t), t ∈ [0, T ] by a Laguerre
series, where to remove the fictitious periodicity we use the operator Q2 {·;T}.

Algorithm 2 to approximate a function f(t) on an interval t ∈ [0, T ] by a Laguerre series

1. Preparation stage:

1.1 Create a matrix M of the form (28).
1.2 Calculate the modified matrix M̌ by making the transform Q2 {·;T} for each

column of the matrix M .

2. For each of the functions f(t) being approximated:

2.1 Calculate f̃ = FFT (f) using a fast algorithm of the discrete Fourier transform.

2.2 Calculate the Laguerre series coefficients as (ā0, ā1, ..., ān)
T = M̂

(

f̃0, f̃1, ..., f̃Nx

)T

.

If the number of functions to be approximated is smaller than the number of columns of the
matrix M , the following algorithm, which does not calculate the matrix M̌ , is more efficient:

Algorithm 3 to approximate a function f(t) on an interval t ∈ [0, T ] by a Laguerre series:

1. Calculate f̃ = FFT (f) using a fast algorithm of the discrete Fourier transform.

2. Calculate the Laguerre series coefficients as (ā0, ā1, ..., ān)
T = M

(

f̃0, f̃1, ..., f̃Nx

)T

.

3. Transform Q2 {ān;T} to exclude the fictitious periodicity.

2.5. A generalization for the expansion algorithms

Algorithms 1, 2, and 3 can be used when the function to be approximated by a Laguerre
series can be represented by a Fourier series as well. For the Laguerre series coefficients to
decrease rapidly enough, the function being expanded must tend to zero exponentially in
the vicinity of the right boundary of the approximation interval [24]. This can be achieved
by locally multiplying the function by a factor of the form exp(−µt), µ > 0. On the other
hand, since the trigonometric interpolation is periodic, the condition f(0) = f(T ) = 0 must
be satisfied. This imposes constraints on the form of the function being approximated. For
instance, if the above-considered algorithms are applied to the function shown in Fig. 7a,
there will be oscillations on both boundaries of the expansion interval (see Fig. 7b). The
loss of accuracy can be avoided if the calculations are made by the following scheme.

First the initial function is shifted to the right by ∆t. Then, on the interval t ∈ [0,∆t],
a smooth function taking a zero value at t = 0 is added (see Fig. 7c where a scaled quarter-
period function of cos2(t) is specified on the interval t ∈ [0,∆t]. If the modified function
is expanded in a Laguerre series using algorithm 2 or 3, the operation Q2 {ām;T} is used
instead of the operation Q {Q {ām;T +∆t} ;T}. This will make it possible to remove both

12



Figure 7: a) Function to be approximated, b) incorrect approximation of the initial function by a Laguerre
series with artefacts shown by arrows, c) auxiliary function including an additional interval, d) correct
approximation of the initial function by a Laguerre series after removing the auxiliary interval.

the fictitious periodicity and the auxiliary interval t ∈ [0,∆t]. If it is planned to use algorithm
1, for which the operation Q2 {ām;T} is not needed, the additional interval t ∈ [0,∆t]
is excluded by calculating the expansion coefficients by formula (15), but setting ām =
v̄m(−∆t) instead of ām = v̄m(0).

2.6. Stable calculation of Laguerre functions for any order and argument value

Consider a problem of calculating Laguerre functions by performing the operations
S {·; τ} and Q {·; τ}. If the argument of the functions lm(ητ) for (27a), (27b) is too large,
then (as noted in the introduction) there emerges an error of ”overflow” in calculating the
function Ln(ητ) or an error of ”underflow” in calculating exp (−ητ/2). The use of 128-bit
arithmetic does not exclude errors of these types for larger values of the argument or the
order of the Laguerre function. Therefore, we consider a more universal approach.

It follows from the relation lm(ηt0) =
∫

∞

0
δ(t−t0)lm(ηt)dt, where δ(t) is the delta function,

that the coefficients āk = lm(0) = 1 of the Laguerre series (3a) correspond to δ(0). Then the
Laguerre function can be calculated for any values of the argument using a series of shifts
of the form

{lm(t0)} = S {...S {S {lm(0); τ1} ; τ2} ...; τp} , t0 =

p
∑

i=1

τi. (29)

The maximum value of the shift parameter τi for 64-bit arithmetic is limited by the ca-
pacity of representing the quantity exp(−ητi/4) for real numbers. According to the IEEE
standard describing a representation of real numbers with 64-bit precision, by choosing
ητi ≤ 4 |ln(2.225× 10−308)| ≈ 2600 ln(ητi) can be calculated by (5) without situations of the
”underflow” or ”overflow” type.
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Figure 8: a) Function lm(ηt) versus m for a constant value of argument ηt = 2000 × 16, b) difference of
Laguerre function values calculated by formula (30) in 64-bit arithmetic and formula (5) in 128-bit arithmetic.

To decrease the total number of shifts and, hence, the computational costs, it makes
sense to perform the shifts recurrently:

{lm(2pητ)} = S
{

S {S {S {lm(ητ); τ} ; 2τ} , 4τ} ...; 2p−1τ
}

. (30)

In comparison to formula(29), the number of calculations can be reduced owing to the fact
that the Laguerre function values obtained at the previous step are used in formula (27a)
to make the shift at the current step of implementing formula (30). Thus, the shift value at
each step is doubled, which decreases the total number of shifts with each of them requiring
O(n logn) operations. Note that for the first shift lm(ητ) must always be calculated by
formulas (5) and (6).

Fig. 8a shows the result of calculation of the functions lm(2200 × 16) by formula (30).
The absolute difference of the values for formula (30) in 64-bit arithmetic and formulas
(5), (6) in 128- bit arithmetic is shown in Fig. 8b. It is evident from this figure that both
approaches give practically the same results. Thus, the above algorithm does not use high-
precision arithmetic in performing stable calculations of Laguerre functions of any order for
any values of the argument. Moreover, some test calculations have shown that, in comparison
to 128-bit arithmetic, the above calculation method needs several times less calculation time
if, in particular, 32-bit arithmetic is used to organize the shift procedure.

2.7. Optimization for a large interval approximation

It is well-known that, owing to the high performance and stability of the algorithm of fast
Fourier transform, it has been widely used in many branches of computational mathemat-
ics, whereas no algorithm for the Laguerre transform having comparable efficiency has been
developed so far. Although general methods of fast polynomial transforms were proposed
long ago [25], they are of theoretical rather than practical importance. This is because they
use numerically unstable efficient procedures of multiplying matrices V and V T by a vector,
where V is an ill-conditioned Vandermonde matrix [26, 27]. For instance, fast multiplica-
tion by the matrix V can be performed by using an algorithm [28] whose computational
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complexity is of the order of O(n log2 n) operations. Unfortunately, this method is unsta-
ble, since one of its stages includes a recursive use of the operation of polynomial division.
Multiplication of the matrix V T by a vector can be reduced to solving systems of linear
algebraic equations with a Vandermonde matrix with an operation count of the order of
O(n log2 n) [25, 29, 30]. This approach also cannot be recommended for practical use due
to its numerical instability.

The condition number for Laguerre functions is greater than that for the other classical
orthogonal polynomials [31]. Therefore, the problem of stability of fast algorithms for the
Laguerre transform is probably one of the most difficult ones. By now, fast transforms have
been developed for Chebyshev, Legendre, and Hermite polynomials [32, 33, 34]. In these
cases the arithmetic complexity of the algorithms is of the order of O(n logn) or O(n log2 n)
operations. Fast algorithms of changing from one orthogonal polynomial basis specified by
a three-term recurrence relation to another one have also been developed [35]. In paper
[36], an algorithm for fast polynomial transforms based on an approximate factorization
of the matrices V or V T was proposed. In some cases the authors managed to decrease
the computational costs to a level of O(n logn) arithmetic operations. However, the com-
putational complexity may vary widely for various orthogonal polynomials and expansion
interval lengths. Also, the algorithm becomes efficient in comparison to the direct method
of multiplying a matrix by a vector, for n ≥ n0, where n0 is of the order of several thousand.

To expand a function into a Laguerre series by formula (15), about O(nNx) arithmetic
operations are needed, where n is the number of expansion terms of the Laguerre series and
Nx is the number of harmonics of the auxiliary Fourier series. Approximation of the function
for longer intervals calls for specifying larger values of n and Nx, which makes the Laguerre
transform inefficient. To decrease the calculation time when performing the Laguerre trans-
form, we consider an algorithm of the ”divide and conquer” type [37]. The general idea
of this approach is that at the first stage the initial problem is divided into independent
subproblems with much less computational costs needed for their solution. At the second
stage the solution to the initial problem is assembled from the solutions to the subproblems.
This approach was successfully used, for instance, in papers in which a parallel dichotomy
algorithm was proposed to solve systems of linear algebraic equations with three-diagonal
[16], block-diagonal [2], and Toeplitz matrices [17].

Algorithm 4. to approximate a function f(t) on an interval t ∈ [0, T ] by a Laguerre
series:

1. Decompose the approximation interval t ∈ [0, T ] into p = 2s overlapping subintervals
of lengths ∆ti = βi − αi (Fig. 9). In this case the function must smoothly tend to
zero on the subinterval boundaries in the buffer zones so that the sum of the two local
functions remains equal to the value of the function being approximated.

2. The local function fi(t) specified on the subinterval with number i is expanded in a
Laguerre series on the auxiliary interval [0,∆ti] by algorithm 1, 2, or 3.

3. Shift the local functions by changing from the interval [0,∆ti] to the subinterval [αi, βi].
This is done by a series of shifts of the function fi(t) using the scheme presented in
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Fig. 10, which gives an example of four subintervals. The process of assembly consists
of log2 p steps, where p is the number of subintervals. Hence, two steps will be needed
for the example being considered. At the first step the sequences of the Laguerre series
coefficients for the local functions f2(t) and f4(t) are supplemented by zeroes to double
the number of expansion coefficients.
Then the thus expanded series are shifted using the procedures S

{

ān/2;α2

}

and
S
{

ān/2;α4 − α3

}

. After this the corresponding coefficients of the first and second
series and of the third and fourth series are added pairwise. This results in two in-
tervals of larger lengths. At the second step this process is used for the new second
series, and after it is shifted by S {ān;α3} the expansion coefficients of the first and
second series are added. Thus, all local functions will be shifted to their initial posi-
tions with respect to the variable t, and the thus obtained series will approximate the
initial function f(t) with some accuracy.
Remark. To execute one shift S{ān; τ} using the fast Fourier transform, O(n logn)
arithmetic operations are needed. One can see in Fig. 3 that a shift of the function
to the right increases the number of coefficients of the Laguerre series needed to ap-
proximate the shifted function with the previous accuracy. For the calculation scheme
in Fig. 10 every shift will double the minimum number of the Laguerre series terms.
Therefore, before making a shift the sequence of coefficients of the Laguerre series
must be added by zeros (zero padding). After making the shift the zero values of the
added expansion coefficients will become nonzero ones.

Figure 9: Decompositions of the initial approximation interval into four overlapping subintervals.

Figure 10: Approximation construction scheme for function f(t) with precalculated approximations for local
functions fi(t).

For larger values of n and Nx the computational complexity of algorithm 4 will be of the
order O(nNx/p + n log2 n log2 p) vs. O(nNx), where p is the number of subintervals. The
first term is the costs to approximate the local functions fi(t), t ∈ [0,∆ti], and the second
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one is the costs to perform a series of shift operations to transform the local expansion
coefficients to the expansion coefficients for the initial function f(t). However, this algorithm
has the following shortcoming: the number of Laguerre series coefficients to approximate
the local functions fi(t) on the subintervals [0,∆ti] depends not only on the lengths of the
subintervals, but also on the smoothness of the functions fi(t). Taking into account that
in solving practical problems the function to be approximated may have low smoothness,
the convergence of the series may be not high. This results in the fact that at the same
accuracy the total number of expansion coefficients for the local problems for algorithm 4
will be greater than the number of expansion coefficients when using algorithm 1, 2, or 3.
Thus, the division will require additional computational costs, which can be estimated in
computational experiments.

3. Computational experiments

To estimate the accuracy of the approximation and the efficiency of the methods being
proposed, let us perform a series of computational experiments to approximate functions of
various smoothness on intervals of various lengths. The numerical procedures to calculate
the Laguerre coefficients will be performed with single and double precision. Algorithms 2
and 3 give the same results in calculating the Laguerre series coefficients and, therefore, no
separate testing of algorithm 3 will be considered.

3.1. Inversion of Laguerre transform

Consider the problem of calculating the inverse Laguerre transform (3a). In contrast
to the direct transform, in the summation of the series there only remains the problem of
calculating the Laguerre functions of high orders for larger argument values. This problem
can be solved in several ways. If the calculations are made with 128-bit real precision
by formula (5), the Laguerre functions of high orders can be calculated for rather large
values of the argument without errors of ”overflow” and ”underflow”. Another method is to
use asymptotic expansions [21, 38] to calculate the Laguerre polynomials Ln(ηt), whence,
multiplying by exp (−ηt/2), we obtain the Laguerre functions.

If a function approximated by a Laguerre series can be represented by a Fourier series,
one can change from the Laguerre coefficients to Fourier coefficients using the following
formula:

(f̃0, f̃1, ..., f̃Nx
)T =

1

T
M∗(ā0, ā1, ..., ān)

T , (31)

where M̃ is a modified matrix of the form (28). In this case a major problem is in the
emergence of discontinuities of the function on the boundaries of the approximation interval,
t ∈ [0, T ].

Finally, we can use the stable method of calculating the Laguerre functions by formulas
(29) or (30) considered in Section 2.5. As noted above, although the fast Fourier transform
is needed to calculate the linear convolution, this method of organizing the calculations
requires less calculation time than when using 128-bit arithmetic and formula (5).
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3.2. Test 1. Expansion of a smooth function

As a first test, consider, on the interval t ∈ [0, 1], an approximation of a function f(t)
of the form (16) with parameters f0 = 30, g = 4, t0 = 0.5. The discretization step of the
function ht = 0.002. The approximation error is estimated by the formula

ǫ =

√

√

√

√

∑s
i=1

(

f(ti)−
∑n

j=1 ājlj(ηti)
)2

∑s
i=1 f

2(ti)
, (32)

where f(ti) is the function to be expanded in a Laguerre series, which is specified on a set
of values ti ∈ [0, T ], i = 1, 2, ...s, t1 = 0, ts = T .

Fig. 11 shows the error versus the number of expansion coefficients of the Laguerre series
for various values of the scaling parameter η ∈ [50, 1600]. The calculations were made
both with double real precision (Fig. 11a,b) and single precision (Fig.11c,d). To exclude
the fictitious periodicity in algorithm 1, the initial approximation interval was increased to
t ∈ [0, 2] , where f(t) ≡ 0 for t ∈ [1, 2]. One can see in Fig. 11a that an error of the order
ǫ = 10−14 was obtained with algorithm 1 for parameters η = 1600 and n = 380 ÷ 920, as
well as for η = 800 and n = 420÷ 440. As the number of expansion coefficients for n > 920
and η = 1600 and for n > 440 and η = 800 increases, the approximation accuracy abruptly
decreases, due to the fictitious periodicity and an abrupt break in the values of the series
coefficients. As shown in Fig. 12, the smaller is a given value of the parameter η, the longer
is the spectrum. In this case the spectra of two periods of the function intersect at smaller
values of n and, starting with some number n > n0(η), the Laguerre series does not converge
to the function being approximated.

In contrast to algorithm 1, the use of algorithm 2 (Fig. 11b,d) did not require any
additional increase in the approximation interval. The accuracy level of algorithm 2 is the
same both in double and single real arithmetic and is of the order of ǫ = 10−7, not decreasing
to ǫ = 10−14 as for algorithm 1. This is explained by the fact that when using formula (27b)
the sequence lm(ηt0), m = 0, 1, 2... is the expansion coefficients for the delta function δ(t0),
for which (as shown in Fig. 8) the Laguerre spectrum is infinitely long and slowly attenuating.
Therefore, the finite number of expansion terms is a source of an additional error. However,
the behavior of the error for algorithm 2 is more regular, since no fictitious periodicity and
no abrupt break of the spectrum are observed for this calculation method.

Consider an approximation of the function in Fig. 7, for which f(0) = 0. For this function,
a comparison of the accuracy of algorithms 1 and 2 was made, with direct calculation of the
integral (3b) by the method of rectangles. Since the method of rectangles has the first order of
accuracy, an integration step 4×105 times smaller than the discretization step for algorithms
1 and 2 was taken. Such a fine step is needed to provide high accuracy in calculating the
Laguerre coefficients for a method of first order accuracy. To perform numerical integration
of rapidly oscillating functions with a larger step, it is necessary to use quadratures of very
high order of accuracy. In paper [22] it was proposed to use quadratures of the 256th order
of accuracy to calculate a Laguerre series of length n = 128. However, in solving practical
problems nonsmooth functions have to be approximated. This calls into question whether
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Figure 11: Approximation error for function (16) versus the number of terms of Laguerre series for various
values of the transform parameter, η = 50, 100, ..., 1600, a) algorithm 1 with 64-bit precision, b) algorithm
1 with 32-bit precision, c) algorithm 2 with 64-bit precision, d) algorithm 2 with 32-bit precision.

Figure 12: Laguerre spectrum for various values of the transform parameter, η = 50, 100, ..., 1600 for function
(16) for a) algorithm 1 and b) algorithm 2.
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Figure 13: Approximation error versus the number of terms of Laguerre series for the function in Fig. 7.
Calculations were made by algorithms 1 and 2 for a) 32-bit precision, b) 64-bit precision.

it is reasonable to use high-accuracy quadratures for which error estimation implies the
presence of high-order derivatives of the function to be expanded in the series.

By means of calculations with single real precision the calculation time can be decreased
using a higher degree of vectorization of the calculations. In this case the error of algorithm
1 for η = 800, 1600 increases from ǫ = 10−14 to 10−7, that is, to the level of single computer
precision, and the error of algorithm 2 remains at a level of the order of ǫ = 10−7. It
is important that the stability of all algorithms proposed still holds. Note that computer
precision in calculations for nonsmooth functions may not be achieved, which eliminates
the need for double real precision. To demonstrate this, in the test below we consider an
approximation of a time series from a set of test seismograms for a velocity model called
”Sigsbee”[39].

3.3. Test 2. Expansion of a non-smooth function

In the first test an approximation of a smooth function on the interval [0, 1] was con-
sidered. Now let us test the above developed algorithms for a nonsmooth function (see
Fig. 14) specified on the interval [0, 12] with a discretization step ht = 0.008. This function
corresponds to the first seismic trace from a test set of seismograms for the velocity model
Sigsbee [39]. The seismograms for the SigSbee model have single real accuracy. Therefore,
we consider an implementation of algorithms 1 and 2 only with single precision.

For calculations by algorithm 2 the approximation interval was not changed, whereas for
algorithm 1 the approximation interval was increased by a factor of three up to [0, 36] by
adding zero values (zero padding). One can see in Fig. 14 that algorithm 2 is approximately
an order of magnitude more accurate than algorithm 1. Also, algorithm 2 demonstrates
more regular behavior of the error, which considerably simplifies the process of finding an
optimal number of coefficients of the Laguerre series. The smaller accuracy of algorithm
1 is caused, first, by the long Laguerre spectrum for the nonsmooth function, which does
not make it possible to separate the spectra for different periods and exclude the influence
of the fictitious periodicity. Second, the threefold increase in the approximation interval
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Figure 14: a) First trace from seismograms for the velocity model Sigsbee, b) approximation error versus
the number of terms of the Laguerre series for the algorithms and transformation parameter η = 900, 1800
for first trace from seismograms for the velocity model Sigsbee.

increases the number of terms of the series (15), which is a source of additional error due to
the corresponding increase in the total number of operations.

The accuracy of calculating the expansion coefficients by the above proposed algorithms
and that of calculating the integral (3b) by the method of rectangles with an integration
step ht = 8 × 10−7 was also compared. One can see in Fig. 14b that, despite the fact that
the discretization step of the function is much smaller, the accuracy of calculation by the
method of rectangles is much lower than for algorithms 1 and 2, whereas the calculation
burden is several orders of magnitude greater. It follows from formula (4) and Fig. 1 that
as n increases, the oscillation frequency of the functions ln(ηt) also increases. Therefore, to
calculate every subsequent expansion coefficient one has to either decrease the discretization
step of the integrand or increase the order of the quadrature formula. However, when solving
practical problems one should take into account that limited smoothness of the functions
to be approximated may not allow using the maximum order of accuracy of the quadrature
formula. Also, there are additional difficulties in using high-accuracy quadratures, which
are caused by the need to calculate the integrand on a nonuniform grid, whereas a discrete
function to be approximated is, as a rule, specified for equidistant values of the argument.
In summary, we can say that the use of single precision for algorithms 1 and 2 is justified,
since the observed error level is acceptable in solving practical problems. The use of double
precision may decrease the error, but only in the approximation of very smooth functions.

In testing of algorithm 4, Tables 1 and 2 present the calculation times and accuracy
estimates in the approximation of all 152684 seismic traces for the Sigsbee model. For
the interval [0, 12] the numbers of coefficients of the series were n = 4096 and 8192, and
for the intervals [0, 60] and [0, 120] the numbers of coefficients of the series were specified
as n = 32768 and 65536, respectively. Initial seismic traces for the Sigsbee model were
specified for t ∈ [0, 12]. To obtain the time series for the intervals [0, 60] and [0, 120],
the initial trace was supplemented by four or eleven identical copies of the initial signal,
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n = 4096, t ∈ [0, 12] n = 8192, t ∈ [0, 12]

p ǫ Prec. Step 1 Step 2 Total Rel. ǫ Prec. Step 1 Step 2 Total Rel.

1 1.7E-3 1.8 29.0 - 29.0 - 2.5E-6 3.9 52.0 - 52.0 -
2 2.9E-3 0.3 15.6 0.9 16.5 1.7 1.5E-5 1.1 27.6 2.1 29.7 1.7
3 5.5E-3 5.7E-2 8.3 3.6 11.9 2.4 9.4E-5 0.2 15.1 9 24.1 2.1
8 7.8E-3 1.2E-2 5.3 7.8 13.1 2.2 1.2E-4 3.9E-2 8.7 17 25.7 2.0
16 2.2E-2 8.9E-2 3.5 15.5 19.1 1.5 2.1E-4 9.1E-3 5.7 34 39.7 1.3

Table 1: Estimates of calculation time and accuracy of algorithm 4. The number of auxiliary intervals p
versus: (ǫ) approximation accuracy; (Prec.) preparatory calculation time needed to calculate local matrix
M̃ ; (Step 1) calculation time of local approximation; (Step 2) calculation time of the sequence of shifts for
constructing the global approximation; (Total) total calculation time of algorithm 4; (Rel.) ratio between
calculation time for algorithm 2 and calculation time for algorithm 4.

n = 32768, t ∈ [0, 60] n = 65536, t ∈ [0, 120]

p ǫ Prec. Step 1 Step 2 Total Rel. ǫ Prec. Step 1 Step 2 Total Rel.

1 5.3E-6 77 877 - 877 - 3.4E-6 359 3455 - 3455 -
2 8.1E-6 19 449 25 474 1.8 4.6E-6 78.7 1754 58 1792 1.9
3 6.1E-5 4.8 231 44 275 3.1 9.7E-6 19.4 826 107 933 3.7
8 6.5E-5 1.2 124 63 187 4.6 6.6E-5 4.8 463 144 607 5.7
16 5.8E-5 2.5 79 80 159 5.5 6.8E-5 1.2 242 180 422 8.2
32 1.9E-4 4.2E-2 52 91 143 6.1 6.9E-5 2.6E-1 158 212 370 9.3
64 5.8E-4 9.6E-3 25 100 125 7.0 1.2E-4 4.2E-2 105 239 344 10
128 3.9E-3 1.7E-3 17 112 129 6.8 5.8E-4 9.6E-3 50 265 315 11

Table 2: Estimates of calculation time and accuracy of algorithm 4. The number of auxiliary intervals p
versus: (ǫ) approximation accuracy; (Prec.) preparatory calculation time needed to calculate local matrix
M̃ ; (Step 1) calculation time of local approximation; (Step 2) calculation time of the sequence of shifts for
constructing the global approximation; (Total) total calculation time of algorithm 4; (Rel.) ratio between
calculation time for algorithm 2 and calculation time for algorithm 4.

respectively. One can see from the data presented that, although algorithm 4 does not
belong to the class of fast algorithms, it allows a slight decrease in the calculation time,
especially for large time intervals. Also note that when using algorithm 4 the time of
the preparatory calculations needed to modify the matrix M in implementing algorithm 2
decreases considerably, since a matrix of smaller order is required to approximate the local
functions. Nevertheless, it follows from Tables 1 and 2 that the approximation accuracy ǫ
decreases as the number of auxiliary intervals increases. This is caused, first, by the presence
of auxiliary buffers, in which multiplication by an exponentially decreasing factor is made
for the Laguerre spectrum of a local function not to be infinite because of the discontinuities
of the function values on the boundaries of the subintervals. On each subinterval the local
function is approximated by a Laguerre series with a number of coefficients of n/p, where
p is the number of subintervals. However, n/p expansion coefficients may be insufficient to
approximate a nonsmooth local function, which results in loss in approximation accuracy.
Nevertheless, if one has to approximate a time series with an accuracy of the order of
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ǫ = 10−3 ÷ 10−5 (which is sufficient for practical calculations [8, 9]), it is recommended to
use algorithm 4.

To multiply the matrix M̃ by a vector, a numerical procedure from BLAS MKL library
was used. Taking into account high degree of optimization of the BLAS procedure for a
specific processor model, the calculation of Laguerre coefficients is performed very fast. At
the same time, optimization of the algorithm of fast Fourier transform is a more complicated
problem. This decreases the degree of vectorization of the calculations at the second step of
algorithm 4. As a result, the speedup of algorithm 4 also decreases. If an internal Fortran
procedure, such as ”matlmul”, had been used for matrix multiplication instead of that from
BLAS library, the speedup coefficient of algorithm 4 would have been much larger (although
the total calculation time also increases), since the computational costs of the ”matmul”
function are several times greater than those of the procedure from BLAS MKL library.

4. Conclusions

In this paper, new algorithms to calculate the integral Laguerre transform by solving
a one-dimensional transport equation have been developed. The main idea of the above
proposed approach is that the calculation of improper integrals of rapidly oscillating func-
tions is replaced by solving an initial boundary value problem for the transport equation
using spectral algorithms. This approach has made it possible to successfully avoid the
problems formulated in the introduction and associated with numerical implementation of
the Laguerre transform. It would have been impossible to implement the above proposed
computational model without the development of auxiliary procedures that allow removing
the fictitious periodicity resulting from periodic boundary conditions. One of the correcting
procedures is based on solving the transport equation, whereas the other one is based on a
posteriori analysis of the Laguerre spectrum energy. Test calculations have shown that the
first method of removing the periodicity is more reliable, accurate, and efficient, since it does
not require increasing the approximation interval. Although the above algorithms do not
belong to the class of fast algorithms, the number of arithmetic operations has been consid-
erably decreased, since there is no need in calculations with small grid steps or quadrature
formulas of high orders of accuracy to calculate rapidly oscillating improper integrals. Addi-
tionally, an approach has been developed to decrease the computational costs in making the
Laguerre transform for large approximation intervals by solving the transport equation. The
test calculations have also confirmed that all developed algorithms can be used both with
single and double real precision without loss of numerical stability. Thus, if a large set of
functions is approximated by a Laguerre series (for instance, in solving problems of seismic
prospecting), the above proposed algorithms allow saving the calculation time considerably.
This fact makes this approach attractive from both theoretical and practical viewpoints.
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