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Abstract. An algorithm of the Laguerre transform for approximating functions on large
intervals is proposed. The idea of the considered approach is that the calculation of improper
integrals of rapidly oscillating functions is replaced by a solution of an initial boundary value
problem for the one-dimensional transport equation. It allows one to successfully avoid the
problems associated with the stable implementation of the Laguerre transform. A divide-
and-conquer algorithm based on shift operations made it possible to significantly reduce the
computational cost of the proposed method. Numerical experiments have shown that the
methods are economical in the number of operations, stable, and have satisfactory accuracy
for seismic data approximation.

1. Introduction
Consider Laguerre functions, which are defined as [1]

lm(t) = e−t/2Lm(t), t ≥ 0, (1)

where Lm(t) is the Laguerre polynomial of degree m. The Laguerre functions are a complete
orthonormal system in L2[0,∞), which guarantees that for any function f(t) ∈ L2[0,∞) there
is a Laguerre expansion

f(t) ≈ η

n∑
m=0

āmlm(ηt), ām =

∫ ∞

0
f(t)lm(ηt)dt, t ≥ 0, (2)

where η > 0 is a scaling parameter.
It is well-known that, owing to the high performance and stability of the algorithm of fast

Fourier transform, it has been widely used in many branches of computational mathematics,
whereas no algorithm for the Laguerre transform having comparable efficiency has been
developed so far. Although general methods of fast polynomial transforms were proposed long
ago [2], they are of theoretical rather than practical importance. This is because they use
numerically unstable efficient procedures of multiplying matrices V and V T by a vector, where
V ∈ Rn×n is an ill-conditioned Vandermonde matrix [3]. For instance, fast multiplication by
the matrix V can be performed by using an algorithm [4] whose computational complexity is
of the order of O(n log2 n) operations. Unfortunately, this method is unstable, since one of its
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stages includes a recursive use of the operation of polynomial division. Multiplication of the
matrix V T by a vector can be reduced to solving systems of linear algebraic equations with a
Vandermonde matrix with an operation count of the order of O(n log2 n) [5, 6]. This approach
also cannot be recommended for practical use due to its numerical instability.

The condition number for Laguerre functions is greater than that for the other classical
orthogonal polynomials. Therefore, the problem of stability of fast algorithms for the Laguerre
transform is probably one of the most difficult ones. By now, fast transforms have been
developed for Chebyshev, Legendre, and Hermite polynomials [7, 8, 9]. In these cases the
arithmetic complexity of the algorithms is of the order of O(n log n) or O(n log2 n) operations.
Fast algorithms of changing from one orthogonal polynomial basis specified by a three-term
recurrence relation to another one have also been developed [10]. In paper [11], an algorithm for
fast polynomial transforms based on an approximate factorization of the matrices V or V T was
proposed. In some cases the authors managed to decrease the computational costs to a level
of O(n log n) arithmetic operations. However, the computational complexity may vary widely
for various orthogonal polynomials and expansion interval lengths. Also, the algorithm becomes
efficient in comparison to the direct method of multiplying a matrix by a vector, for n ≥ n0,
where n0 is of the order of several thousand.

The Laguerre transform (2) has been used in various fields of mathematical simulation to solve
acoustics and elasticity equations [12, 13], Maxwell and heat conduction equations [14, 15], and
spectroscopy problems. These problems are of considerable interest for mathematical modeling
and spectral analysis methods. In this paper, a new fast method to calculate Laguerre series
coefficients is proposed for the approximation of functions on large intervals.

2. Expansion algorithms
2.1. Main formulas
Let us consider Algorithm 1 of expanding the function f(t) in a Laguerre series. To expand a
function by formula (3), about O(nNx) arithmetic operations are needed, where n is the number
of expansion terms of the Laguerre series and Nx is the number of harmonics of the auxiliary
Fourier series. Approximation of the function for longer intervals calls for specifying larger values
of n and Nx, which makes the Laguerre transform inefficient. To decrease the calculation time
when performing the Laguerre transform, we consider an algorithm of the ”divide and conquer”
type. The general idea of this approach is that at the first stage the initial problem is divided
into independent subproblems (figure 1) with much less computational costs needed for their
solution. At the second stage the solution to the initial problem is assembled from the solutions
to the subproblems.

Figure 1. Decompositions of the initial approximation interval into four overlapping
subintervals.
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Algorithm 1 to approximate a function f(t) on the interval t ∈ [0, L] by a Laguerre series:

(i) For given n > 20 and η, calculate σn

σn = 4n− 10ln(4n)

l′n(4n)
= 4n− 10ln(4n)

1
2 ln(4n)−

∑n−1
k=0 lk(4n)

and set a new approximation interval [0,max(L, σn/η)].

(ii) Calculate f̃(kj) = DFT{f(ti)} for a discrete set of frequencies, kj = 2π
σn/η

(j − Nx
2 ),

j = 0, 1, ..., Nx − 1.

(iii) Calculate the expansion coefficients of series (2) by the formula

ām ≈
Nx−1∑
j=0

f̃(kj)

[(
−η

2
− Ikj

)m
/
(η
2
− Ikj

)m+1
]
, m = 0, 1, ..., n. (3)

Figure 2. Approximation construction scheme for the function f(t) with precalculated
approximations for the local functions fi(t).

For the calculation scheme in figure 2 every shift doubles the minimum number of the Laguerre
series terms. This can be explained by the fact that the Laguerre functions of the m-th order
oscillate on the interval 0 < t < 4m. Therefore, before making a shift the sequence of coefficients
of the Laguerre series must be added by zeros (zero padding). After making the shift the zero
values of the added expansion coefficients will take nonzero values. For larger values of n and
Nx the computational complexity of Algorithm 2 will be of the order O(nNx/p+n log2 n log2 p)
vs. O(nNx), where p is the number of subintervals. The first term is the costs to approximate
the local functions fi(t), t ∈ [0,∆ti], and the second one is the costs to perform a series of shift
operations to transform the local expansion coefficients to the expansion coefficients for the initial
function f(t). However, this algorithm has the following shortcoming: the number of Laguerre
series coefficients to approximate the local functions fi(t) on the subintervals [0,∆ti] depends not
only on the lengths of the subintervals, but also on the smoothness of the functions fi(t). Taking
into account that in solving practical problems the function to be approximated may have low
smoothness, the convergence of the series may be not high. This results in the fact that at the
same accuracy the total number of expansion coefficients for the local problems for Algorithm 2
will be greater than the number of expansion coefficients when using Algorithm 1. Thus, the
division will require additional computational costs, which can be estimated in computational
experiments.

3. Numerical experiments
To estimate the accuracy of the approximation and the efficiency of the methods being proposed,
let us perform a series of computational experiments to approximate functions on intervals
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Algorithm 2 to approximate a function f(t) on an interval t ∈ [0, L] by a Laguerre series:

(i) Decompose the approximation interval t ∈ [0, L] into p = 2s overlapping subintervals of
lengths ∆ti = βi − αi (Fig. 1). In this case the function must smoothly tend to zero on
the subinterval boundaries in the buffer zones so that the sum of the two local functions
remains equal to the value of the function being approximated.

(ii) The local function fi(t) specified on the subinterval with number i is expanded in a Laguerre
series on the auxiliary interval [0,∆ti] by Algorithm 1.

(iii) Shift the local functions by changing from the interval [0,∆ti] to the subinterval [αi, βi].
This is done by a series of shifts of the function fi(t) using the scheme presented in Fig. 2,
which gives an example of four subintervals. The process of assembly consists of log2 p steps,
where p is the number of subintervals. Hence, two steps will be needed for the example being
considered. At the first step the sequences of the Laguerre series coefficients for the local
functions f2(t) and f4(t) are supplemented by zeroes to double the number of expansion
coefficients.

(iv) Then the thus expanded series are shifted using the procedures S
{
ān/2;α2

}
and

S
{
ān/2;α4 − α3

}
, where

S {ām; τ} =
m∑
j=0

(ām−j − ām−j−1) lj(ητ) , ā−1 ≡ 0.

To calculate this linear convolution one can use algorithms based on the fast Fourier
transform [16]. After this the corresponding coefficients of the first and second series and of
the third and fourth series are added pairwise. This results in two intervals of larger lengths.
At the second step this process is used for the new second series, and after it is shifted by
S {ān;α3} the expansion coefficients of the first and second series are added. Thus, all local
functions will be shifted to their initial positions with respect to the variable t, and the thus
obtained series will approximate the initial function f(t) with some accuracy.

of various lengths. The numerical procedures to calculate the Laguerre coefficients will be
performed with double precision. All algorithms have been implemented as Fortran-2008
programs using BLAS and FFTW libraries of the Intel Math Kernel Library. The calculations
have been made on Intel Xeon E5-2680v3 processors with a frequency of 2500 MHz and 192Gb
RAM.

The approximation error is estimated by the formula

ε =

 s∑
i=1

f(ti)− n∑
j=1

ājlj(ηti)

2

/

s∑
i=1

f2(ti)

1/2

, (4)

where f(ti) is the function to be expanded in a Laguerre series, which is specified on a set of
values ti ∈ [0, L], i = 1, 2, ...s, t1 = 0, ts = L.

In testing of Algorithm 2, table 1 and figures. 3 present the calculation times and accuracy
estimates in the approximation of all 152684 seismic traces for the Sigsbee model (figure 4).
For the interval [0, 12] the numbers of coefficients of the series were n = 4096 and 8192, and
for the intervals [0, 60] and [0, 120] the numbers of coefficients of the series were specified as
n = 32768 and 65536, respectively. Initial seismic traces for the Sigsbee model were specified
for t ∈ [0, 12]. To obtain the time series for the intervals [0, 60] and [0, 120], the initial trace
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Figure 3. a) Estimates of accuracy of Algorithm 2, b) ratio between calculation time for
Algorithm 1 and calculation time for Algorithm 2 (Table 1)

L = 12s, n = 4096 L = 12s, n = 8192 L = 60s, n = 32768 T = 120s, n = 65536

SubInt Init Step1+2 Init Step1+2 Init Step1+2 Init Step1+2

1 1.7 29 3.9 52 77 878 3417 3450
2 0.3 16 1.1 28 19 474 1725 1794
3 5.2e-2 12 0.2 25 4.8 275 827 917
8 1.1e-2 13 4.0e-2 26 1.2 187 468 617
16 8.8e-2 19 9.1e-2 40 2.5 159 248 412
32 - - - - 4.2E-2 91 125 360
64 - - - - 9.6E-3 100 231 331
128 - - - - 1.7E-3 112 225 299

Table 1. Estimates of calculation time and accuracy of Algorithm 2. The number of auxiliary
intervals p versus: (Init) preparatory calculation time needed to calculate the local matrix;
(Step 1) calculation time of local approximation; (Step 2) calculation time of the sequence of
shifts for constructing the global approximation;

Figure 4. a) First trace from seismograms for b) the Sigsbee velocity model
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was supplemented by four or eleven identical copies of the initial signal, respectively. One can
see from the data presented that, although Algorithm 2 does not belong to the class of fast
algorithms, it allows a slight decrease in the calculation time, especially for large time intervals.
It follows from table 1 and figures 3 the approximation accuracy ϵ decreases as the number of
auxiliary intervals increases. This is caused, first, by the presence of auxiliary buffers, in which
multiplication by an exponentially decreasing factor is made for the Laguerre spectrum of a local
function not to be infinite because of the discontinuities of the function values on the boundaries
of the subintervals. On each subinterval the local function is approximated by a Laguerre series
with a number of coefficients of n/p, where p is the number of subintervals. However, n/p
expansion coefficients may be insufficient to approximate a nonsmooth local function, which
results in loss in approximation accuracy. Nevertheless, if one has to approximate a time series
with an accuracy of the order of ϵ = 10−3 ÷ 10−5, it is recommended to use Algorithm 2.

To multiply the matrix by a vector (see formula (3)), a numerical procedure from BLAS MKL
library was used. Taking into account high degree of optimization of the BLAS procedure for
a specific processor model, the calculation of Laguerre coefficients is performed very fast. At
the same time, optimization of the algorithm of fast Fourier transform is a more complicated
problem. This decreases the degree of vectorization of the calculations at the second step of
Algorithm 2. As a result, the speedup of Algorithm 2 also decreases. If an internal Fortran
procedure, such as ”matlmul”, had been used for matrix multiplication instead of that from
BLAS library, the speedup coefficient of Algorithm 2 would have been much larger (although
the total calculation time also increases), since the computational costs of the ”matmul” function
are several times greater than those of the procedure from the BLAS MKL library.

4. Conclusions
In this paper, a new approach has been developed to decrease the computational costs in making
the Laguerre transform for large approximation intervals by solving the transport equation. The
test calculations have confirmed that all developed algorithms can be used both with single and
double real precision without loss of numerical stability. Thus, if a large set of functions is
approximated by a Laguerre series (for instance, in solving problems of seismic prospecting),
the above-mentioned algorithms allow saving the calculation time considerably.
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