О методах неполной факторизации с обобщенной компенсацией*

В.П. Ильин, К.Ю. Лаевский

УДК 519.63

Ильин В.П., Лаевский К.Ю. О методах неполной факторизации с обобщенной компенсацией // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. — Новосибирск, 1998. — Т. 1, № 4. — С. 321–336.

Исследуются итерационные методы неполной факторизации, основанные на определении предобуславливающей матрицы B из обобщенного принципа компенсации $By_k = Ay_k, k = 1, \ldots, m$, где A – матрица исходной системы линейных алгебраических уравнений, а $\{y_k\}$ – совокупность алгоритмов при решении блочно-трехдиагональных систем стилтьесовского типа, а также условия положительной определенности предобуславливающих матриц для некоторых конкретных наборов пробных векторов. Выводятся оценки чисел обусловленности матричных произведений $B^{-1}A$, определяющие скорость сходимости итераций, в зависимости от свойств элементов исходных матриц.

Il'in V.P., Laevsky K.Yu. On incomplete factorization methods with generalized compensation // Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 1998. — Vol. 1, № 4. — P. 321–336.

The iterative incomplete factorization methods are described on the base of definition of preconditioning B matrix from generalized compensation principle $By_k = Ay_k$, $k = 1, \ldots, m$, where A is the matrix of original system of linear algebraic equations and $\{y_k\}$ is the set of so called probe vectors. The correctness of such algorithms and conditions of positive definiteness of preconditioning matrices are investigated for solution to the Stieltjes type block-tridiagonal systems. The estimates of condition number of matrix product $B^{-1}A$, that define the iterative convergence rate, are derived in the terms of the properties of original matrices.

1. Введение

Итерационные алгоритмы неполной факторизации являются в настоящее время одними из самых эффективных и активно развиваемых подходов к решению систем линейных алгебраических уравнений высокого порядка

$$Au = f \tag{1}$$

с разреженными матрицами, возникающими при аппроксимации многомерных краевых задач сеточными методами (см. [1-3] и цитируемую там литературу). Главной проблемой здесь является построение факторизованных предобуславливающих матриц B, которые были бы легко обратимы и достаточно близкими, в некотором спектральном смысле, к исходной матрице системы A. Итерационный процесс в простейшем случае реализуется по формуле

$$B(u^n - u^{n-1}) = f - Au^{n-1}. (2)$$

^{*}Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 96-01-01770), а также является частью исследований по проекту INTAS-93-377-ext.

Наиболее эффективные алгоритмы — чебышевского ускорения или сопряженных градиентов — так же используют вычисления по формуле (2), но затем вектор очередного приближения u^n корректируется на основе спектральной или вариационной оптимизации итерационного процесса. При условии симметричности и положительной определенности матриц A, B число итераций, необходимое для уменьшения начальной ошибки в ε^{-1} раз $((Az^n,z^n)/(Az^0,z^0)\leq \varepsilon,\,z^n=u-u^n)$, оценивается величиной $n(\varepsilon)\leq 1/2|\ln\varepsilon|\kappa^{1/2}+1$, где κ — число обусловленности матрицы $B^{-1/2}AB^{-1/2}$ в спектральной (евклидовой) норме, равное отношению максимального и минимального собственных чисел подобной ей матрицы $B^{-1}A$. Таким образом, проблема оптимизации итерационного процесса, в смысле минимизации оценки $n(\varepsilon)$, связана с минимизацией величины κ .

Для блочно-трехдиагональных матриц A=D-L-U, где $D=\mathrm{diag}\{D_k\}$ – блочно-диагональная, а $L=\{L_k\},\ U=\{U_k\}$ – нижняя и верхняя строго треугольные матрицы (порядки N_k блоков D_k могут быть разные, а порядок матрицы A равен $N=N_1+\cdots+N_M$), матрица B определяется в форме

$$B = (G - L)G^{-1}(G - U), (3)$$

где $G = \mathrm{diag}\{G_k\}$ – блочно-диагональная матрица, блоки которой находятся следующим рекуррентным способом:

$$G_1 = D_1, \quad G_k = D_k - \overline{L_k G_{k-1}^{-1} U_{k-1}} - \theta C_k, \quad k = 2, \dots, M.$$
 (4)

Здесь $0 \le \theta \le 1$ — итерационный параметр, матрица \overline{Q} означает приближение (в определенном смысле) к матрице Q, а C_k традиционно определяется как диагональная матрица, элементы которой находятся из равенства

$$C_1 = 0, \quad C_k e = \left(L_k G_{k-1}^{-1} U_{k-1} - \overline{L_k G_{k-1}^{-1} U_{k-1}}\right) e, \quad k = 2, \dots, M,$$
 (5)

где е – вектор с единичными компонентами.

Основной способ построения матричных "аппроксимаций" – ленточный:

$$\overline{Q} = Q^{(p)}, \tag{6}$$

где $Q^{(p)}$ означает "ленточную часть" шириной p матрицы Q (при $|i-j| \leq (p-1)/2$, $p=1,3,5,\ldots$, элементы $Q^{(p)}$ те же, что и у Q, а остальные – нулевые).

В работах Н.И. Булеева, первооткрывателя методов неполной факторизации, $C = \operatorname{diag}\{C_k\}$, а матрицы G и B определялись эмпирически на основе аппроксимационных принципов. А именно, условие (5) соответствует тому, что при при $\theta = 1$ имеет место векторное равенство

$$Be = Ae, (7)$$

названное условием полной компенсации. Поскольку вектор ошибки $z^1=u-u^1$, определяемый из (2), удовлетворяет соотношению $Bz^1=(B-A)z^0$, при выполнении условия (7) получаем $z^1=0$, т.е. точное решение достигается за одну итерацию, если вектор начальной ошибки z^0 имеет одинаковые компоненты. При этом делается естественное предположение: если вектор z^0 имеет "гладкие" компоненты, что зачастую имеет место при решении задач математической физики, то вектор u^1 будет близок к точному решению u.

Позднее Стоуном был предложен метод [4], в котором принцип компенсации развит так, что точное решение получалось за одну итерацию, если компоненты вектора начальной ошибки z^0 суть значения некоторой линейной функции. Однако конструируемая при

этом предобуславливающая матрица B оказывается несимметричной, что затрудняет применение ускорения итерационного процесса. В работах других авторов [5] делались попытки построения аналогичных симметричных предобуславливателей, но при этом алгоритмы вычисления B оказывались неустойчивыми.

На алгебраическом языке условие (7) получило название принципа согласования строчных сумм. Его развитие – обобщенный принцип согласования строчных сумм – заключается в замене (7) на равенство By = Ay, y > 0, что приводит к единственной вариации в алгоритме – замене вектора e в определении C_k из (5) на произвольный положительный вектор y:

$$C_k y = \left(L_k G_{k-1}^{-1} U_{k-1} - \overline{L_k G_{k-1}^{-1} U_{k-1}}\right) y, \quad y > 0.$$
(8)

Возможное развитие рассматриваемых алгоритмов – переход от диагональных матриц C_k к ленточным, для нахождения элементов которых привлекается не единственный "пробный" вектор y, а несколько:

$$C_k y_k^{(q)} = \left(L_k G_{k-1}^{-1} U_{k-1} - \overline{L_k G_{k-1}^{-1} U_{k-1}} \right) y_k^{(q)}, \quad q = 1, \dots, m, \quad k = 2, \dots, M.$$
 (9)

Отметим, что каждый вектор $y_k^{(q)}$ имеет порядок N_k , равный порядку соответствующих матриц D_k , G_k и C_k , а ширина ленты C_k , вычисляемой из условия (9), равна 2m-1. Равенства (9) соответствуют следующим соотношениям между исходной и предобуславливающей матрицами при $\theta=1$:

$$Ay^{(q)} = By^{(q)}, \quad q = 1, \dots, m; \quad y^{(q)} = \{y_k^{(q)}, \quad k = 1, \dots, M\},$$
 (10)

которые будем называть обобщенным принципом компенсации. Некоторые алгоритмические аспекты построения матриц C_k и численные эксперименты с использованием двух или трех пробных векторов $y^{(q)}$ частного вида описаны в работах [2, 6, 7].

В п. 2 приводятся доказанные в [8] основные свойства методов, получаемых из обобщенного принципа компенсации для стилтьесовских систем уравнений. В частности показано, что если m векторов $y_k^{(q)}$, $q=1,\ldots,m$, являются сильно линейно независимыми (определение дается ниже), то равенства (10) единственным образом определяют симметричные ленточные (2m-1)-диагональные матрицы C_k размерности N_k , которые дают матрицу $C=\mathrm{diag}\{C_k\}$, в общем случае не являющуюся положительно-определенной. Для некоторых частных случаев устанавливается положительная определенность предобуславливающей матрицы B. Далее, в п. 3 рассматриваются спектральные характеристики получаемых предобуславливателей и оценки числа обусловленности κ , определяющие скорость сходимости итераций.

2. Алгоритмы обобщенной компенсации

Итак, остановимся на алгоритме неполной факторизации, базирующемся, во-первых, на применении в определениях G_k и C_k из (4), (10) ленточных аппроксимаций матриц согласно (6) и, во-вторых, на использовании в (10) некоторого числа m>1 пробных векторов $y^{(q)}, \quad q=1,\ldots,m$.

Обозначая через Y_k прямоугольную $N_k \times m$ матрицу, столбцы которой суть векторы $y_k^{(q)}$, перепишем соотношение (9) в матричной форме

$$C_k Y_k = R_k Y_k = V_k, \quad k = 2, \dots, M, \tag{11}$$

где $R_k = L_k G_{k-1}^{-1} U_{k-1} - (L_k G_{k-1}^{-1} U_{k-1})^{(p)}$, а V_k – прямоугольная матрица той же структуры, что и Y_k (ее столбцы суть $v_k^{(q)} = R_k y_k^{(q)}$). Рекуррентные соотношения (4) тоже перепишем соответственно:

$$G_1 = D_1, \quad G_k = D_k - (L_k G_{k-1}^{-1} U_{k-1})^{(p)} - \theta C_k, \quad k = 2, \dots, M.$$
 (12)

Реализация формул (11), (12) сталкивается с двумя нетрадиционными алгебраическими проблемами. Первая заключается в нахождении ленточной части матричного произведения, один из сомножителей которого есть матрица, обратная к ленточной. Алгоритм решения этой задачи, требующий выполнения $O(Nm^2)$ операций, описан в [1, 3].

Вторая задача, на которой останавливаемся ниже, заключается в нахождении ленточной матрицы C_k , удовлетворяющей условию (11). Здесь необходимо выделить три главных момента: построение рекуррентных соотношений для элементов матрицы $C = \{c_{i,j}\}$ (индексы k для краткости опускаем), определение условий на векторы $y^{(q)}$, достаточных для однозначной разрешимости данной задачи, и выяснение вопроса о симметричности получаемой матрицы C при наличии этого свойства у матрицы R.

Представим искомую матрицу C в виде

Предполагаем пока, что матрица C является "квазисимметричной", т.е. ее элементы удовлетворяют условию $c_{i,j}=c_{j,i}$, если только $i,j\leq N-m$. Другими словами, несимметричной предполагается только главная подматрица $C_m=\{c_{i,j};\ i,j\geq N-m+1\}$ порядка m, находящаяся в правом нижнем углу матрицы C. Данное представление выбрано из соображения, что при этом количество неизвестных $c_{i,j}$ равно числу Nm уравнений системы

$$Cy^{(q)} = v^{(q)}, \quad v^{(q)} = Ry^{(q)}, \quad q = 1, \dots, m,$$
 (14)

где N – порядок векторов $y^{(q)}$, $v^{(q)}$ и искомой матрицы C.

Обозначим через c_l вектор-столбец порядка m, элементы которого для $l=1,\ldots,N-m$ суть элементы $c_{l,l},c_{l,l+1},\ldots,c_{l,l+m-1}$ l-й строки матрицы C, находящиеся в ее верхней треугольной части, а для $l=N-m+1,\ldots,N$ — представляют собой элементы $c_{l,N-m+1},c_{l,N-m+2},\ldots,c_{l,N}$ l-й строки матрицы C, расположенные в последних m ее столбцах. Через Y_l обозначим квадратную подматрицу порядка m, транспонированную к матрице, которая состоит из строк прямоугольной матрицы Y, с номерами от l до l+m-1 включительно. Тогда уравнения (14) переписываются в следующей форме:

$$egin{aligned} Y_1c_1&=v_1;\ Y_lc_l&=v_l-c_{1,l}y_1-\ldots-c_{l-1,l}y_{l-1},\quad l=2,\ldots,m-1;\ Y_lc_l&=v_l-c_{l-m+1,l}y_{l-m+1}-\ldots-c_{l-1,l}y_{l-1},\quad l=m,\ldots,N-m; \end{aligned}$$

$$Y_{N-m+1}c_l = v_l - c_{l-m+1,l}y_{l-m+1} - \dots - c_{N-m,l}y_{N-m}, \quad l = N-m+1,\dots,N-1;$$

$$Y_{N-m+1}c_N = v_N,$$
(15)

где y_l и v_l обозначают вектор-столбцы m-го порядка с элементами из l-х строк матриц Y и V соответственно.

Обозначая через w_l правые части в уравнениях (15), сведем нахождение неизвестных векторов c_l к последовательному решению систем $Y_lc_l=w_l$, $l=1,\ldots,N$, где компоненты w_l выражаются рекуррентно через уже вычисленные значения компонент векторов c_k , k < l. Очевидно, что для однозначной разрешимости задачи (15) при выбранной "квазисимметричной" структуре матрицы C требуется невырожденность всех матриц Y_l .

Определение 1. Прямоугольную $N \times m$ -матрицу Y будем называть матрицей сильного ранга m, если все ее подматрицы Y_l m-го порядка (состоящие из последовательно расположенных строк $y_l, y_{l+1}, \ldots, y_{l+m-1}$ матрицы Y) являются невырожденными.

Введенное понятие можно перефразировать в терминах свойств векторов $y^{(q)}, q = 1, \ldots, m,$ – столбцов матрицы Y.

Определение 2. Векторы $y^{(q)}$ N-го порядка будем называть сильно (или равномерно) линейно независимыми, если они образуют прямоугольную $N \times m$ -матрицу (m < N) сильного ранга m.

Напомним, что для "обычной" линейной независимости набора векторов $y^{(q)}$, $q=1,\ldots,m$, необходимым и достаточным условием является наличие у матрицы Y хотя бы одного отличного от нуля минора m-го порядка (ранг матрицы Y равен m). При этом Y называется матрицей полного ранга.

Определяемая соотношениями (14), (15) матрица C в блочном представлении второго порядка

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_m \end{pmatrix} \tag{16}$$

обладает свойствами "квазисимметричности" в смысле выполнения условий

$$C_{11} = C'_{11}, \quad C_{21} = C'_{12}. \tag{17}$$

Полученный результат можно сформулировать следующим образом.

Теорема 1. Если векторы $y^{(q)}$, $q=1,\ldots,m$, являются сильно линейно независимыми, то ленточная матрица C вида (13) со свойствами (16), (17) определяется однозначно из соотношений (14), (15) для любого набора векторов $v^{(q)}$.

Очевидно, что сильно линейно независимые векторы $y^{(q)}$ можно строить многими способами. Один из них состоит, например, в выборе некоторой невырожденной матрицы Y_1 со строками y_1, y_2, \ldots, y_m и в определении остальных строк периодически: $y_l = y_{l-m}$ при l > m. В работе [8] доказана

Теорема 2. Пусть выполняются условия теоремы 1, а векторы $v^{(q)}$ определяются соотношениями (14) с симметричной матрицей R. Тогда матрица C является симметричной.

Теоремы 1, 2 устанавливают фактически минимальные условия существования и единственности алгоритма обобщенной компенсации, т.е. вычислимости симметричной матрицы C по условиям (9).

Пусть теперь H_k — квадратная невырожденная матрица порядка m, а Y_k — прямоугольная $N_k \times m$ -матрица сильного ранга m. Тогда матрица

$$\overline{Y}_k = Y_k H_k \tag{18}$$

также имеет сильный ранг m. Отсюда следует, что матричное уравнение

$$C_k \overline{Y}_k = R_k \overline{Y}_k \tag{19}$$

однозначно разрешимо, и его решение совпадает с матрицей C_k из уравнения (11). Полученное утверждение можно сформулировать (опуская для краткости индекс k) следующим образом:

Теорема 3. При условиях теоремы 1 матрица C инвариантна относительно любого невырожденного преобразования векторов $y^{(q)}$ вида (18).

Другими словами, если $\overline{y}^{(q)}$, $q=1,\ldots,m$, — столбцы матрицы \overline{Y} , а h_{pq} — элементы матрицы H, то матричное соотношение $\overline{Y}=YH$ эквивалентно линейному преобразованию пробных векторов $\overline{y}^{(q)}=h_{1q}y^{(1)}+\ldots+h_{mq}y^{(m)}$. Таким образом, если предобуславливающая матрица B построена по формулам (3), (4), (9) при некотором наборе векторов $y^{(q)}$, $q=1,\ldots,m$, то ее вид не изменится при их любом невырожденном линейном преобразовании.

Для обоснования обобщенного принципа компенсации главный вопрос заключается в доказательстве положительной определенности матриц G и B. В основе этого лежит

Пемма 1 [8]. Пусть A = D - L - U — блочно-трехдиагональная матрица Стилтьеса (L = U'), удовлетворяющая условиям

$$D_1 e_1 \ge U_1 e_2, \qquad D_k e_k \ge L_k e_{k-1} + U_k e_{k+1}, \quad k = 2, \dots, M - 1,$$
 (20)

$$D_k e_k > L_k e_{k-1}, \quad k = 2, \dots, M,$$
 (21)

где e_k — единичный вектор размерности N_k . Тогда, если вычисленные по формулам (11), (12) матрицы G_k имеют неположительные внедиагональные элементы, то они являются матрицами Стилтьеса.

В случае стилтьесовости матрицы G_{k-1} для неположительности внедиагональных элементов матрицы G_k достаточно неотрицательности внедиагональных элементов матрицы $L_k G_{k-1}^{-1} U_{k-1} + C_k$ при $\theta \in [0,1]$, и в частности, неотрицательности внедиагональных элементов матрицы C_k .

Для случая m=2 рассмотрим векторы

$$y_k^{(1)} = e_k, \quad y_k^{(2)} = \{y_{k,1}^{(2)}, \dots, y_{k,N_k}^{(2)}\}, \quad k = 2, \dots, M,$$
 (22)

где $y_k^{(2)}$ — строго монотонный вектор, т.е. при $i=2,\ldots,N_k$ либо $y_{k,i}^{(2)}>y_{k,i-1}^{(2)}$, либо $y_{k,i}^{(2)}< y_{k,i-1}^{(2)}$. Как нетрудно видеть, такие векторы сильно линейно независимы. Опуская ради краткости индекс k, можно установить следующие свойства внедиагональных элементов матрицы C, полученной из условий (14), (22).

Пемма 2. Если симметричная матрица R имеет неотрицательные элементы, то у определяемой по формулам (14), (22) матрицы C внедиагональные элементы также неотрицательны.

Таким образом, из лемм 1 и 2 следует стилтьесовость матрицы G в случае m=2 для векторов (22). Тем самым установлена положительная определенность матрицы G, а в силу представления $B=(G-U')G^{-1}(G-U)$, и матрицы B, т.е. справедлива

Теорема 4. При выполнении условий леммы 1 относительно матрицы A и использовании двух пробных векторов, один из которых имеет постоянные компоненты, а второй – строго монотонные, предобуславливающая матрица B положительно определена.

Рассмотрим теперь другую пару пробных векторов:

$$y_k^{(1)} = e_k, \quad y_k^{(2)} = (1, 0, 1, 0, \dots)', \quad k = 2, \dots, M,$$
 (23)

являющихся сильно линейно независимыми.

Для анализа предобуславливающей матрицы (3) условие обобщенной компенсации (10) сформулируем с помощью следующего представления для матриц G_k :

$$G_1 = D_1, \quad G_k = D_k - (1 - \theta) L_k \left(G_{k-1}^{-1} \right)^{(p)} U_{k-1} - \theta X_k, \quad k = 2, \dots, M,$$
 (24)

где X_k — трехдиагональные матрицы, найденные из условий

$$X_k y_k^{(q)} = Q_k y_k^{(q)}, \quad q = 1, 2,$$
 (25)

а матрица Q_k определяется равенством $Q_k = L_k G_{k-1}^{-1} U_{k-1} = \{q_{ij}^{(k)}\}$. Очевидно, что матрицы X_k связаны с C_k из (9) соотношениями $X_k = C_k + L_k (G_{k-1}^{-1})^{(p)} U_{k-1}$, обеспечивающими совпадение определяемых из (12) и (24) матриц G_k .

Рассмотрим внедиагональные элементы матрицы X_k , опуская далее для краткости индекс k. При этом сделаем дополнительное предположение, что элементы матрицы Q_k убывают при их удалении от главной диагонали:

$$q_{ij} \ge q_{i,j+1} \ge q_{i-1,j+1} \ge 0, \quad j \ge i.$$
 (26)

Замечание 1. Предположение о справедливости неравенств (26) является естественным, поскольку, например, они выполняются, если матрица G_{k-1} стилтьесова, а элементы матриц L_k и U_{k-1} являются постоянными.

Пемма 3. Если элементы симметричной матрицы Q удовлетворяют условиям (26), то у определяемой по формулам (23)–(25) трехдиагональной матрицы X внедиагональные элементы неотрицательны.

Из неотрицательности внедиагональных элементов матриц X_k следует неположительность внедиагональных элементов матриц G_k , определяемых формулами (12), (24) при $0 \le \theta \le 1$, и в силу леммы 1 – их стилтьесовость. Отсюда уже непосредственно следует результат, аналогичный теореме 4.

Теорема 5. При выполнении условий леммы 3 предобуславливающая матрица B, определяемая формулами (3)–(5), (23), положительно определена при $0 \le \theta \le 1$.

Рассмотрим случай m=3 для следующего набора пробных векторов:

$$y_k^{(1)} = e_k, \quad y_k^{(2)} = y_k, \quad y_k^{(3)} = z_k = (1, 0, 1, 0, \dots)', \quad k = 2, \dots, M,$$
 (27)

где y_k — строго монотонный вектор, т.е. при $i=2,\ldots,N_k$ либо $y_{k,i}>y_{k,i-1}$, либо $y_{k,i}< y_{k,i-1}$. Определим пятидиагональную матрицу X_k по формулам, аналогичным (25), используя при этом три вектора из (27):

$$X_k y_k^{(q)} = Q_k y_k^{(q)}, \quad q = 1, 2, 3.$$
 (28)

Как и раньше, индекс k в дальнейшем будем опускать.

Пемма 4. Если элементы симметричной матрицы Q удовлетворяют условиям (26), то у определяемой по формулам (27), (28) пятидиагональной матрицы X внедиагональные элементы неотрицательны.

Аналогично теореме 5, из лемм 1, 4 имеем следующее утверждение:

Теорема 6. При выполнении условий леммы 4 предобуславливающая матрица B, определяемая формулами (3), (27), (28), положительно определена при $0 \le \theta \le 1$.

Замечание 2. В соответствии с теоремой 3, теоремы 4–6 справедливы и при использовании любых пробных векторов, получаемых из исходных невырожденным линейным преобразованием.

Замечание 3. Отметим следующий важный факт. Полученные в частных случаях теоремы о положительной определенности предобуславливающих матриц B не могут быть обобщены для произвольных сильно линейно независимых векторов даже в случае m=2.

3. Анализ скорости сходимости итераций

Для верхней оценки κ важна следующая

Теорема 7 [3]. Пусть A, G, D – стилтьесовские матрицы, предобуславливающая матрица B определяется соотношениями (3), (4), (9) и пусть выполняются условия

$$egin{aligned} L = U' \geq 0, \quad Ay \geq 0, \quad By \geq (1- au)Ay, \ & au = \max_i \{(G^{-1}Uy)_i/y_i\} < 1, \quad ext{offdiag}[(1+ au)G-D] \leq 0, \end{aligned}$$

где y – некоторый вектор c положительными компонентами, offdiag (\cdot) – внедиагональная часть матрицы. Тогда справедливо неравенство $\lambda(B^{-1}A) \leq (1-\tau)^{-1}$.

В некоторых характерных для практических задач случаях величину τ можно оценить с помощью следующего утверждения, несложно доказываемого по индукции.

Пемма 5. Пусть A – блочно-диагональная стилтьесовская матрица, блоки которой удовлетворяют соотношениям

$$egin{align} L_k e_{k-1} & \geq g_k U_k e_{k+1}, \quad g_k > 0, \quad k = 2, \ldots, m-1, \ D_k e_k & \geq t_k (L_k e_{k-1} + U_k e_{k+1}), \quad t_k \geq 1, \quad k = 1, \ldots, m-1, \ \end{pmatrix}$$

где e_k – векторы порядка N_k с единичными компонентами. Тогда для $\tau_k = \|G_k^{-1}U_k\|_{\infty}$, где матрицы G_k являются стилтьесовскими и определяются соотношениями (4), (9) при $y_k^{(q)} = e_k$, справедливы неравенства $\tau_k \leq [t_k + g_k(t_k - \tau_{k-1})^{-1}, \ k = 2, \ldots, m$.

Отсюда, используя обозначения $au_1=\|D_1^{-1}U_1\|_\infty<1,\ g_1= au_1^{-1}-1$ и полагая $au=\max_k\ \{ au_k\},\ t_k\equiv 1$ (кроме $t_1>1$), получаем следующий результат:

Теорема 8. В условиях теоремы 7 и леммы 5 для собственных чисел матрицы $B^{-1}A$ справедливо неравенство

$$\lambda(B^{-1}A) \leq \max_k iggl\{ rac{1+g_1+g_1g_2+\ldots+g_1 imes\ldots imes g_k}{g_1 imes\ldots imes g_k} iggr\}.$$

В частности, для случая $g_k \geq 1$ имеет место неравенство

$$\lambda(B^{-1}A) \le (1-\tau)^{-1} \le M+1. \tag{29}$$

Отметим, что рекуррентные соотношения для τ_k из леммы 5 с помощью обозначений $l_k=u_kg_k,\ u_k=[t_k(1+g_k)]^{-1}$ можно переписать в виде неравенств

$$au_1 \leq rac{1}{t_1}, \quad au_k \leq rac{u_k}{1 - l_k au_{k-1}}, \;\; k = 2, \ldots, m-1,$$

откуда при дополнительных предположениях

$$l_ku_{k-1}\leq l_{k+1}u_k\leq rac{1}{4},\quad k=2,\ldots,m-1,$$

по аналогии с [3] получаем оценки

$$au_k \leq rac{2u_k}{1+\sqrt{1-4l_{k+1}u_k}}, \quad au_k \leq 2u_krac{k}{k+1}, \quad k=2,\ldots,m-1,$$

которые могут быть эффективно использованы при некоторых характерных свойствах элементов исходной матрицы A. Примеры получения соответствующих оценок скорости сходимости итераций при решении диффузионно-конвективных или параболических уравнений описаны в [3].

Нижняя оценка $\lambda(B^{-1}A)$ может быть установлена следующим образом:

Пемма 6. Пусть предобуславливающая матрица B определяется соотношениями (3), (4), (9), причем A, D, G – стилтьесовские матрицы. Пусть, кроме того, выполняются условия

$$Ae \ge (1-\tau)Be$$
, offdiag $[\tau D + \theta(1-\tau)C] \le 0$, (30)

 $\epsilon de \ 0 < au < 1$. Тогда справедливо неравенство

$$\lambda(B^{-1}A) \ge 1 - \tau. \tag{31}$$

Доказательство. Из (4) следует представление $B = A + R - \theta C$, в соответствии с которым имеют место равенства

$$Q = A - (1 - \tau)B = \tau A - (1 - \tau)R + \theta(1 - \tau)C = \tau D + \theta(1 - \tau)C - \tau L - \tau U - (1 - \tau)R.$$

В силу стилтьесовости матрицы G элементы матрицы R неотрицательны. Из второго условия в (30) следует неположительность внедиагональных элементов матрицы Q, а из первого – наличие диагонального преобладания. Таким образом, матрица Q положительно полуопределена, и следовательно, имеет место оценка (31).

Для оценки числа обусловленности κ с помощью неравенств (29) или (31) зачастую с помощью соотношения

$$B = A + (1 - \theta)C - \left[C - (LG^{-1}U - (LG^{-1}U)^{(p)})\right]$$
(32)

удается дополнительно установить, что единица является нижней или верхней границей спектра $\lambda(B^{-1}A)$. Например, если y – единственный и положительный пробный вектор, а матрица C – диагональная, то при $\theta=1$ из (32) следует $\lambda(B^{-1}A)\geq 1$ и $\kappa\leq (1-\tau)^{-1}$. Вопросы оптимизации параметра θ (с точки зрения минимизации κ) рассмотрены для такого случая в [3].

При использовании двух пробных векторов оценку κ можно вывести с помощью утверждения, являющегося обобщением теоремы 8.23 из [2].

Пемма 7. Пусть $R = \{r_{ij}\}$ – симметричная матрица с неотрицательными внедиагональными элементами r_{ij} , а $C = \{c_{ij}\}$ – трехдиагональная матрица, определяемая из условий (9) с двумя пробными векторами (22). Тогда справедливо неравенство

$$(Cu, u) \le (Ru, u) \tag{33}$$

для любого вектора u.

Доказательство. Обозначим $y=Te=\{y_i=y_{k,i}^{(2)}\}$, $T=\mathrm{diag}\{y_i\}$. Из соотношений (14), (22) следует, что $(CTe)_i-y_i(Ce)_i=(Se)_i,\ i=1,\ldots,N_k$, где S=RT-TR- кососимметричная матрица, элементы которой выражаются через элементы матрицы $R=\{r_{ij}\}$ по формуле: $s_{ij}=(y_j-y_i)r_{ij}$. Отсюда следуют уравнения для внедиагональных элементов матрицы C:

$$(y_2-y_1)c_{1,2}=(Se)_1, \quad (y_{i+1}-y_i)c_{i,i+1}-(y_i-y_{i-1})c_{i-1,i}=(Se)_i, \quad i=2,\ldots,N_k-1.$$

Частичное суммирование этих уравнений приводит к равенствам

$$c_{i,i+1} = rac{1}{y_{i+1} - y_i} \sum_{j=1}^i (Se)_j, \quad i = 1, \dots, N_k - 1.$$

Поскольку матрица S кососимметрична, то в последней сумме присутствуют элементы только ее верхней треугольной части. Отсюда получаем

$$c_{i,i+1} = \frac{1}{y_{i+1} - y_i} \sum_{j=1}^{i} \sum_{l=i+1}^{N_k} (y_l - y_j) r_{jl}, \quad i = 1, \dots, N_k - 1.$$
 (34)

Далее, для квадратичной формы симметричной матрицы R нетрудно получить представление

$$(Ru,u) = \sum_{i=1}^N u_i^2 \sum_{j=1}^N r_{ij} - \sum_{i=1}^{N-1} \sum_{j=i+1}^N r_{ij} (u_i - u_j)^2.$$

Поскольку по условию леммы $\sum_{j=1}^{N} r_{ij} = \sum_{j=1}^{N} c_{ij}$, справедливо равенство

$$((R-C)u,u) = \sum_{i=1}^{N-1} c_{i,i+1} (u_{i+1} - u_i)^2 - \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} r_{ij} (u_j - u_i)^2.$$
 (35)

Положим для определенности $y_{i+1}^{(2)}>y_i^{(2)}$. Из неравенства Коши-Буняковского следует, что при j>i

$$(u_j-u_i)^2 = \left(\sum_{k=i}^{j-1} \sqrt{y_{k+1}-y_k} rac{u_{k+1}-u_k}{\sqrt{y_{k+1}-y_k}}
ight)^2 \leq (y_j-y_i) \sum_{k=i}^{j-1} rac{(u_{k+1}-u_k)^2}{y_{k+1}-y_k}.$$

При $y_{i+1}^{(2)} < y_i^{(2)}$ достаточно заменить $\sqrt{y_{k+1} - y_k}$ на $\sqrt{y_k - y_{k+1}}$. Используя это неравенство и производя несложные преобразования сумм, получим

$$egin{aligned} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} r_{ij} (u_j - u_i)^2 & \leq \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (y_j - y_i) r_{ij} \sum_{k=i}^{j-1} rac{(u_{k+1} - u_k)^2}{y_{k+1} - y_k} \ & = \sum_{i=1}^{N-1} (u_{i+1} - u_i)^2 rac{1}{y_{i+1} - y_i} \sum_{j=1}^{i} \sum_{k=i+1}^{N} (y_k - y_j) r_{jk}. \end{aligned}$$

Подстановка данного неравенства в (35) и использование формулы (34) для $c_{i,i+1}$ приводит к положительной полуопределенности матрицы R-C.

Теперь можно сформулировать следующий результат:

Теорема 9. Пусть выполняются условия лемм 6 и 7. Тогда при определении предобуславливающей матрицы B по постоянному и строго монотонному векторам при $\theta=1$ справедлива оценка $\kappa<(1-\tau)^{-1}$ для числа обусловленности матрицы B.

Для доказательства, в силу леммы 6, достаточно показать справедливость соотношения $\lambda(B^{-1}A) \leq 1$. Последнее же следует из равенства B = A + R - C при $\theta = 1$ и леммы 7.

Для получения более конкретных оценок с учетом свойств исходной задачи необходимы детальные "штучные" исследования.

Приведем пример такого результата для метода с двумя пробными векторами — "постоянным" и "линейным":

$$y^{(1)} = e, \quad y^{(2)} = \{y_{k,i}^{(2)} = i\}$$
 (36)

в применении к решению системы пятиточечных сеточных уравнений, аппроксимирующих задачу Дирихле для уравнения Пуассона на квадратной сетке с шагом h=1/(N+1) в прямоугольной области $[0,1]\times[0,(M+1)h]$. В этом случае матрицы N-го порядка L_k,D_k,U_k имеют следующий вид (E- единичная матрица):

$$L_2 = \ldots = L_M = U_1 = \ldots = U_{M-1} = E, \quad D_k = \text{tridiag}\{-1, 4, -1\}, \quad k = 1, \ldots, M, \quad (37)$$

а матрицы G_k определяются рекуррентными соотношениями

$$G_1 = D, \quad G_k = D - G_{k-1}^{-1} + R_k - C_k, \ \ k = 2, \dots, M,$$

где $R_k = G_{k-1}^{-1} - (G_{k-1}^{-1})^{(3)}$.

В этом случае при $\theta=1$, в силу леммы 7 и неотрицательности внедиагональных элементов матриц R, C, для любого вектора $u=\{u_{k,i}: k=1,\ldots,M; i=1,\ldots,N\}$ имеем

$$0 \leq ((R-C)u,u) \leq c_0 \sum_{k=1}^{M} \sum_{i=1}^{N-1} (u_{k,i+1}-u_{k,i})^2,$$
 (38)

где c_0 — максимальный из внедиагональных элементов $c_{i,i+1}^{(k)}$ матрицы $C=\mathrm{diag}\{C_k\}$. Поскольку для рассматриваемой матрицы A легко показывается неравенство

$$(Au,u) \geq \sum_{k=1}^{M} \sum_{i=1}^{N-1} (u_{k,i+1} - u_{k,i})^2,$$

то в данном случае, с учетом леммы 7, имеем

$$(Au, u) < (Bu, u) < (1 + c_0)(Au, u), \tag{39}$$

и для оценки числа обусловленности κ нужно оценить сверху значение c_0 .

Обозначая через $g_{j,e}^{(k)}$ элементы матрицы G_k^{-1} , в силу определения $R_k=\{r_{j,l}^{(k)}\}$ имеем равенства $r_{j,l}^{(k)}=g_{j,l}^{(k-1)}$ для $|j-l|\geq 2$ и $r_{j,l}^{(k)}=0$ при $|j-l|\leq 1$.

Отсюда с помощью формулы (34) получаем

$$c_{i,i+1}^{(k)} = \sum_{j=1}^i \sum_{l=i+1}^N (l-j) r_{j,l}^k \leq \hat{c}_{i,i+1}^{(k)} = \sum_{j=1}^i \sum_{l=i+1}^N (l-j) g_{j,l}^{(k-1)}, \quad i=1,\dots,N-1,$$

где величина $\hat{c}_{i,i+1}^{(k)}$ может быть определена как

$$\hat{c}_{i,i+1}^{(k)} = \sum_{j=1}^{i} z_{j,j}^{k-1}, \quad z_{j,l}^{(k)} = \sum_{p=1}^{N} (p-j)g_{l,p}^{(k)}. \tag{40}$$

Пемма 8. Пусть предобуславливающая матрица B определяется соотношениями (3), (4), (9) при $\theta = 1, m = 2$ и условиях (36), (37). Тогда справедливы следующие неравенства:

$$\sum_{l=1}^{N} l g_{j,l}^{(k)} \leq \frac{k}{k+1} j, \quad k = 1, \dots, N-1, \quad j = 1, \dots, N,$$

$$z_{j,l}^{(k)} \leq \frac{k}{k+1} (l-j) + \frac{j}{k+1} \left[k g_{l,1}^{(k)} + (k-1) \sum_{l=1}^{N} g_{l,l_1}^{(k)} g_{l_1,l}^{(k-1)} + \dots + 2 \sum_{l=1}^{N} \sum_{l_{k-2}=1}^{N} g_{l,l_1}^{(k)} g_{l_1,l_2}^{(k-1)} \times \dots \times g_{l_{k-1},l}^{(1)} \right],$$

$$\hat{c}_{i,i+1}^{(k)} \leq \frac{1}{2} (k-1), \quad k = 2, \dots, M, \quad i = 1, \dots, N-1.$$

$$(41)$$

Доказательство. Из очевидного равенства $y_k^{(2)} = G_k^{-1} G_k u_k^{(2)}$, рекуррентного выражения для матрицы G_k и условия компенсации $R_k y_k^{(2)} = C_k y_k^{(2)}$ получаем соотношение

$$y_1^{(2)} = G_1^{-1} D_1 y_1^{(2)}, \quad y_k^{(2)} = G_k^{-1} (D_k - G_{k-1}^{-1}) y_k^{(2)}, \quad k = 2, \dots, M.$$
 (42)

Поскольку $(D_k y_k^{(2)})_j = 2j$ для $j=1,\dots,N-1$ и $(D_k y_k^{(2)})_N = 3N+1,$ при k=1 справедливо равенство

$$j = 2\sum_{l=1}^{N} lg_{j,l}^{(1)} + (N+1)g_{j,N}^{(1)}.$$
(43)

В силу $g_{j,N}^{(1)}>0$ справедливо неравенство $\sum_{l=1}^N lg_{j,l}^{(1)}\leq j/2$. Предположим теперь, что для некоторого k выполняется $\sum_{l=1}^N lg_{j,l}^{(k-1)}\leq (k-1)j/k$.

Аналогично (42) из (41) для произвольного k имеем

$$j = \sum_{l=1}^N g_{j,l}^{(k)} igg(2l - \sum_{p=1}^N p g_{l,p}^{(k-1)} igg) + (N+1) g_{j,N}^{(k)}.$$

Отсюда по сделанному предположению получаем соотношение

$$j \geq \sum_{l=1}^N g_{j,l}^{(k)} \left(2l - rac{k-1}{k}
ight) = rac{k+1}{k} \sum_{l=1}^N l g_{j,l}^{(k)},$$

которое и доказывает первое из неравенств (41).

Далее, умножая каждую компоненту векторного равенства $y_1^{(1)}=G_1^{-1}D_1y_1^{(1)},$ представляющего собой условие компенсации, на величину j, получаем выражение

$$j = 2\sum_{p=1}^{N} jg_{l,p}^{(1)} + j(g_{l,1}^{(1)} + g_{l,N}^{(1)}), \tag{44}$$

при выводе которого учтено, что $(D_1y_{(1)}^{(1)})_1=(D_1y_1^{(1)})_N=3$ и $(D_1y_1^{(1)})_l=2$ для $l=2,\ldots,N-1$. Заменим теперь в (43) индексы j,l соответственно на l,p и почленно вычтем из него (44):

$$l - j = 2\sum_{n=1}^{N} (p - j)g_{l,p}^{(1)} + (N + 1 - j)g_{1,N}^{(1)} - jg_{l,1}^{(1)}. \tag{45}$$

Отсюда с использованием обозначений (40) приходим к неравенству

$$z_{j,l}^{(1)} \leq rac{1}{2}(l-j) + rac{j}{2}g_{l,1}^{(1)},$$

которое означает второе из неравенств (40) при k=1. Проводя аналогичные сделанным при выводе (45) преобразования (с заменой $g_{l,p}^{(1)}$ на $g_{l,p}^{(k)}$, k>1), получаем соотношения

$$l - j = \sum_{p=1}^{N} g_{l,p}^{(k)} \left[2(p-j) - \sum_{q=1}^{N} (g-j) g_{p,q}^{(k-1)} \right] + (N+1-j) g_{l,N}^{(k)} - j g_{l,1}^{(k)}.$$
 (46)

Предположим теперь, что второе неравенство в (41) выполняется при замене индекса k на k-1, что в результате подстановки его в (46) дает соотношение

$$l-j \geq \sum_{p=1}^N g_{l,p}^{(k)} \Big[2(p-j) - rac{k-1}{k} (p-j) - rac{k-1}{k} g_{p,1}^{(k-1)} - \ldots - \ rac{1}{k} j \sum_{p_1=1}^N \cdots \sum_{p_{k-2}=1}^N g_{p,p_1}^{(k-1)} imes \ldots imes g_{p_{k-2},1}^{(1)} \Big] - j g_{l,1}^{(k)},$$

из которого следует доказательство неравенства для $z_{i,l}^{(k)}$ в (41).

Установим теперь последнее утверждение леммы. В силу легко проверяемого соотношения $\sum_{j=1}^i \sum_{l=1}^i (l-j) g_{j,l}^{(k-1)} = 0$ и обозначений (40), можно записать

$$\hat{c}_{i,i+1}^{(k)} = \sum_{j=1}^{i} z_{j,j}^{(k-1)} \le \sum_{j=1}^{N} z_{j,j}^{(k-1)}$$

$$(47)$$

Применяя в (47) второе неравенство (41) при l=j и меняя порядок суммирования, получаем

$$\hat{c}_{i,i+1}^{(k)} \leq \frac{1}{k} \left[(k-1) \sum_{j=1}^{N} j g_{j,1}^{(k-1)} + (k-2) \sum_{l_1=1}^{N} g_{l_1,1}^{(k-2)} \sum_{j=1}^{N} j g_{j,l_1}^{(k-1)} + \dots + 2 \sum_{l_{k-3}=1}^{N} g_{l_{k-3},1}^{(2)} \times \dots \times \sum_{j=1}^{N} j g_{j,l_1}^{(k-1)} + \sum_{l_{k-2}=1}^{N} g_{l_{k-2},1}^{(1)} \times \dots \times \sum_{j=1}^{N} j g_{j,l_1}^{(k-1)} \right].$$
(48)

Используя далее первое из неравенств (41), приходим последовательно к оценкам

$$egin{aligned} \sum_{j=1}^{N} j g_{j,1}^{(k-1)} & \leq rac{k-1}{k}, \ \sum_{l=1}^{N} g_{l_{1},1}^{(k-2)} \sum_{j=1}^{N} j g_{j,l_{1}}^{(k-1)} & \leq rac{k-1}{k} \sum_{l_{1}=1}^{N} l_{1} g_{l_{1},1}^{(k-2)} & \leq rac{k-2}{k}, \ \sum_{l_{k-2}=1}^{N} g_{l_{k-2},1}^{(1)} imes \dots imes \sum_{j=1}^{N} j g_{j,l_{1}}^{(k-1)} & \leq rac{k-1}{k} \sum_{l_{k-2}=1}^{N} g_{l_{k-2},1}^{(1)} imes \dots imes \sum_{l_{1}=1}^{N} l_{1} g_{l_{1},l_{2}}^{(k-2)} & \leq \dots \ & \leq rac{2}{k} \sum_{l_{k-2}=1}^{N} l_{k-2} g_{l_{k-2},1}^{(1)} & \leq rac{1}{k}, \end{aligned}$$

после подстановки которых в (48) имеем итоговый результат:

$$\hat{c}_{i,i+1}^{(k)} \leq rac{1}{k^2} \sum_{n=1}^{k-1} n^2 = rac{1}{3} (k-1) (1-(2k)^{-1}), \quad k=2,\ldots,M.$$

Отсюда получаем последнее неравенство в (41).

Непосредственно из (39), (41) устанавливается следующий результат:

Теорема 10. В условиях леммы 8 для числа обусловленности матрицы $B^{-1}A$ выполняется оценка

$$\kappa \le (M+2)/3. \tag{49}$$

Отметим, во-первых, что эта оценка не зависит от N, и во-вторых, что она лучше известных аналогичных результатов для других методов неполной факторизации [2, 3].

Сделаем теперь следующее любопытное замечание. Если для данной модельной задачи в качестве второго пробного вектора брать не "линейный", а строго монотонный вектор, компоненты которого удовлетворяют неравенствам

$$rac{y_{k,l} - y_{k,j}}{l-j} \leq lpha(y_{k,i+1} - y_{k,i}), \quad l \geq i+1, \;\; j \geq i, \;\; k=1,\ldots,M,$$

(легко показать, что при этом обязательно $\alpha \geq 1$), то в силу формулы (34) вместо (41) получаем $\hat{c}_{i,i+1}^k \leq \alpha(k-1)/3$, откуда для числа обусловленности следует оценка

$$\kappa \le \frac{\alpha(M-1)+3}{3}.\tag{50}$$

Таким образом, в смысле оценок (49), (50) "линейный" вектор оказывается наилучним из всех строго монотонных пробных векторов $y^{(2)}$.

Анализ предложенных методов проведен в условиях точных вычислений. Учет приближенного представления матриц и погрешностей округлений требует, строго говоря, перехода к исследованию "возмущенных" методов неполной факторизации и сопряженных градиентов, что представляет собой самостоятельную малоизученную проблему. Для оценки же практической эффективности описанных алгоритмов необходимо рассмотреть их устойчивость к ошибкам округлений. В принципе понятно, что выбор пробных векторов должен обеспечивать не очень сильный рост чисел обусловленности матриц Y_l и норм векторов y_l , c_l , однако эти вопросы требуют специальных исследований.

Для иллюстрации возникающих вопросов и подходов проведем прямой анализ накопления погрешностей округлений при реализации формул (15) без учета возможных возмущений векторов v_l и матриц Y_l .

Обозначая через $\tilde{c}_{i,j}=c_{i,j}+\delta_{i,j},\ \tilde{c}_l=c_l+\delta_l$ вычисляемые приближенные величины, для векторов ошибок $\delta_l=\{\delta_{l,j},\ j=l,\ldots,l+m-1\}$ можно записать

$$\delta_{1} = \varepsilon_{1};
\delta_{l} = -Y_{l}^{-1}(\delta_{1,l}y_{1} + \dots + \delta_{l-1,l}y_{l-1}) + \varepsilon_{l}, \quad l = 2, \dots, m-1;
\delta_{l} = -Y_{l}^{-1}(\delta_{l-m+1,l}y_{l-m+1} \dots \delta_{l-1,l}y_{l-1}) + \varepsilon_{l}, \quad l = m, \dots, N-m;
\delta_{l} = -Y_{N-m+1}^{-1}(\delta_{l-m+1,l}y_{l-m+1} + \dots + \delta_{N-m,l}y_{N-m}) + \varepsilon_{l}, \quad l = N-m+1, \dots, N-1;
\delta_{N} = \varepsilon_{N}.$$
(51)

Здесь ε_l — векторы m-го порядка, компоненты которых суть суммарная погрешность арифметических операций, выполняемых при вычислении одного вектора c_l по формулам (15). Из (51) получаем следующие неравенства для равномерных (кубических) норм:

$$\bar{\delta}_{l} \leq \|Y_{l}^{-1}\| \cdot \|Y\|B\bar{\delta}_{l-1} + \varepsilon e, \quad l = 2, \dots, N-1,$$
 (52)

где $\varepsilon=\max_l\{\|\varepsilon_l\|\},\ ar{\delta}_l=(\|\delta_l\|,\dots,\|\delta_{l+m-1}\|)',\ \|Y\|=\max_l\{\|y_l\|\}$ — максимальная сумма модулей элементов строки прямоугольной матрицы $Y,\ B$ — матрица Фробениуса вида

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{bmatrix}.$$

Вводя далее обозначение $\mu(Y)=\max_l\|Y_l^{-1}\|\cdot\|Y\|$ и учитывая легко проверяемую оценку для нормы степеней матрицы (46): $\|B^k\|\leq m\,2^{k-1}$, приходим к следующему неравенству:

$$\|\bar{\delta}_l\| \le \varepsilon (1 + 2m\mu + 4m\mu^2 + \ldots + 2^{l-1}m\mu^{l-1}).$$
 (53)

Определение 3. Величину $\mu(Y)$ будем называть числом обусловленности системы векторов $y^{(q)}, q = 1, \ldots, m$, или прямоугольной матрицы Y.

Как видно из (53), ошибка округления может быстро накапливаться с ростом l, и выбираемые системы векторов (или матрицы Y) должны быть хорошо обусловлены. Под этим подразумевается, что значение $\mu(Y)$ относительно невелико и, в частности, не зависит от порядка векторов $y^{(q)}$. Как видно из предыдущего анализа, рассмотренные примеры систем пробных векторов как раз удовлетворяют этому свойству.

Замечание 4. Введенное понятие числа обусловленности системы векторов $\mu(Y) \geq 1$ базируется на обычном определении числа обусловленности квадратной матрицы. Отметим, что в работе [9] дано определение числа обусловленности базиса Крылова другим образом, допускающим, в частности, его обращение в нуль.

Литература

- [1] Il'in V.P. Iterative Incomplete Factorization Methods. Singapore: World Scientific Publishing Co., 1992.
- [2] Axelsson O. Iterative Solution Methods. Cambridge University Press, 1994.
- [3] **Ильин В.П.** Методы неполной факторизации для решения алгебраических систем. М.: Наука, 1995.
- [4] **Stone H.L.** Iterative solution of implicit approximations of multidimensional partial differential equations // SIAM J. Numer. Anal. 1968. Vol. 5. P. 530–558.
- [5] Lin Avi. Towards generalization and optimization of implicit methods // Intern. J. for Numer. Methods in Fluids. 1985. Vol. 5. P. 357–380.
- [6] Axelsson O., Polman B. Block preconditioning and domain decomposition methods. I. Nijmegen: Catholic University, 1987. (Report; 8735).
- [7] **Axelsson O., Polman B.** Block preconditioning and domain decomposition methods. II. Nijmegen: Catholic University, 1988. (Report; 8807).
- [8] Il'in V.P., Laevskii K.Yu. Generalized compensation principle in incomplete factorization methods // Rus. J. Num. Anal. Math. Mod. 1997. Vol. 12, № 5. P. 399–420.
- [9] Carpraux J.F., Godunov S.K., Kuznetsov S.V. Condition number of the Krylov bases and subspaces // Linear algebra and its applications. 1996. Vol. 248. P. 137–160.

В.П. Ильин,

Институт вычислительной математики и математической геофизики СО РАН, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090

E-mail: ilin@sscc.ru

К.Ю. Лаевский,

Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

E-mail: laevsky@tue.win.nl

Статья поступила 26 января 1998 г. Переработанный вариант 22 апреля 1998 г.