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The acceleration of the original projective iterative methods of multiplicative or additive
type for solving systems of linear algebraic equations (SLAEs) by means of conjugate direction
approaches is considered. The orthogonal and varitional properties of the preconditioned conju-
gate gradient, conjugate residual and semi-conjugate residual algorithms, as well as estimations
of the number of iterations, are presented. Similar results were obtained for the dynamically
preconditioned iterative process in Krylov subspaces. Application of discussed techniques for
domain decomposition, Kaczmarz, and Cimmino methods is proposed.

1 Introduction

The aim of this paper is to analyze the iterative algorithms in the Krylov subspaces whose
preconditioners are some kinds of projector operators. At first we consider the general
approach for acceleration of some convergent iterations with a constant step matrix.

Let us have the system of linear algebraic equations:

Au = f, u = {ui}, f = {fi} ∈ RN , A = {ai,j} ∈ RN,N , (1)

and the convergent stationary iterative process

uk+1 = Buk + g, uk → u
k→∞

, g = (I −B)A−1f. (2)

Suppose that the step matrix B has eigenvalues λq(B) and spectral radius ρ =
max
q
{|λq(B)|} < 1. Then the vector u is the solution of system

Ãu ≡ (I −B)u = g, (3)

where I is the identity matrix and Ã is the preconditioned non-singular matrix. If Ã is a
symmetric positive definite (s.p.d) matrix, its spectral condition number is

æ = ‖Ã‖2‖Ã−1‖2 = (1 + ρ)/(1− ρ). (4)
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and to solve SLAE (3) we can apply some iterative conjugate direction methods (see [1]
– [4]):

r0 = g − Ãu0, p0 = r0; n = 0, 1, ... :

un+1 = un + αnp
n, rn+1 = rn − αnÃpn,

pn+1 = rn+1 + βnp
n,

(5)

which have the optimality property in the Krylov subspaces

Kn+1(r0, Ã) = Span{p0, p1, ..., pn} = Span{p0, Ãp0, ..., Ãnp0}.
In conjugate direction (CG) and conjugate residual (CR) methods, s = 0, 1 respectively,
the iterative parameters α(s)

n and β(s)
n are defined as follows:

α(s)
n = (Ãsrn, rn)/(Ãpn, Ãspn), β(s)

n = (Ãsrn+1, rn+1)/(Ãsrn, rn). (6)

These algorithms provide the residual and direction (correction) vectors rn and pn

with the orthogonal peculiarities

(Ãsrn, rk) = (Ãsrn, rn)δn,k, (Ãpn, Ãspk) = (Ãpn, Ãspn)δn,k. (7)

Also, the functionals Φ(s)
n (rn) = (Ãs−1rn, rn), s = 0, 1, are minimized in the Krylov

subspaces, and the number of iterations necessary for satisfying the condition

(Φ(s)
n (rn)/Φ

(s)
0 (r0))1/2 ≤ ε < 1,

is estimated by the value

n(ε) ≤ 1 +
(
ln

1 +
√

1− ε2

ε

)
/lnγ, γ = (

√
æ− 1)/(

√
æ− 1). (8)

It should be noted that matrix-vector multiplication in (5) presents the implementation
of one iteration (2) that does not require explicit formulation of matrices Ã andB, because,
for example,

Ãpn = pn −Bpn.
If martix Ã is nonsymmetric and positive definite, i.e.

(Ãu, u) ≥ δ(u, u), δ > 0, u 6= 0,

system (3) can be solved by means of the semi-conjugate residual (SCR) method realizing
the stabilized version of the generalized conjugate residual (GCR) algorithm, which is
described in [5] and has instability features in terms of truncation errors, see [4].

In SCR, the vectors un+1 and rn+1 are computed according to formulas (5), with the
coefficients α(s)

n from (6) for s = 1, and the direction vectors pn+1 are defined as follows:

pn+1,0 = rn+1, pn+1,l = pn+1,l−1 + βn,lp
l−1, l = 1, ..., n,

βn,l = −(Ãpl, Ãpn+1,l−1)/(Ãpl, Ãpl), pn+1 = pn+1,n.
(9)
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Relations (5), (9) realize the construction of AtA-orthogonal (conjugate) vectors p0,
p1, ..., pn+1 by means of modified Gram–Schmidt orthogonalization [6]. In this case, the
functional Φ(1)

n (rn) = (rn, rn) is minimized in the subspace Kn+1(r0, Ã) and the residual
vectors are right semi-conjugate, in the sense of satisfaction of the equalities (Ãrk, rn) = 0
for k < n. Since SCR and GMRES methods (see [4]) have the same variational properties
in the Krylov subspaces, similar estimate of the number of iterations n(ε) is valid for
them, and it will used below.

This paper is organized as follows. In Section 2, we describe projective methods of the
multiplicative type using the conjugate direction and semi-conjugate direction approaches.
The next Section is devoted to the additive type projective methods in the Krylov sub-
spaces. Also, the application of dynamic preconditioners is discussed. This approach
means using variable step matrix Bn at different iterations. This is the implementation
requirement, for example, in many two-level iterative processes.

2 Multiplicative projector methods

Let Ω = {i = 1, 2, ..., N} denote a set of matrix row numbers and Ωp, p = 1, 2, ..., l, be its
non-intersecting integer subsets, with the numbers mp of their elements,

Ω =
l⋃

p=1

Ωp, m1 + ...+ml = N.

Also, let us introduce subvectors u(p), f(p), p = 1, ..., l, of dimensionsmp and rectangular
matrices A(p) ∈ Rmp×N :

u(p) = {ui, i ∈ Ωp}, f(p) = {fi, i ∈ Ωp}, A(p) = {Ai, i ∈ Ωp}, (10)

where Ai is the i-th row of matrix A. Then SLAE (1) can be rewritten as

A(p)u = f(p), p = 1, 2, ..., l. (11)

To solve (11), we consider an iterative process in which the computing of each n-th
approximation step consists of the following stages:

un,p = un,p−1 + ωA+
(p)r

n,p−1
(p) , n = 1, 2, ..., p = 1, 2, ..., l, un = un,l. (12)

Here u0,0 = {u0
i , i = 1, 2, ..., N} is the initial guess, and ω is some iterative parameter,

rn,p−1
(p) = f(p) − A(p)u

n,p−1

is the residual subvector of dimension mp, and A+
p is pseudoinverse to matrix A(p) defined

by the formula A+
(p) = At(p)(A(p)A

t
(p))
−1 if A(p) has a full rank.

We have from the above that I−A+
(p)A(p) is a symmetric positive semi-definite matrix

realizing orthogonal projection into the p-th subspace, which is presented geometrically
by the union of subspaces described by the i-th equations, i ∈ Ωp.
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Iterative method (12) can be written in the matrix form,

un = Bun−1 + g, B = (I − Tl) · · · (I − T1), Tp = ωA+
(p)A(p). (13)

Projective algorithm (12), (13) for ω = 1 and mp = 1 presents the “point-wise” method
published by S.Kaczmarz in [7]. Its different generalizations and investigations were made
by many authors, see [8], [9].

In [10] the following assertion was proved for abstract iterative projection method of
the multiplicative type, with application to the domain decomposition approach:

Theorem 1. Let Tp, p = 1, ..., l, be s.p.d. matrices, and the following inequalities be
valid for any vector v ∈ RN :

(Tpv, v)/(v, v) ≤ α < 2, p = 1, 2, ..., l; ‖v‖ ≤ β
l∑

p=1

(Tpv, v).

Then the estimate

‖B‖2 ≤ ρ = 1− (2− α)/{β[l + α2l(l − 1)/2]}
is true for the Euclidian norm ||B||2. If the matrices T̄p = ωTp for all p satisfy the
conditions

(T̄pv, v)/(v, v) ≤ ᾱ < 2, ‖v‖ ≤ β̄[(T̄1v, v) + ...+ (T̄lv, v)],

then for ω = (ᾱ
√

(l − 1)l)−1 we have ρ = 1− (3 ᾱ β̄ l)−1.

It should be noted that step matrix B in iterative process (13) is non-symmetric,
because matrices Tp are not commutative in general.

Now we consider the alternative direction block version of the Kaczmarz method, in
which each iteration consists of two stages. The first one realizes conventional formulas
(12) or (13), and the second stage implements similar computations but in the backward
ordering on the number p:

un+1/2,p = un,p−1 + ωA+
(p)r

n,p−1
(p) ,

p = 1, 2, ..., l, un+1/2 = un+1/2,l = un+1/2,l+1,

un+1,p = un+1/2,p+1 + ωA+
(p)r

n+1/2,p+1
(p) ,

p = l, ..., 2, 1, un+1 = un+1,1.

(14)

The step matrix in iterations (14) is the matrix product B = B2B1, where B1 coincides
with B from (13) and B2 has a similar form. Thus,

un+1 = B2B1u
n + g, B2 = (I − T1)(I − T2) · · · (I − Tl) = Bt

1. (15)

Under conditions of Theorem 1, the estimate ||Bk||2 ≤ ρ is valid for each matrix
B1, B2, and for the step matrix of the alternative direction method we have an inequality
||B|| ≤ ||B1|| · ||B2|| ≤ ρ2 < 1.

Since method (14), (15) can be presented in the form (2) with s.p.d. matrix B, it
is possible to accelerate the convergence of iterations by means of conjugate direction
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methods, applied formally for solving preconditioned SLAE (3), and the following result
is true.

Theorem 2. The iterations of the alternative direction multiplicative projective con-
jugate gradient (ADMPCG) and conjugate residual (ADMPCR) methods defined by re-
lations (3), (5), and (6) for s = 0, 1 respectively, are convergent under conditions of
Theorem 1, and the estimate (8) is valid for the number of iterations n(ε), where æ =
(1 + ρ2)/(1− ρ2) and the value ρ is determined in Theorem 1.

Now let us consider the successive multiplicative projective semi-conjugate residual
(SMPSCR) method in the Krylov subspaces which is an alternative to the above ADM-
PCR algorithm. The new approach is based on the acceleration of iterative process (13)
with non-symmetric step matrix B by means of formulas (5) and (9) where preconditioned
matrix Ā is described by (3), (13). The SMPSCR procedure requires, for computing un+1,
to save in memory all previous direction vectors p0, ..., pn, similarly to the GMRES method
[4]. These two approach have the same convergent property because they provide min-
imization of the functional (rn, rn) in the subspace Kn+1(r0, Ã). The following result is
true for the successive multiplicative method.

Theorem 3. Suppose, that the SMPSCR algorithm, defined by formulas (3), (5),(6)
and (9),(11)–(13) for s = 1, has diagonalizable matrix Ã = XΛX−1, Λ = diag(λ1, ..., λN),
where λi are eigenvalues of Ã and X is a square matrix whose columns are corresponding
eigenvectors. Then this method is convergent under conditions of Theorem 1, and the
following estimate is valid for the number of iterations:

n(ε) ≤ 1 +
(
ln

1 +
√

1− ε2
1

ε1

)
/lnγ, ε1 = ε/(‖X‖2 · ‖X−1‖2),

Here γ1 = a +
√
a2 − d2, γ2 = c +

√
c2 − d2, where a, d are the semi-major axis and

the focal distance (d2 < c2) for the ellipse E(a, d, c) which includes all values λi, excludes
origin, and is centered at c.

It should be noted that for the SMPSCR method, as for GMRES, different reduced
versions with a bounded number of saved direction vectors pn can be constructed. This
will decrease the computational resources for the implementation of the algorithm, but
the quantities n(ε) will increase in these cases.

3 Additive projective methods

Let us recall that the Kaczmarz method is based on successive projection of the points from
the space RN onto the hyperplates which are described by the corresponding equations
of the algebraic system. A similar idea is used in the Cimmino algorithm (see [11]–
[13] and its references). But here projections of the given point un onto all hyperplates
are made simultaneously, and the next step of the iterative approximation is chosen by
means of some averaging procedure, or linear combination, with projective points un,i,
i = 1, ..., N . Such an additive type iterative process to solve SLAE (11) can be presented
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in a generalized block version as

un,p = un−1 + A+
(p)r

n−1
(p) , p = 1, 2, ..., l, un = (un,1 + un,2 + ...+ un,l)/l, (16)

These relations can be written in the following matrix form:

un = Bun−1 + g, B = I − l−1
l∑

p=1

A+
(p)A(p) =

= I − l−1
l∑

p=1

Tp, g = l−1
l∑

p=1

A+
(p)f(p),

(17)

where matrices Tp are defined in (13).
Obviously, the limit vector of this sequence u = lim

n→∞u
n, if it exists, satisfies the

preconditioned system of equations

Ãu = f̃ , Ã =
l∑

p=1

Tp, f̃ =
l∑

p=1

A+
(p)f(p). (18)

If matrix Ã of system (18) is a s.p.d. one, its spectral properties are obtained from
the following result [10].

Theorem 4. Let the quantities 0 < α < 2 and 0 < ρ < 1 be defined from Theorem 1.
Then the spectral radius λ(Ã) of s.p.d. matrix Ã from system (18) satisfies the inequalities

(2− α)(1− ρ)/4 ≤ λ(Ã) ≤ αl.

Now we can estimate the convergence rate of the additive projective approach.
Theorem 5. Estimate (8) for the number of iterations n(ε) is valid for the conjugate

gradient and conjugate residual methods to solve the SLAE (18), i.e. to accelerate the
additive projective algorithm (17). In this case the condition number satisfies the estimate
æ(Ã) ≤ 4αl(2− α)−1(1− ρ)−1.

Remark 1. It follows from Theorems 1 and 5 that the multiplicative method is
faster, in comparison to a similar additive procedure. However the letter has a consider-
able advantage for parallel implementation on a multi-processor computer, because the
calculation of each projection at the subspace can be done independently.

Remark 2. Theorems 1 and 4 were proved in [10] to analyse convergence properties
of the multiplicative and additive domain decomposition methods. It is evident that
Theorems 2, 3 and 5 on the accelerations of projective iterative methods by means of
conjugate direction or semi-conjugate direction algorithms in the Krylov subspaces can
be used successively in these applications. Thus, the block variant of SLAE (11) can
be interpreted as a matrix representation of the algebraic domain decomposion (ADD)
formulation.
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4 Iterations in Krylov subspaces with dynamic

preconditioning

If we have a large problem, i.e. the original algebraic system (1) has a dimensionality of
several millions or hundreds of millions, then it is natural to use some iterative procedure
for solving auxiliary SLAEs at each step of block projection method (12) or (17).

In this case we obtain a two level iterative approach: at the external level we have
iterative method of the form

un+1 = Bnu
n + gn = un + C−1

n (f − Aun), Bn = I − C−1
n A, (19)

with variable (dynamic) step matrices Bn and preconditioning matrices Cn, and at the
internal level the subsystems of dimensionality mp are solved iteratively.

The acceleration of iterative process (19) in the Krylov subspaces

Kn+1(r0, C−1
n A) = span{C−1

0 r0, AC−1
1 r0, ..., AnC−1

n r0}

can be done by the following dynamically preconditioned semi-conjugate residual (DP-
SCR) method:

r0 = f − Au0, p0 = C−1
0 r0, n = 0, 1, .. :

un+1 = un + αnp
n, rn+1 = rn − αnApn,

pn+1 = C−1
n+1r

n+1 +
n∑
k=0

βn,kp
k = pn+1,l +

n∑
k=l

βn,kp
k,

pn+1,l = pn+1,l−1 + βn,l−1p
l−1, pn+1,0 = C−1

n+1r
n+1, pn+1 = pn+1,n,

αn = (AC−1
n rn, rn)/(Apn, Apn), βn,k = −(Apk, Apn,k)/(Apk, Apk).

(20)

The algorithm DPSCR provides minimization of the residual norm ||rn+1|| in the
subspace Kn+1(r0, C−1

n A), and the following equality is true:

||rn+1||2 = (r0, r0)− (AC−1
0 r0, r0)2

(Ap0, Ap0)
− . . .− (AC−1

n rn, rn)2

(Apn, Apn)
. (21)

Thus, this method converges if matrices C−1
n A are positive definite. In order to de-

crease the computational complexity of the algorithm, for large n two reduced versions
of method (20) can be applied. The first one is based on the procedure of periodical
restarting after each m iterations. This means that for n = ml, l = 1, 2, ..., the resid-
ual vector rn is computed not from the recurrent relation but from the original equation
(rml = f − Auml), and subsequent calculations are performed in the conventional form.
The second way consists in truncated orthogonalization, i.e. for n > m only the last m
direction vectors pn, ..., pn−m+1 and Apn, ..., Apn−m+1 are saved in the memory and used
in the recursion.

The following combination of these two approaches can be proposed. Let m1 be
the restart period, m2 be the number of saved orthogonal direction vectors, and n′ =
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n− [ n
m2

]m2, where [b] is the integer part of b. Then the unified reduced recursion for pn

is written as

pn+1 = C−1
n+1r

n+1 +
n∑

k=n−m+1

βn,kp
k, m = min{n′,m1}. (22)

It is easy to show from (21) that the reduced versions of DPSCR converge also, if
matrices C−1

n A are positive definite for all n.

References

[1] Golub G., Van Loan C. Matrix computations. The John Hopkins Univ. Press, Balti-
more, 1989.

[2] O.Axelsson. Iterative solution methods.–Cambridge Univ. Press, New York, 1994.

[3] V.P.Il’in. Iterative Incomplete Factorization Methods, World Scientific Publ., Singa-
pore, 1992.

[4] Y.Saad. Iterative methods for sparse linear systems, PWS Publ., New York, 1996.

[5] S.C.Eisenstat, H.C.Elman, M.H.Schultz. Variational iterative methods for nonsym-
metric systems of linear equations, SIAM J. Num. Anal., 20, (1983), pp. 345-357.

[6] C.L.Lawson, R.J.Hanson. Solving Least Square Problems, Prentice-Hall, Inc., New
Jersey, 1974.

[7] S.Kaczmarz. Angendherte Auflosung von Systemen Linearer Geichungen, Bulletin
International de l’Academic Polonaise des Sciences. Lett. Gl. Sci. Math., Nat. A,
(1937), pp. 355-357.

[8] K.Tanabe. Projection method for solving a singular system of linear equation and its
applications, Number Math., 17, (1971), pp. 203-214.

[9] V.P.Il’in. On the iterative Kaczmarz method and its generalizations (in Russian),
Sib.J.Industr. Math., 9, (2006), pp. 39-49.

[10] J.H.Bramble, J.E.Pasciak, J.Wang, J.Xu. Convergence estimates for product iterative
methods with applications to domain decomposition, Math. of Comput., 57, (1991),
195, pp. 1-21.

[11] G.Cimmino. Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,
Ric. Sci. Progr. Techn. Econom. Naz., XVI, (1938), pp. 326-333.

[12] R.Bramley, A.Sameh. Row projection methods for large nonsymmetric linear sys-
tems, SIAM J. Sci. Stat. Comput., 13, (1992), pp. 168-193.

[13] G.Appleby, D.C.Smolarski. A linear acceleration row action method for projecting
onto subspaces, Electronic Transactions on Num. Anal., 20, (2005), pp. 243-275.

8


