
Journal of Mathematical Sciences, Vol. 216, No. 6, August, 2016

PROBLEMS OF PARALLEL SOLUTION OF LARGE
SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

V. P. Il’in∗ UDC 519.6

The paper considers some modern problems arising in developing parallel algorithms for solving
large systems of linear algebraic equations with sparse matrices occurring in mathematical modeling
of real-life processes and phenomena on a multiprocessor computer system (MCS). Two main
requirements to methods and technologies under consideration are fast convergence of iterations
and scalable parallelism, which are intrinsically contradictory and need a special investigation. The
paper analyzes main trends is developing preconditioned iterative methods in Krylov’s subspaces
based on algebraic domain decomposition and principles of their program implementation on a
heterogeneous MCS with hierarchical memory structure. Bibliography: 24 titles.

1. Introduction

As is well known, solution of large Systems of Linear Algebraic Equations (SLAEs) is a
bottleneck in problems of mathematical modeling because the costs of solving a SLAE grow
nonlinearly as the number of degrees of freedom increases. Large and extremely large SLAEs
are systems of the largest size that can be solved for the time being. Today, extremely large
systems have orders 1010–1012 and can be solved on a Multiprocessor Computer System (MCS)
with about 105–107 processing units. It is clear that in practice such SLAEs can only be solved
by iterative methods because direct methods require too much computer resources, especially,
computer memory.

The main approaches to solving the problems under consideration are based on using precon-
ditioned iterations in Krylov subspaces and algebraic domain decomposition into subdomains
with intersections parametrized using their width and various interface conditions on the inte-
rior boundaries of adjacent subdomains. The related auxiliary problems in the subdomains are
solved concurrently on the corresponding computer units by either direct or iterative methods.

The basic requirements to the algorithms considered are intrinsically contradictory. On
the one hand, in order to increase the acceleration factor, one must have a large number
of subdomains, which allows one to exploit a large number of processing units concurrently.
However, if, in this case, the simplest “standard” approaches are used, then the number of
outer iterations over the subdomains grows quite considerably. This circumstance gives rise
to a number of methods for accelerating such an iterative process, which, as a rule, result in
making the related algorithms considerably more complicated from the logical standpoint.

In the last decades, the iterative solution methods have mainly been developed in three
directions. The first one is related to generalizing the concept of Krylov’s subspaces, in which
approximate solutions are constructed based on variational, orthogonal, and/or projection
principles. In this connection, one can mention semi-conjugute direction methods [1–3] for
solving nonsymmetric SLAEs, rational (in contrast to the classical polynomial) Krylov sub-
space methods [4, 5], methods of Induced Dimension Reduction (IDR(s)) [6, 7], and also
deflated and augmented Krylov subspace techniques [8, 9], in which the Krylov basis is sup-
plemented with some additional vectors possessing special properties.

The second direction is related to decreasing the condition numbers of the SLAEs to be
solved by using new types of preconditioners and also by applying nested dissection methods

∗Institute of Computational Mathematics and Mathematical Geophysics, SO RAN and Novosibirsk State
University, Novosibirsk, Russia, e-mail: ilin@sscc.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 439, 2015, pp. 112–127. Original article
submitted October 23, 2015.

1072-3374/16/2166-0795 ©2016 Springer Science+Business Media New York 795

DOI 10.1007/s10958-016-2945-4

and multifrontal algorithms of matrix decomposition associated with special orderings of un-
knowns. Here, promising approaches are based on the tensor apparatus [10] and representation
of matrices in the Hierarchically Semi-Separable (HSS) form [11], which yield efficient approx-
imate and/or exact algorithms of matrix factorization. In addition, relatively recently it has
been suggested to accelerate Krylov iterations with the use of multipreconditioning (see [12–
14]), which involves several preconditioners at every iteration. This technique provides an
extension of the known dynamic (or flexible) preconditioning [15], where at every iteration an
only one preconditioner is used, but it changes from iteration to iteration.

The third direction is related to the first two but is specially oriented to scalable parallelism,
with a mapping of algorithms onto a MCS with a specific architecture. In this case, the main
tool is the method of decomposition of grid domains in its geometric or algebraic interpreta-
tion. It is intuitively clear that a multidimensional grid domain should be decomposed into
subdomains of the same dimension in a balanced way. The ultimate algorithm performance
is determined, to a significant extent, by computing and information technologies and also
by the quality of program implementation. Thus, the efficiency of parallelization must be
characterized not only by theoretic estimates but also by results of numerical experiments.

The present paper is organized as follows. In Sec. 2, block semi-conjugate direction methods
with multipreconditioning are described in an abstract vector-matrix form. In the next Sec. 3,
these methods are specialized for parallel domain decomposition algorithms, and a compara-
tive analysis of different structural approaches (like FETI and BNN, see [16, 17]) and variants
free of separating subdomains suggested in this paper is presented. Also some principles of
acceleration of iterative methods in Krylov’s subspaces based on aggregation, deflation, and
coarse-grid correction, which are different methods of low-rank approximation of matrices de-
scribed in [18–21], are considered. The last section is devoted to a brief presentation of the
concept of the program library KRYLOV [22] as an open integrated toolkit environment ori-
ented at users interested in practical application of fast parallel algebraic solvers. At the same
time, this library provides means for automatically constructing algorithms in developing and
experimentally studying new methods. In the Conclusion, some ideas concerning realization
of the science-technology chain from generation of an idea and theoretical investigation of
the related methods to trial versions and experimental approbation, and to highly efficient
program implementation of algorithms and their practical promotion are presented.

2. Block semi-conjugate direction methods

The semi-conjugate gradient and semi-conjugate direction (SCG and SCR, see [1, 2]) meth-
ods are developed for solving systems of real linear algebraic equations with unsymmetric
positive-definite coefficient matrices,

Au = f, A = {ai,j} ∈ RN,N , u = {ui}, f = {fi} ∈ RN , (1)

satisfying the conditions

(Av, v) ≥ δ||v||2, δ > 0, (v,w) =
N∑

i=1

viwi, ||v||2 = (v, v) (2)

for all real vectors v.
In contrast to the generalized minimum residual methods [3], the family of semi-conjugate

direction algorithms does not require that a Hessenberg matrix be explicitly stored, which
considerably simplifies the numerical algorithm and its program implementation. As is known,
the above-presented inequalities ensure that the symmetric part of the matrix A = {ai,j} is

796

positive definite, i.e.,

(Asu, u) ≥ δ(u, u), As = (A + AT)/2, AT = {aj,i},
and also that the real parts of the eigenvalues of A are positive (the superscript T means
matrix transposition).

In order to solve Eq. (1), we apply the following iterative method of the generalized (or
block) Krylov type:

r0 = f − Au0, un+1 = un + Pnᾱn, n = 0, 1, . . . ,

rn+1 = rn − APnᾱn = rq − APqᾱq − · · · − APnᾱn, 0 ≤ q ≤ n.
(3)

Here, Pn = (pn
1 . . . pn

Mn
) ∈ RN,Mn is the matrix composed of the direction vectors pn

k , and
ᾱn = (αn,1 . . . αn,Mn)T is the vector of iteration parameters, which will be determined from
the following orthogonality relations:

(Apn
k , Aγpn′

k′) = ρ
(γ)
n,kδ

k,k′
n,n′ , ρ

(γ)
n,k = (Apn

k , Aγpn
k),

γ = 0, 1; n′ = 0, 1, . . . , n − 1; k, k′ = 1, 2, . . . ,Mn.
(4)

In (4), δk,k′
n,n′ is the Kronecker symbol, which is equal to unity if n = n′ and k = k′, and

to zero otherwise; the values γ = 0, 1 will specify, in the sequel, either the semi-conjugate
gradient (γ = 0) or semi-conjugate residual method, respectively. Observe that in contrast to
the conventional semi-conjugate direction methods, in relations (3) at every nth iteration Mn

direction vectors, rather than one, are involved, and, in general, their number can vary from
iteration to iteration.

If, in (3), we introduce the integrated direction vectors pn via

αnpn = Pnᾱn, n = 0, 1, . . . , (5)

where the scalar coefficients αn have not yet been determined, then, instead of (3), we obtain
the classical representation of the residual vectors

rn+1 = rn − αnApn = rq − αqApq − · · · − αnApn, 0 ≤ q ≤ n, (6)

in a certain Krylov subspace

K̃(r0, A) = span{r0, Ap0, . . . , Anp0}, (7)

which will be specified after determining the vectors p0, . . . , pn.
Obviously, we can alternatively write (3) without using the matrices Pn and vectors ᾱn as

follows:

rn+1 = rn − A

Mn∑

l=1

αn,lp
n
l = rq − A

(Mq∑

l=1

αq,lp
q
l − · · · −

Mn∑

l=1

αn,lp
n
l

)
. (8)

This implies that under conditions (4), we can define the functional

Φ(γ)
n (rn+1) ≡ (rn+1, Aγ−1rn+1)

= (rq, Aγ−1rq) −
Mn∑

l=1

n∑

k=q

αk,l[2(rq, Aγpk
q) − αk,l(Apk

l , A
γpk

l)].
(9)

Thus, from the extremum condition

∂Φ(γ)
n /∂αk,l = 0,

for q = 0, 1, . . . , n we obtain

α
(γ)
k,l = (rq, Aγpk

l)/ρ
(γ)
k,l , l = 1, . . . ,Mn; k = q, q + 1, . . . , n. (10)

797

Relations (3), (4), and (10) imply that the vectors rn+1 and pn′
k satisfy the conditions of

Aγ-semi-conjugacy in the following sense:

(rn+1, Aγpn′
k) = 0, n′ = 0, 1, . . . , n; k = 1, . . . ,Mn; γ = 0, 1. (11)

Remark 1. As is nondifficult to see, the corresponding value Φ(γ)
n (rn+1) of the functional is

of the form

Φ(γ)
n (rn+1) = (rq, rq) −

n∑

k=q

Mn∑

l=1

(rq, Aγpk
l)

2/ρ
(γ)
k,l (12)

and attains its minimum, provided that γ = 1 or the matrix A is symmetric. We empha-
size, in particular, that in the semi-conjugate gradient method, the functional Φ(0)

n (rn+1) =
(A−1rn+1, rn+1) does not, in general, attains its minimum if A is unsymmetric.

The direction vectors pn
l will be determined from the orthogonality conditions (5) for γ = 0, 1

in the following form:

p0
l = B−1

0,l r0, pn+1
l = B−1

n+1,lr
n+1 +

n∑

k=o

Mk∑

l=1

β
(γ)
n,k,lp

k
l , n = 0, 1, . . . ;

Bn,l ∈ RN,N , l = 1, . . . ,Mn; γ = 0, 1.

(13)

Here, β̄
(γ)
n,k = {β(γ)

n,k,l} = (β(γ)
n,k,1 . . . β

(γ)
n,k,Mn

)T ∈ RMn are the coefficient vectors, and Bn,l ∈ RN,N

are preconditioners, which are chosen with account for the requirements of nonsingularity,
cheap invertibility, and efficient acceleration of the iterative methods under construction. Note
that the preconditioners Bn,l are dynamic, or flexible (as in the FGMRES methods [3]) because,
for a given l, they depend on the iteration number n.

Remark 2. In formulas (12), it is assumed that the initial approximation u0 and the cor-
responding residual vector are the same for all values of l. Obviously it is nondifficult to
construct block versions of the multiply preconditioned methods suggested by prescribing M0

distinct initial vectors U0 = (u0
1 . . . u0

M0
)T . Moreover, the approach considered can readily

be extended to the case of solving several systems with the same coefficient matrix A and
different right-hand sides f̄m = (f1,m . . . fN,m)T , m ≤ M0. In the latter case, one can define
the rectangular matrices of right-hand sides and residuals,

F = (f̄1 . . . f̄M0), R0 = F − AU0 ∈ RN,M0.

In the case where m < M0, some M0 −m columns in the matrix F will be identical. However,
in what follows, such extensions will not be dealt with.

On substituting expressions (13) into the orthogonality conditions (4), we obtain the fol-
lowing formulas for the coefficients:

β
(γ)
n,k,l = −(Aγpk

l , AB−1
n+1,lr

n+1)/ρ(γ)
n,l ,

n = 0, 1, . . . ; k = 0, . . . , n; l = 1, . . . ,Mn.
(14)

Now we are ready to state the result below.

Theorem 1. Under assumptions (2), the iterative methods (3), (11), (13), (14) with γ = 0, 1
and nonsingular preconditioners Bn,l, n = 0, 1, . . . , l = 1, . . . ,Mn, ensure that the extremum
conditions (10) are fulfilled. Conditions (10) correspond for γ = 1 to minimization of the

798

residual norm ||rn+1|| in the multipreconditioned Krylov subspace

K ∑
n+1

(r0, A)

=span
{
B−1

0,1r0, . . . , B−1
0,M0

, AB−1
1,1r1, . . . , AB−1

1,M1
r1, . . . , AnB−1

n,1r
n, . . . , AnB−1

n,Mn
rn

}
.

(15)

In the methods in question, the residual vectors are semi-conjugate for γ = 0, 1 in the
following generalized sense:

(AγB−1
k,l r

n, rk) =

{
0, k < n,

σ
(γ)
n = (AγB−1

n,l r
n, rn), k = n,

l = 1, . . . Mk, (16)

whereas the coefficients α
(γ)
n,l in (3) and (11) are given by the formula

α
(γ)
n,l = (AγB−1

n,l r
n, rn)/ρn,l. (17)

Proof. For k < n, (16) follows from the relations

(AγB−1
k,l r

k, rn) = ((Aγpk
l −

k−1∑

i=0

βk,i,lA
γpi

l), (r
0 −

n−1∑

i=0

α
(γ)
i,l Api

l))

= (Aγpk
l , r

0) − αk,lρ
(γ)
k,l −

k−1∑

i=0

βk,i,l[(Aγpi
l, r

0) − α
(γ)
i,l ρ

(γ)
i,l] = 0.

For k = n, from similar relations we have

(AγB−1
n,l r

n, rn) = (Aγpn
l , r0),

which, in view of (11), yields (16). �

Note that in the particular case where γ = 1 and Bn,l = I (the identity matrix), the residual
vectors with properties (16) are said to be right A-semi-conjugate. In [1], the corresponding
method is called the Generalized Conjugate Residual (GCR) method.

From the algebraic viewpoint, for γ = 1, formulas (13), (14) for n = 0, 1, . . . corre-
spond to transformation of the linearly independent vectors B−1

0,l r0, . . . , B−1
n,l r

0 into the vectors
p0

l , . . . , p
n
l , which are AT A-orthogonal, by using the Gram–Schmidt orthogonalization process.

As is known (see [3] and the references therein), for large n, this orthogonalization process
can prove to be numerically unstable with respect to round-off errors. For this reason, it is
recommended to apply the modified Gram–Schmidt orthogonalization method. In the case
considered, the latter method is realized by the following algorithm.

We suggest to compute β
(γ)
n,k,l by the formula

β
(γ)
n,k,l = −(Aγpk

l , Apn,k
l)/ρ(γ)

n,l
(18)

(rather than (14)), in which the vectors pn,k
l are determined from the relations

pn,k
l = pn,k−1

l + β
(γ)
n,k−1,lp

k−1
l = B−1

n+1,lr
n+1 +

k−1∑

i=0

β
(γ)
n,i,lp

n
l ,

l = 1, . . . ,Mn, k = 0, 1, . . . , n + 1;

pn,0
l = B−1

n+1,lr
n+1, pn,n+1

l = pn+1
l .

(19)

799

Here, if γ = 1, then the choice of the coefficients β
(γ)
n,i,l in (19) ensure that the conditions

∂||pn,k
l ||/∂βn,i = 0, i = 0, 1, . . . , k − 1,

of minimizing the norm of the vector pn,k
l are fulfilled. These conditions imply a formula

coinciding with (14) up to notation. As is readily seen, by virtue of the orthogonality relations

(Apn,k
l , Aγpi

l) = 0, i = 0, . . . , k − 1,

which hold for all l, the values of the coefficients β
(γ)
n,k,l computed (in the exact arithmetic) by

formulas (14) and (18) coincide because

(Aγpk
l , AB−1

n+1,lr
n+1) = (Aγpk

l , Apn,k
l).

Observe that in the case γ = 1 (the semi-conjugate residual method), computations in
accordance with formulas (19) require no additional matrix-vector operations, which follow
from the recurrent relations

Apn,k
l = Apn,k−1

l + β
(γ)
n,k−1,lApk−1

l ,

valid for all l.
Since the semi-conjugate direction methods for solving linear systems with nonsymmetric

matrices are based on using long-term recurrences of the form (19), for large n, they require
too much RAM similarly to the GMRES method.

In order to alleviate this limitation, we will use two commonly accepted approaches, one of
which is related to restarting the algorithm in a given number of iterations mres, whereas the
other one is based on a limited orthogonalization, in the course of which the direction vectors
from a prescribed number of last iterations mlim are preserved, see [1–3]. Both of these forced
approaches result in an unavoidable reduction of the convergence rate of the iterations. But
the situation can be somewhat relaxed by choosing appropriate preconditioners, for which the
number of iterations turns out to be moderate.

3. Domain decomposition algorithms with coarse grid correction in Krylov’s
subspaces

In this section, the multipreconditioned methods of semi-conjugate directions, considered
above in a rather abstract form, are specified in application to constructing naturally parallel
algebraic domain decomposition methods based on two types of preconditionings. The first
of them is connected with the additive Schwarz method, or the block Jacobi method, in
which inversion of each of the blocks means solution of an auxiliary system of linear algebraic
equations in the corresponding subdomain. In order to accelerate the convergence of iterations
for the subdomains, another type of preconditioning is used. The latter consists in a coarse-
grid correction of the approximate solutions. Specific variants of such a correction are know as
aggregation and deflation, whereas the general principle of constructing them consists in small-
rank approximation of the inverse matrices. In this case, multipreconditioning in Krylov’s
subspaces is aimed at studying the most efficient combinations of two approaches, specifically,
the additive Schwarz method and aggregation.

Initially, the domain decomposition methods are described on the continuous level. A
computational domain Ω, in which a certain boundary value problem for a differential equation
is solved, is decomposed into P subdomains Ωs, in each of which the corresponding subproblem
is stated. However, we will only consider the discretized problem, i.e., the problem in terms
of the computational grid domain having the total number of nodes N and composed of some

nonoverlapping computational subdomains, Ωh =
P⋃

s=1
Ωh

s , the number of grid nodes in each

800

of the subdomains being equal to Ns, N1 + N2 + · · · + NP = N . Below, for shortness, the
superscript h will be omitted.

It should be emphasized that we consider decomposition into grid subdomains without
interface nodes belonging to two or more adjacent subdomains. Such a decomposition of
the computational grid domain into disjoint subdomains (we do not dwell on decomposition
methods and criteria of their quality, which is a separate important question) is only the first
step toward constructing grid subdomains with parametrized intersections described below.

For a grid subdomain Ωs, by Γs = Γ0
s we denote its boundary, i.e., the collection of nodes

that are exterior with respect to Ωs but have at least one neighboring node in Ωs (Ω̄0
s = Ωs∪Γ0

s

is the closure of the original grid subdomain Ωs). In what follows, Γ1
s denotes the first extended

boundary, or the first exterior front Ω̄s, i.e., the collection of nodes not belonging to Ω̄s but
having at least one neighboring node in Ω̄0

s (Ω̄1
s is the first extension of Ω̄0

s). The subsequent
stages of extension of a grid subdomain are defined similarly, and the number Δ of such stages
will be referred to as the parameter of the extended subdomain Ω̄s = Ω̄Δ

s = ΩΔ
s

⋃
ΓΔ

s , where
the nodes from ΓΔ

s do not belong to ΩΔ
s ; the number of nodes in Ω̄s is denoted by N̄s.

Below, for simplicity, we assume that there is an isomorphism between the grid and algebraic
problem statements in the sense that to every node i there correspond an equation and the
component ui of the unknown solution vector u. The subvectors us and ūs of dimensions Ns

and N̄s consist of the components belonging to Ωs and Ω̄s, respectively.
In order to construct an iterative domain decomposition method in Krylov’s subspaces, we

define two types of preconditionings. The first of them can be characterized as the Restricted
Additive Schwarz (RAS) method and is described as follows:

B−1
RAS = RÂ−1W, Â = W T AW = block-diag {Ās,s ∈ RN̄s,N̄s}. (20)

Here, W = [w1 . . . wP] ∈ RN,P is a rectangular matrix in which every column ws has unit
components at the nodes from Ω̄s and zero components elsewhere; the matrix R ∈ RN,N

consists of block rows Rs ∈ RNs,N each of which represents the restriction operator from Ω
onto Ωs, i.e., Rsu = us. Note that even in the case where the original coefficient matrix is
symmetric, the preconditioner BRAS defined in (20) is, in general, nonsymmetric. Inversion
of the blocks As,s of the matrix Â de facto reduces to solution of independent subsystems in
the corresponding extended subdomains, which is the foundation of parallelizing the additive
Schwarz, or the block Jacobi method.

The second preconditioner establishes “distant” connections among the subdomains and is
defined as follows:

B−1
c = ΦǍ−1ΦT , Ǎ = ΦTAΦ ∈ RNc,Nc . (21)

Here, Nc � N is the dimension (the number of nodes) of a certain coarse grid; Φ = [ϕ1 . . . ϕNc]
∈ RN,Nc is a rectangular matrix the sth column of which, s = 1, . . . , Nc, is composed of the
values of a certain basis function ϕs at the nodes of the original grid Ω. In what follows,
for simplicity, we assume that Nc = P and that the ith component of the column vector ϕs

equals unity if the respective node belongs to the non-extended domain Ωs and zero other-
wise. From (21) it is seen that multiplication by the preconditioning matrix B−1

c , to which the
method of coarse-grid correction actually reduces, essentially consists of solving an auxiliary
linear system with an “aggregated” matrix Ǎ of small order, which establishes, at every iter-
ation, interconnections among the subdomains. Obviously, if Φ is a matrix of full rank, which
is assumed, and A is nonsingular, then Ǎ also is nonsingular. The matrix Ǎ (more exactly,
the matrix ΦT ǍΦ ∈ RNc,Nc) is called the small-rank approximation of the original matrix A.

Introduce the notation
B−1

RAS = B−1
n,1, B−1

c = B−1
n,2.

801

Then the preconditioners (20) and (21) can be used in the semi-conjugate direction methods
(13)–(19). If the auxiliary linear systems with the matrices Â and Ǎ are solved by direct
methods, then the resulting preconditioners prove to be independent of the iteration number n.
In the case where the auxiliary systems are solved by iterative methods (inner iterations), we
arrive at dynamic, or flexible preconditioning.

Domain decomposition methods provide a foundation for various computational technologies
of parallelizing algorithms. These issues are considered in a huge number of publications,
see [23], and we do not dwell on them here.

4. On the concept of the KRYLOV library of algorithms

Theoretical estimation of the convergence rate of iterative methods for solving systems of
linear algebraic equations and also a comparative analysis of the efficiencies of different algo-
rithms, as well as elaboration of recommendations concerning the choice of the best algorithm
for solving a specific linear system or a class of problems, are quite difficult problems. This is
only more true for evaluation of real-life performance of program implementations of methods
on heterogeneous multiprocessor computer systems with complicated hierarchies of the shared
and distributed memories. Therefore, the development of new numerical methods is absolutely
impossible without their experimental study, which requires that massive systematic computa-
tions be performed on a representative series of test and real-life problems. This labor and time
consuming problem includes the development of specialized tools for automatically testing and
verifying program implementations, including creation of collections of specific examples. It
should be mentioned that in computational algebra, investigations along this direction have
already been conducted for many years, and they have resulted in different collections of test
matrices, e.g., MatrixMarket, Florida, and Boeing, which are widely used and available from
the e-net.

Also it should be said that up to now, a lot of software related to solution of linear algebraic
problems has been accumulated in the world, including, in particular, software for solving
sparse linear algebraic systems, which exists either in the form of specialized program libraries
or is included in applied systems, both commercial and open source. As examples, one can
mention MATLAB, NETLIB, PETSc, Hypre, Trilinos, MKL, SparseKit, and so on. This list
can be considerably extended. It is important to note that in the field in question, the main
standards for matrix data structures have already been formed, and sufficiently representative
collections of efficiently implemented matrix-vector operations can be found in the widely-used
packages BLAS and SparseBlas.

In view of what has been said above, we will consider a concept of creating an integrated
program environment including computational toolkits not only for efficient solution of alge-
braic problems on modern multiprocessor computer systems but also for prompt development
of new algorithms. Some aspects of such an environment (the KRYLOV library) are presented
in [22].

This superproject is motivated by the following circumstances. First, there is a very wide
class of urgent problems of linear algebra, which is regularly replenished. On the one hand, this
class can be characterized by matrix properties (matrices can be real and complex, Hermitian
and non-Hermitian, symmetric and nonsymmetric, positive definite and indefinite and can
possess a number of more specific properties). On the other hand, various linear algebraic
systems result from old and new methods for solving differential and/or integral equations
(Maxwell, Lamé, D’Arcy, Navier–Stokes, etc.), and their structural and spectral properties
should be taken into consideration.

Another motivation is provided by a permanent and intensive development of new methods
of computational linear algebra, for which efficient technologies of experimental investigations

802

is a separate fundamental problem (similarly, no progress in theoretical physics is possible
without experimental physics). Finally, the third motivation is as follows. Applied software
should be adapted to explosive evolution of supercomputer architectures and platforms. A
characteristic requirement to such projects is the absence of program restrictions on the number
of degrees of freedom in a problem to be solved and on the number of computer threads and/or
cores used.

With account for what has been said above, we suggested a concept of the KRYLOV library
as an integrated toolkit environment for solving a large class of problems of numerical linear
algebra open for its development by coordinated efforts of different groups of scientists and
allowing for various user interfaces and modes of use.

The functional content of the library is supposed to include the possibility of performing an
automated, balanced geometric or algebraic problem decomposition, of using different types
of iterative solvers in Krylov’s subspaces with preconditionings of various kinds and different
stopping criteria, and also programs for generating matrices from specific classes of problems.

Program implementation is based on unified data formats, with an option of their converta-
tion and with forming MPI processes and multithread computations on heterogeneous clusters
with distributed and shared memory of the CPU or GPGPU. Inner and outer interfaces are
constructed based on the CCA (Common Component Architecture, [24]) technologies, which
support multilingualism and cross-platform development and also the possibility of using ex-
terior program products. We do not go into the details of this large project because it is a
topic for a separate investigation.

5. Conclusion

This paper presents a brief overview of modern approaches to the urgent problem of solving
large systems of linear algebraic equations and also some results obtained by the author.
We have aimed at demonstrating the variety of existing algorithms, which are intensively
developed both theoretically and from the implementation standpoint. It should be pointed out
that different aspects of the directions considered are intimately associated parts of numerical
algebra. As a whole, they form the science-technology chain from generation of an idea and
theoretical study of methods to trial versions and experimental approbation, and to highly
efficient program implementation of algorithms and their practical promotion.

This work was supported by the Russian Science Foundation (project No. 14-11-00485) and
Russian Foundation for Basic Research (project No. 14-07-00128).

Translated by L. Yu. Kolotilina.

REFERENCES

1. S. C. Eisenstat, H. C. Elman, and M. H. Schultz, “Variational iterative methods for
nonsymmetric systems of linear equations,” SIAM J. Numer. Anal., 20, No. 3, 345–357
(1983).

2. J. Y. Yuan, G. H. Golub, R. J. Plemmons, and W. A. Cecilio, “Semi-conjugate direction
methods for real positive definite systems,” BIT, 44, No. 1, 189–207 (2004).

3. V. P. Il’in and E. A. Itzkovich, “Semi-conjugate direction methods with dynamic precon-
ditioning,” Sib. Zh. Industr. Mat., 10, No. 4, 41–54 (2007).

4. A. Ruhe, “Rational Krylov sequence methods for eigenvalue computation,” Linear Algebra
Appl., 58, 391–405 (1984).

803

5. V. Druskin, L. Knizhnerman, and V. Simoncini, “Analysis of the rational Krylov subspace
and ADI methods for solving the Lyapunov equation,” SIAM J. Numer. Anal., 49, No. 5,
1875–1898 (2011).

6. M. van Gijzen and P. Sonneveld, “Algorithm 913: An elegant IDR(s) variant that efficiently
exploits biorthogonality properties,” ACM Trans. Math. Software, 38, No. 1 (2011), Arti-
cle 5.

7. M. B. van Gijzen, G. L. G. Sleijpen, and J.-P. M. Zemke, “Flexible and multi-shift induced
dimension reduction algorithms for solving large sparse linear systems,” Numer. Linear
Algebra Appl., 22, 1–25 (2015).

8. A. Chapman and Y. Saad, “Deflated and augmented Krylov subspace techniques,” Numer.
Linear Algebra Appl., 4, No. 1, 43–66 (1997).

9. Y. L. Gurieva and V. P. Il’in, “Some parallel methods and technologies of domain decom-
position,” Zap. Nauchn. Semin. POMI, 428, 89–106 (2014).

10. I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse of dimensionality. Or how to
use SVD in many dimensions,” SIAM J. Sci. Comput., 31, Iss. 5, 3744–3759 (2009).

11. W. Hackbusch, Hierarchische Matrizen: Algorithmen and Analysis, Springer (2009).
12. R. Bridson and C. Greif, “A multipreconditioned conjugate gradient algorithm,” SIAM J.

Matrix Anal. Appl., 27, No. 4, 1056–1068 (2006).
13. C. Greif, T. Rees, and D. B. Szyld, MPGMRES: a generalized minimum residual method

with multiple preconditioners. Tech. Rep. 11-12-23, Department of Mathematics, Temple
University (2011).

14. C. Greif, T. Rees, and D. B. Szyld, “Additive Schwarz with variable weights,” Lect. Notes
Comput. Sci. Eng., 98, 779–787 (2014).

15. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Society for Industrial and
Applied Mathematics (2003).

16. V. Dolean, P. Jolivet, and F. Nataf, “An introduction to domain de-
composition methods: algorithms, theory and parallel implementation,”
https://hal.archives-ouvertes.fr/cel-01100932.v4

17. A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory
(Springer Ser. Comput. Math., 34), Springer (2005).

18. M. T. Chu, R. E. Funderlic, and G. H. Golub, “A rank-one reduction formula and its
application to matrix factorization,” SIAM Rev., 37, 512–530 (1995).

19. L. Yu. Kolotilina, “Eigenvalue bounds and inequalities using vector aggregation of matri-
ces,” Linear Algebra Appl., 271, 139–167 (1998).

20. O. Dubois, M. J. Gander, A. St.-Cyr, S. Loisel, and D. Szyld, “The optimized Schwarz
method with a coarse grid correction,” SIAM J. Sci. Comp., 34, No. 1, 421–458 (2012).

21. Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems, “Robust domain decomposition pre-
conditioners for abstract symmetric positive definite bilinear forms,” Esaim Math. Model.
Numer. Anal., 46, No. 5, 1175-1199 (2012).

22. D. S. Butyugin, Y. L. Gurieva, V. P. Il’in, D. V. Perevozkin, A. V. Petukhov, and I.
N. Skopin, “Functionality and technologies of algebraic solvers in the KRYLOV library,”
Vestn. YuUrGU, 2, No. 3, 92–105 (2013).

23. URL: http://www.ddm.org
24. CCA: The Common Component Architecture Forum. www.cca-forum.org/.

804

	Abstract
	1. Introduction
	2. Block semi-conjugate direction methods
	3. Domain decomposition algorithms with coarse grid correction in Krylov’ssubspaces
	4. On the concept of the KRYLOV library of algorithms
	5. Conclusion
	REFERENCES

