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Abstract. To solve symmetric positive definite SLAEs with large sparse
matrices that arise under approximation of two-dimensional and three-
dimensional problems for differential equations of the second order on
regular structured grid, additive methods of domain decomposition with-
out intersection of subdomains are considered. The algorithm is con-
structed by defining a subset of the separator nodes between the sub-
domains, which forms the macrogrid and formally is taken as a special
subdomain. A general iterative process is described as a block incomplete
factorization method in the Krylov subspaces using the compensation
principle. In the two-dimensional case, algebraic system for a macrogrid
is solved by an economical direct method using parallelizable sweeps. In
other subdomains a scalable parallelization is achieved by solving aux-
iliary SLAEs by direct or iterative algorithms that are implemented by
means of hybrid programming on cluster architectures with distributed
and shared memory. For 3D problems, this “two-dimensional” algorithm
serves as a part of a three-level computational scheme for solving alge-
braic systems on separating the grid faces. Estimates of the efficiency of
parallelization of the proposed algorithms, features of the generated data
structures and a possibility of a minimization the volume of resource-
intensive and energy-consuming communications perations are given.

Keywords: parallel domain decomposition · iterative processes · Krylov
subspaces · performance · graph preconditioners

1 Introduction

Domain decomposition algorithms have a rich history, beginning with the alter-
nating Schwarz method applied to solving and investigating multidimensional
boundary value problems for partial differential equations. These equations were
formulated for computational domains with a complex geometry and different
types of boundary conditions. This research direction became a direction of cur-
rent interest and was significantly updated and intensified at the end of the last
century after the development of multiprocessor computing systems (MCSs) with
wide opportunities for parallelizing algorithms.
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The additive domain decomposition method (DDM), being historically a de-
velopment of the Schwarz method, proved to be an effective tool for synchro-
nization of arithmetic operations while solving the auxiliary problems in subdo-
mains for computations on modern MCSs of a heterogeneous architecture with
distributed and hierarchical shared memory. Numerous monographs and articles
on the ADD topic are available. They are focuses on ADD with a parameter-
ized intersection of subdomains, with different iteration conditions on internal
boundaries, with various approaches to the construction of iteration processes
and with numerous applications. Regular international conferences and an ex-
tensive bibliography (see ddm.org), as well as works [1] – [22] and the literature
referenced there, are devoted to domain decomposition. Here we highlight the
studies [23] – [26] based on P. Vaidya’s idea of constructing an easily reversible
preconditioning matrix by building a spanning tree, based on graph interpre-
tation of grid systems of linear algebraic equations (SLAEs), although, strictly
speaking, this approach differs in methodology from the principle of domain
decomposition that we use.

In this paper, we consider an additive decomposition method without in-
tersections of subdomains, in which separating nodes form a “macrogrid” and
formally constitute their own subdomain whose SLAE is economically solved us-
ing parallel sweep algorithms see [27] – [29]. The algebraic systems to be solved
are assumed to be symmetric positively determined (s.p.d.) and they are de-
rived from some approximations of two- or three-dimensional boundary value
problems for the second order partial derivative equations on structured or un-
structured grids. SLAEs are solved by a conjugate directions method using an
additive domain decomposition method (without intersection of subdomains) as
a preconditioner which algebraically corresponds to the large-block algorithm of
incomplete factorization using the compensation principle.

This paper is structured as follows. Section 2 is devoted to the description
of the algebraic structures for decomposition method of grid domains with sep-
arating nodes (for the two- and three-dimensional cases). Section 3 describes
the proposed variant of a parallel domain decomposition method in the Krylov
subspaces based on utilizing large-block incomplete factorization and the com-
pensation principle to form the interface conditions between subdomains. Section
4 is devoted to the presentation of a parallel direct algorithm to solve SLAEs on
macrographs. Section 5 presents the results of preliminary investigations on per-
formance and efficiency estimations of algorithm parallelizing. Finally, the issues
of generalization of algorithms to solve a wider class of problems are discussed.

2 Algebraic structures in domain decomposition with
separating nodes

We consider a SLAE with s.p.d. matrices of the form

Au = f, A = {al,m} ∈ RN,N , u = {ul}, f = {fl} ∈ RN , (1)
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obtained from the discretization of multidimensional boundary value problems
using compact approximation schemes of a node type. This means, first, that
each vector component ul and fl in (1) corresponds to its own grid node, and
second, that each grid equation contains only terms corresponding to the “near-
est” neighboring nodes. The last condition means that in the one-dimensional
case only three-point schemes are allowed, i.e., terms with the components
ul±∆, |∆| ⩾ 2 cannot be present in the l-th equation.

2.1 Classification of variables for 2D case

Let us illustrate the classification of grid nodes and the corresponding block
structure of SLAEs with a simple example. Let Ω = [x0, xNx+1]× [y0, yNy+1] be
a computational rectangular domain with the rectangular grid

Ωh : x = xi, i = 1, . . . , Nx, y = yj , j = 1, . . . , Ny.

On this grid, let us consider a system of N = NxNy five-point equations

(Au)i,j = a
(0)
i,j ui,j − a

(1)
i,j ui−1,j − a(2)i,j ui,j−1 − a(3)i,j ui+1,j − a(4)i,j ui,j+1 = fi,j ,

i, j ∈ Ωh, a
(1)
1,j = a

(2)
i,1 = a

(3)
Nx,j

= a
(4)
i,Ny

= 0, (2)

approximating some boundary value problem in Ω̄ ∈ Ω∪Γ with Dirichlet bound-
ary conditions, for example, for a second order elliptic differential equation. Let
us introduce separating coordinate lines in Ωh

xi1 , . . . , xiMx
; yj1 , . . . , yjMy

; 1 < i1 < iMx
⩽ Nx; 1 < j1 < jMy

⩽ Ny.

They form a macrogrid, or a macrograph, including macronodes, or macrover-
texes, and macroedge nodes. The remaining nodes of the grid represent the inner
nodes of the formed subdomains Ωh

1 , . . . , Ω
h
M ,M = (Mx +1)(My +1). It is easy

to calculate that on such a macrogrid the number of macronodes isMv =MxMy,
and the number of macroedges is K =Mx +My + 2MxMy.

An example of a decomposition of the grid computational domain for a square
grid is shown in Fig. 1, where the symbols •, ×, ◦ denote macronodes, macroedge
nodes and internal nodes in subdomains, respectively. Hence, it is obvious that
the compactness condition for the solved grid equations can be formulated as
follows: the equation for an internal node from the subdomain Ωs, s = 1, . . . ,M,
cannot contain terms with unknown variables corresponding to other subdo-
mains. Note that each equation for a macronode contains four terms correspond-
ing to the outermost nodes of the adacent macroedges, and each “macroedge”
equation includes two terms corresponding to the internal nodes from different
adjacent subdomains.

Here we denote by û = {ûk, k = 1, . . . ,K} and ǔ = {ǔm,m = 1, . . . ,Mv}
the subvectors with the components corresponding to grid variables defined
on macroedges (here ûk is a subvector corresponding to one macroedge) and
macronodes, and introduce one big (defined on the whole macrogrid) subvector
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Fig. 1. An example of decomposition of a grid area with separators in a 2D problem

ū1 =
(
û⊤, ǔ⊤

)⊤
and subvector ū2 = {ū2,s, s = 1, . . . ,M} with the components

corresponding to all Ωs subdomains. Then the original algebraic system (1) can
be written in the following form:

Āū =

[
Ā1,1 Ā1,2

Ā2,1 Ā2,2

] [
ū1
ū2

]
=

[
f̄1
f̄2

]
. (3)

Here the matrix Ā differs from A only by the permutation of rows and columns,
and Ā2,2 = block-diag {Ds, s = 1, . . . ,M}, where Ds are five-diagonal matrix
blocks, each of which characterizes an autonomous SLAE in its “own” subdo-
main. Note that if each macroedge contains (for simplicity) Ne nodes, then the
total numbers of macrogrid nodes and the internal nodes in subdomains equal

N̄1 =MxMy +KNe, N̄2 = (Mx + 1)(My + 1)N2
e =MN2

e . (4)
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The block structure Ā1,1 in (3) has the following characteristic arrowhead
representation:

Ā1,1 =

T x
1 . . . 0 0 . . . 0 Cx

1

. . . . . .

. . . . . .

. . . . . .

0 . . . T x
Mx

0 . . . 0 Cx
Mx

0 . . . 0 T y
1 . . . 0 Cy

1

. . . . . .

. . . . . .

. . . . . .

0 . . . 0 0 . . . T y
My

Cy
My

(Cx
1 )

⊤ . . . (Cx
Mx

)⊤ (Cy
1 )

⊤ . . . (Cy
My

) S

(5)

It is assumed here that the nodes of the horizontal macroedges are numbered
first, then the vertical ones, and then macronodes. All diagonal blocks T x

k′ and
T y
k′′ (1 ⩽ k′ ⩽ Mx, 1 ⩽ k′′ ⩽ My) are tridiagonal matrices, and S is a diagonal

block. The off-diagonal blocks Cx
k′ , C

y
k′′ have a rectangular shape and one non-

zero element in their first and last rows (more precisely, some of them, which are
near-boundary, are zero). All last Mv rows of matrix Ā contain four off-diagonal
elements.

2.2 Matrix structures for decomposition of 3D problems

In this subsection, as in the previous one, we restrict ourselves to the consid-
eration of a methodological problem, assuming for simplicity that the compu-
tational domain is a parallelepiped Ω = [x0, xNx+1] × [y0, yNy+1] × [z0, zNz+1],
which is discretized using a regular grid Ωh : x = xi, i = 1, . . . , Nx; y = yj , j =
1, . . . , Ny; z = zk, k = 1, . . . , Nz.

We will consider grid seven-point equations, which are a natural generaliza-
tion of five-point SLAEs (2), defined on a stencil shown in Fig. 2. We assume
that the Dirichlet boundary conditions are set on the boundary Γ of the com-
putational domain Ω̄ = Ω ∪ Γ .

In the grid area Ωh, we introduce the dividing planes with coordinates
x = xi1 , . . . , xiMx

; y = yj1 , . . . , yjMy
; z = zk1

, . . . , zkMz
forming a macrogrid, a

fragment of which is shown in Fig. 3. Here the symbols •, ×, ◦ denote macron-
odes, macroedge and macroface nodes, respectively. If the subvectors of unknown
and known vectors defined on the macrogrid and in the internal nodes of the
subdomains formed with its help are denoted by ū1, ū2, f̄1, f̄2, then the original
SLAE (1) is written similarly to (3) in the block form.

In this case, the block Ā2,2 is, as in (3), a block-diagonal matrix, but now
each of its M = (Mx + 1)(My + 1)(Mz + 1) blocks is a seven-diagonal matrix
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Fig. 2. Grid 3D seven-point stencil

Fig. 3. A decomposition fragment of a 3D grid domain
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obtained from the approximation of the three-dimensional boundary value prob-
lem in the corresponding subdomain. At the same time, the matrix block Ā1,1

has a more complex structure than in the two-dimensional version, since the
three-dimensional separating macrogrid contains, in addition to macrovertices
and macroedges, the macroface nodes. Thus, the entire block (5) corresponds
to the matrix structure. Generally speaking, a “3D Macrogrid” block Ā1,1 can
also be represented as an arrow-like matrix (5), but now the diagonal T -blocks
correspond to macrofaces and hence have the block structure (5) exactly. And
macroedge nodes and macrovertices now form a macrograph, which, unlike the
2D case, is not flat but three-dimensional. The total number of macrovertices
here is equal toMv =MxMyMz, and each of them is incident to six macroedges.

3 General scheme of the iterative domain decomposition
method in the Krylov subspaces

A universal form of the additive decomposition algorithm for a symmetric SLAE
is the preconditioned method of conjugate directions. To construct a precondi-
tioning symmetric matrix, we use an approximation of the matrix Ā from (3)
obtained with the help of incomplete factorization [16] and the compensation
principle:

B =

[
G1 0
Ā2,1 G2

]
G−1

[
G1 Ā1,2

0 G2

]
,

G1 = Ā1,1 − θ1S1, G2 = Ā2,2 − Ā2,1G
−1
1 Ā1,2 − θ2S2, (6)

S1e = Ā1,2e, S2e =
(
Ā2,1G

−1
1 Ā1,2 − Ā2,1G

−1
1 Ā1,2

)
e,

where a bar over a matrix means its approximation, θ1, θ2 ∈ [0, 1] are iterative
(compensating) parameters, S1, S2 are diagonal matrices, and e is a trial vector
with unit entries. Specific matrix approximations will be made using band rep-
resentations, depending on the dimension of the problem. Having an arbitrary

initial approximation u0 =
(
(ū01)

⊤, (ū02)
⊤)⊤ to the solution of the SLAE (3), we

utilize the preconditioned conjugate gradient method described by the following
formulas:

r0 = f − Āu0, p0 = B−1rn, n = 0, 1, · · · :
un+1 = un + αnp

n, rn+1 = rn − αnĀp
n,

pn+1 = B−1rn+1 + βnp
n, αn = σn/ρn, (7)

βn = σn+1/σn, σn = (rn, B−1rn), ρn = (p0, Āpn),

in which each vector, like u0, consists of two subvectors, while the first one cor-
responds to macrogrid (separating) variables. At each iteration, to calculate the
vector qn+1 = B−1rn+1, one need to solve an auxiliary SLAE with a precondi-
tioning matrix B, which when using subvectors

rn1 = f̄1 − Ā1,1u
n
1 − Ā1,2ū

n
2 , rn2 = f̄2 − Ā2,1u

n
1 − Ā2,2ū

n
2
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is implemented in block form as follows:

G1v
n
1 = rn+1

1 , G2v
n
2 = rn+1

2 − Ā2,1v
n
1 ,

qn+1
2 = vn2 , G1q

n+1
1 = vn1 − Ā1,2v

n+1
2 . (8)

Note that, unlike the classical block method of Jacobi or Schwartz, the pres-
ence in the proposed DDM of a macrogrid allocated in a special block that
provides connections between all subdomains at each iteration is designed to
significantly speed up the iterative process (7). At the same time, the imple-
mentation of formulas (8) differs significantly in terms of resource consumption
for two-dimensional and three-dimensional cases. More specifically, the solution
of an auxiliary SLAE with matrix G1 on a planar graph is very economically
implemented using an easily parallelizable algorithm. This procedure is an in-
tegral part of the algebraic problem for a three-dimensional macrogrid. These
algorithms are described in more detail in the next section.

A feature of the introduction of a separating macrogrid is that during the
execution of each iteration, according to the formulas (7), all subdomains are
connected through interfaces only with the nodes of the macrograph. It is im-
portant to note that the amount of transmitted information for a particular
subdomain is directly proportional to the number of its surface nodes, and the
number of arithmetic operations performed is proportional to the number of in-
ternal (volume) nodes. Because of this, it becomes possible to combine direct
calculations and exchanges in time, which benefits in computation speedup as
a whole. Here, of course, it is important that the elements of the initial and
preconditioning matrices have been determined in advance and distributed over
the corresponding memory areas of the MPI processes. Reducing the volume
of communications is important not only because they slow down the entire
computing process, but also because of their high energy consumption, which
seriously affects the operating costs of the MCS. This raises the non-standard
problem of finding such algorithms that operate with a smaller amount of data,
albeit at the expense of complicating analytics.

4 A parallel direct method for solving SLAE on
a macrograph

We consider in a uniform form an algorithm to solve an algebraic system

A1,1u =

[
T C
C⊤ S

] [
ue
uv

]
=

[
fe
fv

]
, ue, fe ∈ RNe , uv, fv ∈ RNv , (9)

where T = block-diag{Tl, l = 1, . . . , Ne/n} is a block-diagonal matrix where each
block Tl is a tridiagonal matrix of order Ne/n, n is the dimension of the area.
For ease of notation, all macroedges are considered to contain the same number
of nodes, so that the dimensions of vectors ue, fe are equal to the total number
of macroedge nodes Ne. Each of the Nv equations for macrovertices (naturally,
Nv ≪ Ne) contains four links to macroedge variables in the 2D case (and six
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links in the 3D case). These numbers are the numbers of nonzero elements in
a row of triangular matrix C⊤ ∈ RNv,Ne . The matrix S is diagonal one, and in
matrix C only some rows have a single nonzero element (corresponding to the
edge nodes of each macroedge). Note that a multiple solution of this system with
the same matrix and different sequentially calculated right-hand sides is often
required.

The idea of this algorithm (evidently first published in the work of I.V. Fryazi-
nov in 1970 [28], and in 1978 applied by N.N. Yanenko and A.N. Konovalov with
colleagues [29] to parallelizing the sweep) consists in the preliminary exclusion
of the subvector ue from the (9) system by an economical sweep method.

Omitting the superfluous indices, we write the system of three-point equa-
tions on one macroedge in the form

(Tu)t = −atut−1 + btut − ctut+1 = ft, t = 1, 2, . . . , Ne, (10)

where u0, uNe+1 are the unknowns in the adjacent macrovertices, through which
we express the required ut from (10). Obviously, by the principle of superposition,
we can write

u = {ut = u0ût + ueǔt + ūt}, u = û+ ǔ+ ū,

where ût corresponds to the SLAE solution (10) at u0 = 1, uNe+1 = 0, ft = 0, ǔt
– the solution at u0 = 0, uNe+1 = 1, ft = 0, and ūt is the solution for u0 =
uNe+1 = 0.

The general solution of the tridiagonal system can be represented via one of
two recursions

ut =

{
β̂tut+1 + ẑt, t = Ne−1, . . . , 1; uNe

= ẑNe
,

β̌tut−1 + žt, t = 2, . . . , Ne; u1 = ž1,
(11)

where the auxiliary quantities are found as follows:

β̂1 = c1d̂1, d̂1 = b−1
1 , β̂t = ctd̂t, d̂t = (bt − atβ̂t−1)

−1, t = 2, . . . , Ne,

β̌Ne
= aNe

d̂Ne
, d̂Ne

= b−1
Ne
, β̌t = atďt, ďt = (bt − ctβ̌t+1)

−1, t = Ne, . . . , 1,

ẑ1 = f1d̂1, ẑt = (f1 − atẑt−1)d̂t, t = 2, . . . , Ne,

žNe = fNe ďNe , žt = (ft − ctžt+1)ďt, t = Ne − 1, . . . , 1. (12)

Note that in these relations, the “ordinary” recursions (related to the values

β̂t, ẑt) and back ones can be calculated on two processors for each macroedge in
parallel, moreover, when solving the SLAE multiple times, it suffices to calculate
the coefficients β̂t, d̂t, β̌t, ďt only once.

An additional doubling acceleration here can be obtained by reducing the
length of recursions using the counter-sweep algorithm. Let t0 = Ne/2. Let us

calculate the values β̂t, d̂t, ẑt, for t = 1, . . . , i0 − 1, and the values β̌t, ďt, žt for
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t = Ne, . . . , i0+1. Then we substitute the solution in the form (11) into equation
(10), resulting in the formula

ut0 = (ft0 + at0−1ẑt0−1 + ct0+1žt0+1)/(t0bt0 − at0 β̂t0−1 − ct0 β̌t0+1). (13)

After ut0 is found, the remaining components of the solution are calculated
for t < t0 and t > t0 synchronously via recursions (11).

A further increase in the scalability of parallelization can be achieved by
economically calculating the columns of the matrix G = {gt,t′}, that is inversion
to the tridiagonal one. Obviously, such a t′-th column can be determined through
a particular solution ūt, with the right-hand side of the form ft′ = δt′,t′′ , where
δt′,t′′ is the Kronecker symbol. In this case, formula (13) is significantly simplified,
and we get the diagonal element of the inverse matrix

gt,t′ = γ−1
t′ , gt,t′ =

{
β̂t′′γt′ , t′′ = t′ − 1, . . . , 1,

β̌t′′γt′ , t′′ = t′ + 1, . . . , Ne.

Hence, for the solution ū we have a rather resource-intensive formula

ū = Gf =

{
ūt =

Ne∑

t′=1

gt,t′ft

}
,

which, however, in the presence of N2
e processes, is calculated on the shared

memory taking time τalnNe, where τa is the average time to fulfill one arithmetic
operation. It is important to note that after eliminating the subvector ue from (9)
for û, we obtain a “regular” banded SLAE with a five-diagonal or seven-diagonal
matrix depending on the dimension of the problem.

Note that so far we have considered the parallelization for a single macroedge.
Obviously, with a sufficient number of processors, all these operations can be per-
formed simultaneously for all Ne macroedges, and we will get the corresponding
speedup factor.

To find the subvector û from (9), it is a standard problem of solving a low-
order Nv SLAE with a band matrix which can be implemented using a standard
direct solver.

The formulas (6) – (8) allow us to make two contradictory general remarks.
On the one hand, the convergence speedup for the iterative process requires a
reduction in the condition number of the matrix B−1A. However, this requires
improving the approximation properties of the preconditioner B with respect to
A that entails a complication of the matrix G2 structure in (6), (8) and increase
of the resource consumption for each iteration. We will demonstrate achieving a
possible compromise via an example of a two-dimensional problem.

In this case, the inversion of the G1 matrix in (8) actually represents the
solution of the SLAE on the macrogrid, whose economical algorithm is described
in the next section. A formation of the matrix G2 will be carried in a manner that
preserves the five-diagonal structure of the matrix Ā2,2. Due to the specifics of
our problem, it suffices to consider this procedure for an example of one-diagonal
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block Ds. Moreover, the matrix entries will be modified only for those matrix
rows that correspond to the near-boundary nodes of the subdomain (we assume
that its boundary consists of adjacent macroedges). More specifically, here only
diagonal entries have to be recalculated as well as those off-diagonal ones that
are responsible for connections with the nearest (neighboring) node. This is
illustrated by the five-point pattern shown in Fig. 1 near-boundary nodes of the
given subdomain. We can call this algorithm a tridiagonal modification of the
Ds matrix block.

5 Performance and scalability issues of DDM
parallelization

In this section, we focus on the issues of mathematical efficiency of iterative
processes and technologies for achieving high-performance computing using the
example of three-dimensional problems, as the most resource-intensive and prac-
tically relevant.

A natural approach to DDM parallelization is the use of hybrid programming
with the allocation of each sub-area of a computing node containing several CPU
devices with hierarchical shared memory. At the same time, at each iteration,
information exchanges between subdomains are carried out by means of the MPI
library for transmitting inter-node messages. With the help of the formed MPI
processes, an external iterative algorithm is organized with synchronization of
the solutions of auxiliary SLAEs in subdomains. The second level of paralleliza-
tion of calculations is organized with the help of multi-threaded technologies
(Open MP system).

The presence of a macrogrid as a special subdomain in our proposed approach
determines the variety of algorithmic fragments and generated or data structures.
Optimization of computational processes of this nature, their parallelization and
mapping to the MCS architecture is a rather complex problem. Here we put a
goal to outline the ways of experimental research and its solution.

One of the priority issues in DDM is optimization of the number of subdo-
mains comprising the computational domain. It would seem that with an increase
in their number, in the presence of a sufficient set of processes, it is possible to sig-
nificantly increase the degree of parallelism and, consequently, the acceleration of
calculations. However, when using, e.g., the Jacobi or Schwartz block method, the
number of external iterations over subdomains increases significantly. Intuitively,
we can assume that if the number of subdomains for Mx =My(=Mz) =MH is
equal to M2

H in the two-dimensional case and M3
H — in the three-dimensional

case, then the number of iterations in Krylov subspaces will be approximately
proportional to MH for both variants. The presence of a macrogrid subdomain,
which implements information links between all subdomains at each iteration, is
designed to significantly increase the rate of convergence of the iterative process.

An analysis of the efficiency of DDM parallelization can be carried out
through the estimates of scalability in the strong and weak senses. The first
means speeding up calculations by increasing the number of processors when
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solving a large fixed problem, and the second – saving (ideally) the calcula-
tion time while increasing the resource intensity of the task and the number of
processors.

The strong scaling strategy in the proposed decomposition method when
solving a fixed large SLAE (e.g., N > 109) means an increase in the number of
M subdomains and corresponding MPI processes. In this case, the size of each
subdomain, the number of its nodes, and the dimension of the corresponding
SLAE decrease. The exception is the separating subdomain, for which exchanges
with all other subdomains are carried out at each external iteration.

The total time for solving the problem can be represented by a simple formula
t = ta + tc, where the first term is the time of arithmetic operations, and the
second is the time of communications (we can assume that with M = 1 we have
tc = 0). Since ta decreases as M grows, while tc grows, it is obvious that there
is an optimal number of M0 subdomains for which the time t is minimal. The
functional dependencies of these characteristics are qualitatively represented by
the formulas

ta = τaNa, tc = τ0N0 + τcNc, τa ≪ τc ≪ τ0,

where τa, τc, τ0, are the average times for performing an arithmetic operation,
transmitting one number, and the duration of setting (delay) for one communi-
cation; Na, Nc and N0 — total number of arithmetic operations, passed numbers
and number of transactions. A simple analysis of this record shows the expedi-
ency of pre-buffering data and carrying out the exchanges themselves in large
portions.

The scaling of the DDM in the weak sense assumes that as M increases, the
number of grid nodes in each subdomain is preserved: in this case, the problem
dimension and the number of processors involved change proportionally. If we
assume that exchanges between subdomains are carried out only by boundary
(surface) data, then their total volume at one iteration is proportional to M2/3.
The latter means that as M increases, the relative communication losses will
decrease, since the time ta per one MPI process will increase only due to an
increase in the number of iterations.

6 Conclusions

The paper proposes variants of the domain decomposition method with a for-
mal definition of a separating subdomain that forms a macrogrid and consists of
interface (surface) nodes for all subdomains. The inversion of the corresponding
algebraic subsystem is carried out using economical parallel algorithms, and the
general iterative process is formed on the basis of block incomplete factoriza-
tion methods in the Krylov subspaces. Consideration of the algorithms is done
with the examples of two-dimensional and three-dimensional regular grids with
the formation of SLAE with a fairly simple structure. A qualitative analysis of
the scalability of parallelization of the described DDMs in the strong and weak
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senses is carried out. The proposed methods can be generalized to more compli-
cated boundary value problems, unstructured grids, and various approximation
approaches. The main technological difficulties that arise in these case, are re-
lated to the automatic construction of domain decomposition procedure as well
as forming the corresponding data structures.
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