
Parallel Methods for Solving Saddle Type
Systems

V. P. Il’in1 and D. I. Kozlov1,2(B)

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

{ilin,di kozlov}@sscc.ru
2 Novosibirsk State University, Novosibirsk, Russia

Abstract. Parallel methods for solving saddle-type algebraic systems
that are relevant for modeling processes and phenomena in the problems
of electromagnetism, hydro-gas dynamics, elastoplasticity, filtration and
other applications are considered. Preconditioned iterative processes in
the Krylov subspaces, including the efficient generalization of the Golub-
Kahan-Arioli bidiagonalization method, are investigated as applied to
large SLAEs with sparse matrices that arise when approximating multi-
dimensional boundary value problems with a complex geometric config-
uration of computational domains and the contrasting material prop-
erties of various media on unstructured grids. It is supposed to store
the matrices in compressed formats that require special technologies for
working with big data. The parallelization of the proposed class of block
algorithms is carried out by means of hybrid programming on supercom-
puters of a heterogeneous architecture with distributed and hierarchical
shared memory, using the means of inter-node message transmission,
multi-threaded computing, operation vectorization. A comparative anal-
ysis of various algorithmic approaches is carried out on the basis of the
estimates of the performance and resource intensity of the corresponding
software implementations.
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1 Introduction

Systems of linear algebraic equations (SLAEs) of the saddle type in their classical
version are associated with second order block matrices having a zero lower-right
block and written in the following form (we limit ourselves to a real case for
simplicity):

Au ≡
[

D C
C� 0

] [
u1

u2

]
=

[
f1
f2

]
≡ f, (1)

u, f ∈ RN ; u1, f1 ∈ RN1 ; u2, f2 ∈ RN2 ; N = N1 + N2,

D ∈ RN1,N1 , C ∈ RN1,N2 , A ∈ RN,N .
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For a number of characteristic applications, the matrix A from (1) has the fol-
lowing property, see [1]–[2].

Property A. The matrix D is symmetric and positive definite (s.p.d.), the null
spaces of the matrices D and C� do not intersect, i.e., ker(D)∩ker(C�) = {0},
which ensures the non-singularity of the matrix A.

The saddle-type matrices A from (1) are sometimes considered in a more
general form

A =
[

D C1

C�
2 −εH

]
, ε > 0, (2)

where H ∈ RN2,N2 is the positive-semi-definite matrix, in the sense of fulfilling
the inequality (Hv, v) ≥ 0 for v ∈ RN2 , introduced either by the conditions of
the problem statement, or for the reasons of the regularization of original SLAEs
(1). In addition, the matrices D,H,A can be asymmetric, i.e., C1 �= C2,D �=
D�,H �= H�, A �= A�.

Note that without loss of generality, instead of (1), we can consider saddle
SLAEs of the form [

D C
C� 0

] [
u1

u2

]
=

[
f1
0

]
. (3)

Indeed, if we take any particular solution of the subsystem Cû1 = f2, the
vector u = ǔ + û is the solution of systems of linear algebraic equations (1),
satisfying the system

[
D C
C� 0

] [
ǔ1

u2

]
=

[
f1 − Dû1

0

]
.

Note also that any solution to SLAEs (1) simultaneously satisfies the system

Ãv = Ã

[
u1

u2

]
≡

[
D̃ C
C� 0

] [
u1

u2

]
=

[
f1
0

]
≡ f̃ ,

D̃ = D + γR, R = CK−1C�, γ ≥ 0, (4)

where vf̃ ∈ RN and K ∈ RN1,N1 is an arbitrary non-degenerate matrix. Since
the latter system is formally a regularization, or generalization, of SLAEs (1),
we further focus on the algorithm for solving equation (4). The parameter γ is
introduced for the convenience of varying the algorithm, in particular, γ = 0
means no regularization.

Note that the non-degenerate matrix of the form of (1) can have an alternat-
ing spectrum, which creates its own difficulties in the iterative solution of the
corresponding algebraic system.

Without loss of generality, the studied SLAEs can be written down in the
following form:

Ã

[
u1

u2

]
≡

[
D̃ C
C� 0

] [
u1

u2

]
=

[
0
g

]
, D̃ = D + γCK−1C�. (5)
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It is easy to check that if in (4), the vector u1 is replaced by u1 + D̃−1f1, then
this system will take the form of (5) with the right hand side g = −C�D̃−1f1.
It is assumed that in (5), D̃ and K are the s.p.d. matrices, and the inequality
N1 ≥ N2 also holds.

Algebraic systems of the form of (1), (2) are in demand in many topical prob-
lems of electromagnetism, hydro-gas dynamics, heat and mass transfer, elastic-
ity, multiphase filtration in porous-fractured media and in other applications.
In particular, they arise in mixed classical or generalized formulations for initial
boundary value problems. A large number of papers are devoted to the study
of the saddle SLAEs under consideration and methods for solving them, see [3–
12] and an extensive list of literature given therein. In recent years, due to the
increasing role of the predictive modeling of real processes and phenomena with
big data, there has been a significant increase in the interest in high-performance
methods and technologies for solving large SLAEs with sparse matrices arising
from the approximations of multi-dimensional boundary value problems with
complex configurations of computational domains and the contrasting material
properties of different media using finite difference methods, finite volumes, finite
elements and discontinuous Galerkin algorithms of various orders of accuracy on
unstructured grids [13]. The resulting algebraic systems have 108−1010 sizes and
are poorly conditioned (the conditioning numbers of matrices reach 1013 and
greater), thus, their numerical solution in practice takes up to 80% of the total
machine resources. Therefore, the main reserve for speeding up calculations is
the scalable parallelization of algorithms by means of hybrid programming with
the inter-node message transmission, multi-threaded messages and vectoriza-
tion of operations (MPI, OpenMP, AVX systems, respectively) of heterogeneous
architecture supercomputers with distributed and hierarchical shared memory,
see [14–18]. It should be noted that due to the large-block structure of saddle
matrices, two-level iterative algorithms with specific features of data organiza-
tion and memory access methods are characteristic of solving the corresponding
SLAEs, and optimization is critical for improving the performance of software
implementations.

This paper is structured as follows. Section 2 discusses the main approaches
to constructing preconditioned block iterative methods in the Krylov subspaces
for the effective solution of the considered algebraic systems. Section 3 deals with
the analysis of the performance of the scalable parallelization of the studied com-
putational processes in the weak and strong senses. In conclusion, the problems
of improving the performance of algorithms for solving saddle SLAEs are dis-
cussed in the light of the current trends in the development of supercomputer
architectures.

2 Iterative Algorithms in the Krylov Subspaces
for Solving Saddle SLAEs

In this section, we first characterize the general property of Krylov-type iterative
processes and then focus on their features when solving SLAEs with saddle
matrices.



88 V. P. Il’in and D. I. Kozlov

2.1 General Scheme of the Krylov Approaches for Symmetric
and Non-symmetric Algebraic Systems

For solving symmetric or non-symmetric SLAEs

Au = f, A ∈ RN,N ; f ∈ RN (6)

iterative methods in the Krylov subspaces can be written down as follows:

un+1 = un + αnpn = u0 + α0p
0 + ... + αnpn,

rn+1 = rn − αnApn = r0 − α0Ap0 − ... − αnApn, (7)

Here u0 is an arbitrary initial vector, r0 = f −Au0 is the corresponding residual,
αn and pn are the iterative parameters and guiding vectors. In the absence of
a precondition for system (6), p0 = r0 is conventionally assumed (to be used
below), although formally the initial guiding vector can be arbitrary. Assume
that the direction vectors are Aγ-orthogonal, i.e.,

(pn, pk)γ = (Aγpn, pk) = ρ
(γ)
k δn,k, ρ

(γ)
k = (Aγpk, pk) = ||pk||2γ , (8)

where δn,k is the Kronecker symbol, and the exponents are equal to γ = 0, 1, 2.
Then the residuals are rn for the value of the parameters

αn = σn/ρn, σn = (r0, pn)γ−1 = (rn, pn)γ−1 = ||rn||2γ−1, (9)

providing a minimum of the functional Φγ(rn) = (Aγ−2rn, rn) in the Krylov
subspaces

Kn(r0, A) = Span(r0, Ar0, ..., An−1r0). (10)

If the matrix A is symmetric, then orthogonality conditions (8) are provided
when determining the direction vectors pn by the two-term recursive formulas

pn+1 = rn+1 + βnpn, βn = σn+1/σn. (11)

For the case γ = 0, however, the calculation of αn must be done in a different way.
Since the exact solution of SLAEs can be represented as a basis decomposition

u = u0 + α0p
0 + ... + αm−1p

m−1, m ≤ N,

then the iterative vectors and the corresponding residual vectors are presented
in the following form:

vn = u − un = αnpn + ... + αmpm,

rn = Avn = αnApn + ... + αmApm. (12)

Hence, using Aγ , the orthogonalization of the vectors pk, we have

αn = (vn, pn)γ/||pn||2γ = −αn−1(vn, Apn−1)/||pn||2γ
= −αn−1(rn, pn−1)γ/||pn||2γ . (13)
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Here the orthogonality of the vectors pn−2, pn−1 and pn is used. The calcula-
tion of the coefficient βn in this case should be carried out according to formula
(11).

These algorithms for γ = 0, 1, 2 have the names of the methods of minimal
iterations, or errors [17], as well as conjugate gradients and conjugate residuals,
respectively.

The described approaches allow for a simple generalization to SLAEs, pre-
conditioned with the help of some s.p.d. matrices B. To preserve the symmetry
of the systems, it is advisable to do this by two-way preconditioning using the
formally introduced matrix B1/2. As a result, system (1) takes the form

Āū = f̄ , Ā = B−1/2AB−1/2, ū = B1/2u, f̄ = B−1/2f. (14)

A result of applying the conjugate direction formulas to SLAE (14), after certain
transformations for γ = 1, 2, we obtain the following iterative process:

p̂0 = r̂0 = B−1r0 = B−1(f − Au0), n = 0, 1, 2, ...;
un+1 = un + αnp̂n, r̂n = r̂n − αnAp̂n; (15)

p̂n+1 = r̂n+1 + βnp̂n, αn = σn/ρn, βn = σn+1/σn;
σn = (Aγ−1r̂n, r̂n), ρn = (B−1Ap̂n, Aγ−1p̂n),

where the new vectors are related to the previous relations p̂n = B−1pn, r̂n =
B−1rn. In the method of minimum iterations with γ = 0, the calculation of the
parameters αn, βn must be carried out according to formulas (9), (10), with the
replacement values of r̄n = B−1rn, p̄n = B−1pn, respectively.

For non-symmetric algebraic systems, the methods of their solution become
significantly more complicated. We briefly present a description of specific
approaches for a fairly wide class of multi-preconditioned algorithms of semi-
conjugate direction [18]. In general, these iterative processes in the block Krylov
subspaces can be presented as follows:

r0 = f − Au0, n = 0, . . . : un+1 = un + Pnᾱn,

Pn = (pn
1 , . . . , pn

Mn
), rn+1 = rn − APnᾱn, ᾱn = (αn,1, . . . , αn,Mn

)�.

Here pn
1 , ..., pn

Mn
are the guiding vectors that make up the matrix Pn of the

n-th iteration, and ᾱn is the vector of the iterative parameters. With respect to
the vectors pn

k in the above relations, only orthogonality conditions are assumed
to be fulfilled

(Apn
k , Aγpn′

k′ ) = ρ
(γ)
n,kδk,k′

n,n′ , ρ
(γ)
n,k = (Apn

k , Aγpn
k ),

γ = 0, 1, n′ = 0, 1, . . . , n − 1, k, k′ = 1, 2, . . . ,Mn.

If, at the same time, the coefficients ᾱn = {αn,l} are defined by the formulas

αn,l = σn,l/ρ(γ)n,n, σn,l = (r0, Aγ p̄n
l ),
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then the functional of the residual Φ
(γ)
n (rn+1) ≡ (rn+1, Aγ−1rn+1) reaches its

minima in the Krylov block subspaces

KM = Span{p01, ..., p
0
M0

, Ap11, . . . , Ap1M1
, . . . , Apn

1 , . . . , Apn
Mn

},

M = M0 + M1 + · · · + Mn,

for γ = 1, and in the case of symmetry of the matrix A and for γ = 0.
The orthogonality properties of the guiding vectors can be provided if they

are determined using “multi-conditional” recurrence relations in which each vec-
tor pn+1

l corresponds to “its” preconditioning matrix Bn+1,l:

p0l = B−1
0,l r0, pn+1

l = B−1
n+1,lr

n+1 −
n∑

k=0

Mk∑
l=1

β
(γ)
n,k,lp

k
l , n = 0, 1, . . . ;

Bn,l ∈ RN,N , i = 1, . . . ,Mn; γ = 0, 1,

β̄
(γ)
n,k = {βγ

n,k,l} =
(
β
(γ)
n,k,1 . . . β

(γ)
n,k,Mn

)�
∈ RMn ,

β
(γ)
n,k,l = −

(
Aγpk

l , AB−1
n+1,lr

n+1
)
/ργ

n,l, n = 0, 1, . . . ;

k = 0, . . . , n; l = 1, . . . ,Mn.

The peculiarity of the algorithms under consideration when solving poorly con-
ditioned asymmetric SLAEs is of a high resource intensity, in terms of both
the amount of calculations and the required memory, when conducting a large
number of iterations. The remedy for this disadvantage can be carried out in
two ways by reducing the number of used and saved direction vectors. The first
of them is to reduce the recursion taking into account only its last m vectors.
The second way consists in periodic restarts when using a given number of m
iterations, the residual vector being calculated from the recurrence formula, and
the original equation being to zero as the iteration:

rnt = f − Aunt , nt = mt, t = 0, 1, ...,

where t is the number for the restart. Further calculations up to n = nt+1 are
carried out according to usual recursions. Both of these approaches lead to a
significant slowdown in the iterative process.

To eliminate such a stagnating effect, it is proposed to add the second level of
iterations using the least squares method (LSM) [17]. Let the “restart” approxi-
mations un0 , un1 , ..., unt , n0 = 0 be known. Then to correct the iterative vector
unt , which is the initial one for the next restart period, we use the following
linear combination:

ûnt = unt + b1v1 + . . . + btvt = unt + vnt , vnt = Vtb̄, b̄ = (b1, . . . , bt)�,

Vt = {vk = unk − unk−1 , k = 1, . . . , t} ∈ RN,t,
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the vector of the coefficients b̄ of which is determined by the condition of the min-
imum norm of residuals ||rnt || from the generalized solution of the overdefined
algebraic system

W�
t Wtb̄ = rnt ≡ ant , Wt = AVt.

The solution to this problem can be obtained, for example, using the QR - or
SV D - decomposition of the matrix Wt. The normal solution with the minimum
norm ||b̄|| is determined after applying the left Gauss transformation:

W�
t Wtb̄ = Wtr

nt .

A more lightweight SLAEs format, in the sense of reducing its condition number,
follows after multiplying the system on the left by the matrix Vt:

Ctb̄ ≡ V �
t AVtb̄ = V �

t rnt .

If the matrix Vt has a full rank, then the matrices A and Ct will be non-
degenerate at the same time. In this case, for a correction vector we have vnt =
Btr

nt ≡ Vt(V T
t AVt)−1V T

t rnt , where the matrix Bt = VtÂ
−1V T

t , Â = V T
t AV

is a low-rank approximation of the matrix A−1. In the approach considered, all
restart vectors are stored in the corrected form, and the corresponding residuals
are calculated using the formula rnt = f − Aûnt .

If there is no inverse for some matrix under consideration, then a generalized
inverse matrix is used. Numerous experiments using the LSM to speed up the
Krylov processes with restarts show its high efficiency.

We also note the following possibility of improving the performance of the
SCD (Semi-Conjugate Direction) methods with restarts: when iterating the first
restart period, remember all the pn direction vectors, as well as the Apn vectors,
and when calculating subsequent restart periods, we do not consider new vectors
pn and Apk, but use the previous ones.

The described class of SCD-methods with dynamic multi-conditionality in
terms of the rate of convergence of iterations is equivalent to other well-known
algorithms for solving asymmetric SLAEs in the Krylov subspaces, among which
the generalized minimum residuals method (GMRES) based on the Arnoldi
orthogonalization and existing in various versions is the most popular. The
research into iterative methods for solving algebraic systems with saddle-type
matrices involves the use of a wide variety of block preconditioners. The starting
point for their construction is the following formula for the factorization of the
matrix A = D + L + U , where D is block-diagonal, and L,U are the strictly
lower and upper triangular matrices:

A = (G + L)G−1(G + U), G = D − LG−1U,

G1 = D, G2 = −εH − C�
2 D−1C1.

In particular, if the matrix A has a block structure of the form of (2), then
G = block − diagonal{G1, G2} has non-zero diagonal blocks only

G1 = D, G2 = −εH − C�
2 D−1C1.
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Note that if the matrix A is symmetric, i.e., C1 = C2 and L = U�, D and R
in (2) are s.p.d. matrices, the given factorization is a congruence transformation
of the block-diagonal matrix G. Since it obviously has an alternating sign spec-
trum, the matrix A has the same property, which causes certain difficulties in
constructing methods for solving the corresponding SLAEs. If the definition of
the matrix G is replaced by some approximation that allows simple calculations,
then we get a family of preconditioners B ≈ A. This implies, in particular, an
iterative method of the Uzava type (see [14–20]). Another promising way is to
construct block-diagonal preconditioners of the form

B =

⎡
⎢⎢⎣

D̃ + CK−1
1 C� 0

. . .

0 K2

⎤
⎥⎥⎦ ,

where K1 and K2 are some s.p.d. matrices, see [17,18].

2.2 Generalized G-K-A – Bidiagonalization Method

Next, we consider a family of iterative methods for solving saddle symmetric
SLAEs with the matrix Ã from (4), based on the efficient approach of the G-K
– Golub-Kahan bidiagonalization, which was originally proposed for a singular
decomposition of rectangular matrices, but then in the publications by M. Saun-
ders, M. Arioli, C. Greif and some other authors was successfully used to solve
algebraic systems, including those with allowance for a block saddle structure.

More specifically, we present a generalization of the Golub-Kahan-Arioli
algorithm, which is published in [9] under the title <<generalized G-K–
bidiagonalization method>>, based on the construction of D̃-orthogonal vectors
vk and P -orthogonal vectors qk, which satisfy the conditions

CQn = D̃VnBn, V �
n D̃Vn = IN1 ,

C�Vn = PQnB�
n , Q�

n PQn = IN2 , (16)

where Vn = [v1, ..., vn] ∈ RN1,n, Qn = [q1, ..., qn] ∈ RN2,n, P ∈ RN2,N2 – s.p.d.
matrices and Bn ∈ Rn,n is the bidiagonal matrix

Bn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2 0 . . . 0

0 α2 β3
. . . 0

...
. . . . . . . . .

...
0 . . . 0 αn−1 βn

0
. . . 0 0 αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us note that in [9] only the case of K = P is considered, which is
not is mandatory, see formula (5). Introducing new unknown vectors μn =
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(μ1, ..., μn), νn = (ν1, ..., νn) ∈ Rn, substituting the expressions

u1 = Vnμn, u2 = Qnνn (17)

in (5) and multiplying system (5) on the left by the block-diagonal matrix
block-diag(V �, Q�), we get

V �
n D̃Vn(μn + Bnνn) = 0, Q�

n PQnB�
n μn = Q�

n g. (18)

Thus, SLAEs (18) are reduced to the form[
In Bn

B�
n 0

] [
μn

νn

]
=

[
0

Q�g

]
. (19)

Assuming further Q�
n g = e1||g||P −1 , e1 = (1, 0, ...)�, we define the vector

q1 = P−1g/||g||P −1 , ||g||P −1 = (g, P−1g)1/2.

Let us find the initial vector v1:

α1D̃
−1v1 = Cq1, v1 = w/α1, α1 =

√
w�Cq1, w = D̃−1q1. (20)

Note that the vector μ = B−�
n Q�

n g is determined up to a constant by the first
column of the matrix B−1

n = (B�
n )−1.

Further the vectors vn, qn and the matrix B entries αn, βn are calculated
from the following recurrent relations, n = 1, 2, ...:

s = P−1(Cvn − αnPqn), βn+1 =
√

s�Ps,

qn+1 = s/βn+1, w = D̃−1(C�qn+1 − βn+1D̃vn), (21)
αn+1 = (w�D̃w)1/2, vn+1 = w/αn+1.

Successive approximations un, beginning with (17), (18), are determined by
the first n columns of the matrix V , according to

un+1
1 =

n∑
j=1

μjvj = un
1 + μnvn, (22)

where μj are the components of the vector μn from (19), calculated by the
formulas

μ1 = ||g||P −1/α1, μj+1 = −βj+1μj/αj+1 j = 1, 2..... (23)

Omitting the details of the derivation of the formula (see [10]), we present the
resulting recurrence relation for the iterative solution:

un+1
2 = un

2 − νndn+1, d1 = q1/α1, dn+1 = (qn+1 − βn+1αn)/αn+1, (24)

where dn is the n-th column D = QB−1. This approach is called the generalized
G-K-A – bidiagonalization algorithm. At each step of such an iterative process,
the error norm ||u − un|| is minimized. As noted in [14], the two-level itera-
tive method demonstrates high performance and convergence rate when solving
saddle-type SLAEs obtained in grid approximations of the mixed formulations
of multi-dimensional boundary value problems.
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3 Scalable Parallelization of Iterative Methods

In general, the computational quality of the algorithm can be characterized by
means of two different features. The first one is mathematical efficiency, which
can be estimated by the total number of arithmetical operations. The second
characteristic is more practical and is measured by the run time of the method
implementation on a specific computer configuration. In other words, in this case
we speak about the quality of mapping algorithms onto an architecture that
usually has a heterogeneous structure with distributed and hierarchical shared
memory. A significant complexity of the problem of studying the performance
of an executable program code lies in the actual absence of a mathematical
model of supercomputer calculations, and optimization attempts require some
experience and skill gained in order to avoid repeated trials and errors. Scalable
parallelization is conventionally understood in either a strong or weak sense. The
first means a reduction in the calculation time of a fixed task with an increase
in the number of computing devices, for example, cores. In the second case,
a simultaneous proportional increase in the resource intensity of the problem
(the number of degrees of freedom) and the number of arithmetic devices are
considered (ideally, the estimated time remains approximately constant). The
SLAEs of most interest to us have high orders and sparse matrices with large
conditionality numbers and an irregular structure. This does not only lead to an
increase in the number of iterations, but also forces one to work with distributed
and/or hierarchical shared memory systems, and also significantly slows down
the access to data. It should be said that the large-block structure of saddle
matrices strongly affects the computational scheme of iterative algorithms and
the ways of parallelizing them when changing the type of a preconditioner. In
this section, we briefly focus on the general current problems of parallelization
and in more detail on the proposed generalization of the G-K-A – bidiagonal-
ization algorithm, as applied to the solution of saddle SLAEs obtained from
a finite element approximation of the three-dimensional initial boundary value
problem for the two-phase filtration proposed in [24]. In this case, the order of
SLAEs (1)–(5) is equal to N ∼= 4h−3, where h is the characteristic element of
the grid, and the dimensions of the diagonal blocks are equal to N1

∼= 3h−3

and N2
∼= h−3. In physical terms, the subvector u1 = {ux, uy, uz} consists of

components of the velocity vector along different axes of the Cartesian coordi-
nate system referred to the midpoints of the faces of the cubic grid, and u2 is a
set of values of the scalar pressure function at the centers of the grid cells. The
matrix D is block-diagonal, and its non-zero blocks are easily invertible s.p.d.
tridiagonal matrices with a strict diagonal dominance. The off-diagonal matrix
is represented as three block rows C = (C�

1 , C�
2 , C�

3 ), and each Ck, k = 1, 2, 3,
is a two-diagonal matrix. The parallelization of the G-K-A – bidiagonalization
method, presented in Sect. 2.2., consists of the following main stages. The auxil-
iary orthogonal vectors vn, qn and the entries αn, βn of the matrix B by formulas
(20), (21) are calculated. The tedious procedure of this stage essentially depends
on the structure of the matrices D̃ and K introduced in (5), and the matrices
of the form P of (16). We get a simple case at γ = 0 in (5), i.e., the matrix K
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is missing, and P is a diagonal matrix. At the same time, the appeal D̃ = D is
implemented by efficient iteration-free runs, which can be performed in parallel
without any additional expenditure of machine resources. If γ �= 0, then even
with the diagonal character of K, the inversion of the matrix D̃ (more precisely,
the solution of auxiliary SLAEs with such a matrix) requires the introduction of
a two-level iterative process. The issue of optimizing these algorithm parameters,
which can potentially significantly reduce the number of iterations, seems to be
non-trivial and requires a special study.

We denote the possibilities of parallelization:

1. The parallelization of vector-matrix operations of the Krylov processes.
2. The calculation of two-term recursions for the vectors un

1 , un
2 is performed by

formulas (24). These vector operations are naturally parallelized with a linear
speedup.

3. The formation of data structures and buffers is based on the separation of
computational vectors, which geometrically corresponds to the decomposition
of computational and grid domains to subdomains. For big data tasks, reduc-
ing communications at each iteration is critical to scalable parallelization.

The performance of parallel computing is defined mainly by the speedup,
which is determined by the formulas

Sp = T1/Tp, Tp = T a + T c. (25)

Here, Tp means the run time of solving the task on p processors. This value
consists of two parts: the times of data exchanges and the implementation of
the arithmetic operations. The latter can be described approximately by the
following relations:

T a = τaNa, T c = Nt(τ0 + τcNc).

In these formulas, τa means the average run time of an arithmetic operation,
Na is their total number, Nt is the number of communications, τ0 and τc are
the memory system waiting time and the transfer duration of one value, and
Nc is the average volume of one data exchange. Since the machine constants
are satisfied to the conditions τ0 � τc � τa, we can propose the following rec-
ommendations for the algorithms being constructed: we should try to minimize
the volume of communications, and the exchanges should be carried out not in
small, but in large portions, i.e., if possible, to carry out the preliminary accu-
mulation of data buffers. These conclusions are even true because interprocessor
information transfers not only slow down the computing process, but are also
the most energy-consuming operations, and this becomes a significant factor in
the cost of operating a supercomputer.

One of the important practical problems of scalable parallelization is due to
solving large SLAEs with sparse matrices that arise from the grid approxima-
tions of multi-dimensional boundary or initial-boundary value problems. Here,
the main approaches are additive domain decomposition methods with two-
level iterative processes and the use of hybrid programming tools. The top level
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iterations implemented over the subdomains are carried out by means of MPI
(Massage Passing Interface) for communications between the contacting sub-
domains. The low level of the algorithm includes the simultaneous solution of
algebraic subsystems in the corresponding subdomains. This stage is parallelized
by multi-threaded computing (OpenMP). At each such iteration, the values of
approximate solutions are exchanged on the interface boundary surfaces of the
contacting subdomains. Naturally, all matrix and vector data for subsystems are
performed in the process-distributed form. The solution to SLAEs in each of
the subdomains is parallelized using multi-threaded computing (OpenMP-type
systems) on multi-core processors with shared memory. Additional speedup here
can be achieved by vectorizing operations (AVX-type command systems based
on SIMD – Single Instruction Multi Data technologies), see reviews in [20–25].
Unfortunately, here we can state the absence of regular programming systems
with the automatic parallelization of algorithms, so that the success in the scal-
ability of speeding up calculations largely depends on the art and skill of a
mathematician-programmer. One of the common modern supercomputer con-
figurations is a network of multi-core servers, with a number of cores in several
tens or hundreds, which have several memory levels with different information
exchange rates. For quite understandable reasons, larger memory devices have a
lower data transfer rate (the fastest are the registers of arithmetic units - AU).
In this situation, communication channels between different levels of memory
are represented as a bottleneck, the access to which dramatically degrades the
performance of the computing process. The most successful algorithmic solu-
tions are those that use a small-block structure of data with the maximum use
of AU registers, as well as the features of implementing their communications
with lower-level memory.

Strictly speaking, the main objective of code optimization is not parallelism,
but high performance. A significant speedup of calculations can be attained
using variable precision machine arithmetic. The conventional way to solve large
SLAEs is to use standard double precision with a 64-bit floating-point repre-
sentation length. Many years of numerical experience show that this accuracy
is sufficient in practice. However, for some ill-conditioned algebraic problems, it
is necessary to use quadruple precision (128 bits). On the other side, at many
stages of the algorithms, it is enough to apply single (32 bits) and even half
precision (16 bits) which can be performed much faster. Nevertheless, with this
approach, it is necessary to check the stability of computations. Hopefully, such
an intelligent problem will be solved in the near future. Another way to obtain
high performance and code optimization can be achieved through the efficient
use of reliable implemented numerical tools (from SPARSE BLAS, for example)
that are adapted to various computer platforms.

4 Conclusion

Parallel iterative methods in the Krylov subspaces for solving large saddle-type
SLAEs with various matrices, relevant in the problems of electromagnetism,
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strength, hydro-gas dynamics and other applications, are considered. The issues
of constructing preconditioners for symmetric or non-symmetric systems using
universal least squares algorithms to speed up the Krylov iterations are dis-
cussed. Approaches to the generalization of Golub-Kahan-Arioli bidiagonaliza-
tion methods are described. Scalable distributed technologies in the strong and
weak senses, focused on minimizing communication losses, based on the use
of hybrid programming tools, namely, the transmission of inter-node messages,
multi-threaded computing and the vectorization of operations (MPI, OpenMP,
and AVX systems), on supercomputers of a heterogeneous architecture with dis-
tributed and hierarchical shared memory, are considered.
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