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Abstract—The paper considers the possibility of using the 

seismic event localization algorithm for localizing objects of the 

geophysical model of the environment. When adapting this 

algorithm the localization algorithm for point objects and the 

localization algorithm of objects of a certain form are proposed.  
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I. INTRODUCTION 

One of the important problems of the present-day 
geophysics is the solution of the inverse problem of 
geophysics. For its solution there is a lot of difficulties. First 
of all, it is a model parameterization and comparison of 
observations with theoretically calculated field characteristics 
for this model. It is also necessary to choose a criterion to 
which the solution will be submitted for an infinite set of 
solutions to the problem and a narrowing of the solution 
region in the case of instability of the solution of the inverse 
problem. Localization of underground objects and seismic 
events refers to a particular solution of the inverse problem of 
geophysics. There are many approaches to the search for 
underground objects depending on the methods of studying 
the Earth's crust, the chosen model of the environment, etc. 
Each of these approaches has a number of physical and 
computational limitations that narrow the range of its 
application. Thus, effective methods for the localization of 
geophysical objects are an important task of the present-day 
geophysics. 

II. THEORY 

A. Localization algorithm for point objects 

In a simplified form the object of study can be taken as a 
point. In this case, it is necessary to take into account that the 
real size of the object must be at least twice the wavelength of 
the seismic vibrator. When the geophysical environment is 
probed by a seismic vibrator, the reflection of the generated 
wave from a point object at the initial moment of time will be 
considered the source of a seismic event. In this case, the 
algorithm for localizing seismic events can be applied to this 
task by the difference in the S-wave and P-wave arrival on one 
receiver and from the ratio of the difference between the P-
wave arrival times on two neighboring receivers [1]. 

The first variant of the localization of a point object 
assumes the use of information about the difference in the 
arrival of S- and P-waves on each receiver: 
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where Tsi and Tpi are the arrival times of S- and P-waves 
on the i-th receiver, i = 1,2, ..., n is the index of the 
corresponding receiver, Li is the distance to the object, Vs and 
Vp are the propagation velocities of S- and P-waves, 
respectively; xi are the coordinates of the i-th receiver, x, z are 
the coordinates of the object in the Cartesian coordinate 
system, the x axis is directed along the surface of the earth, 
and the z axis is down toward the center of the earth. 

The second variant of determining the position of a point 
object involves the use of information only about the 
difference in the arrival of P-waves on two neighboring 
receivers: 
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where Tpi+1 and Tpi are the P-wave arrival times at two 
neighboring receivers, i = 1,2, ..., n is the index of the 
corresponding receiver, Lpi+1 and Lpi is the distance to the 
object from two neighboring receivers. 

Here, the P-wave distances are determined similarly to 
equation 1: 
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In both approaches, the required quantities are the 
coordinates of the object x and z. The propagation velocities 
of elastic waves are assumed to be known, and the time of 
entry of these waves to the receivers is determined from the 
seismograms. This task relates to the type of inverse problems 
on the problem of comparison of theoretical and observed 
data, because there are many parameters, but observations 
contain errors. Therefore, in both cases, it is advisable to 
reduce the task of finding the coordinates of an object to the 
least squares method. 

Let m be the residual functions r = (r1, …, rm) of n 
unknown variables (parameters) β = (β1, …, βn), and X = (x1, 
…, xN) be the matrix of coordinates of receivers, where N is 
the number of receivers. f(xi, βj) is a set of functions from this 
set of variables; yi is some values to which the corresponding 
values of functions are as close as possible. 
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Then the least squares method can be expressed as follows 
[2]: 
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In accordance with expressions 1–3, the residual functions 
ri(βj) have a non-linear parametric dependence. To find the 
minimum of the functional F in this case, the Gauss-Newton 
method and its modifications [3], the singular decomposition 
[3, 4], the Kacmage method [5], etc. are used. 

B. Localization algorithm of objects of a certain form 

In order to take into account the shape of the object, we 
represent the object as a set of point objects. In this case it is 
necessary to impose a grid on the entire investigated area of 
the environment and check each grid node (Fig. 1). One grid 
node corresponds to a time window on the first receiver 
seismic trace. The window size is selected based on the 
requirement for the accuracy of the object definition and 
additional analysis of the seismogram. If there is a wave in one 
window with an amplitude exceeding the total noise level by 
a certain amount or more (the value of this amount is set based 
on the type of seismic trace obtained), then the possibility of a 
point object is recorded in this window. Further, the presence 
of this point object is checked on the remaining seismic traces. 
In the case of complete coincidence of the presence of a signal 
on all receivers, we assume that there is a point object in this 
grid node (Fig. 2). Thus checking each node of the grid and 
marking the nodes with the expected objects, we get a picture 
of the points of the object, i.e. we receive object of a certain 
form. 

 

Fig. 1. Localization algorithm of objects of a certain form. 

 

Fig. 2. Algorithm operation circuit for one grid node. 

The calculations at each node of the grid are independent 
of each other, so a parallel approach can be applied to this task. 
To implement a parallel approach, two technologies will be 
considered: OpenMP + MPI and CUDA + MPI with schemes 
similar to those in [6]. In both cases, the computational 
domain is divided into layers along the direction of one of the 
coordinate axes. Inside each layer, parallel computations are 
performed using OpenMP or CUDA. The entire exchange of 
information between adjacent layers is performed using MPI 
technology. 

III. RESULTS AND DISCUSSION 

The MATLAB application package was selected as the 
development environment. In the numerical experiment, a 
two-dimensional, homogeneous, isotropic model of the 
environment was used with elastic wave velocities: Vs = 1.4 
km/s and Vp = 2.0 km/s and one point object at different 
distances from the receivers. The error of the time of entry of 
S- and P-waves on the receivers does not exceed 1 ms. The 
frequency of the seismic vibrator is 20 Hz. 

For both approaches (for the difference in the arrival of S- 
and P-waves on one receiver and on the difference in the 
arrival of P-waves for two neighboring receivers) at known 
velocities of elastic waves, the same accuracy was shown by 
both the Gauss-Newton method and the Levenberg-Marquardt 
method (tab. I and II). In this case, it is preferable to choose 
the Gauss-Newton method, since it does not require the 
selection of a regularization parameter at each iteration step. 
And for a problem with three and four unknown parameters, 
it is preferable to use the Levenberg-Marquardt method (tab. 
III). However, in this case it does not give high accuracy and 
is quite sensitive to the choice of each step of the iterative 
process. 

TABLE I.  RESULTS FOR THE APPROACH BASED ON THE DIFFERENCE 

IN THE ARRIVAL OF S- AND P-WAVES ON ONE RECEIVER 

The real position 

of the object: 

x* [km]; z* [km] 

The calculated position of 

the object: 

x±Δx [km];  

z±Δz [km] 

The minimum 

value of the 

objective 

function, 

F [s2] 

0.5; 1.0 0.5±0.002; 1.0±0.000 1.531∙10-6 

0.5; 10 0.5±0.01; 10.0±0.001 2.581∙10-6 

2.0; 1.0 2.0±0.0; 1.0±0.001 2.394∙10-6 

2.0; 10.0 2.0±0.0; 10.0±0.002 2.615∙10-6 

3.0; 1.0 3.0±0.001; 1.0±0.001 1.725∙10-6 

3.0; 10.0 3.0±0.003; 10.0±0.0 1.245∙10-6 

 

TABLE II.  RESULTS FOR THE APPROACH BASED ON THE DIFFERENCE 

IN THE ARRIVAL OF P-WAVES TO TWO NEIGHBORING RECEIVERS 

The real position 

of the object: 

x* [km]; z* [km] 

The calculated position of 

the object: 

x±Δx [km];  

z±Δz [km] 

The minimum 

value of the 

objective 

function, 

F [s2] 

0.5; 1.0 0.5±0.0; 1.0±0.0 3.751∙10-6 

0.5; 10 0.5±0.013; 10.0±0.015 6.223∙10-6 

2.0; 1.0 2.0±0.001; 1.0±0.001 4.947∙10-6 

2.0; 10.0 2.0±0.008; 10.0±0.145 1.306∙10-6 

3.0; 1.0 3.0±0.273; 1,0±0.003 6.917∙10-3 

3.0; 10.0 the method does not 

converge 

— 

  

x 

z 

O 



142 

 

TABLE III.  THE GAUSS-NEWTON METHOD AND THE LEVENBERG-
MARQUARDT METHOD FOR THE CASE OF UNKNOWN PARAMETERS X, Z, VS 

AND VP 

The real position of the object: x*=2.0 km; z*=1.0 km 

Initial approximation: x(0)=2.2 km, z(0)=1.2 km, Vs(0)=1.47 km/s, 

Vp(0)=2.1 km/s 

The Gauss-Newton method The Levenberg-Marquardt 

method 

The calculated 

position of the 

object: 

x±Δx [km];  

z±Δz [km] 

The minimum 

value of the 

objective 

function, 

F [s2] 

The calculated 

position of the 

object: 

x±Δx [km];  

z±Δz [km] 

The minimum 

value of the 

objective 

function, 

F [s2] 

For the approach based on the difference in the S-wave and P-wave 

arrival on one receiver 

the method 

does not 

converge 

— 2.0±0.072; 

1.0±0.072; 

1.4±0.058; 
2.0±0.028 

0.016 

For the approach based on the ratio of the difference between the P-

wave arrival times on two neighboring receivers 

2.0±0.222; 
1.0±0.115; 
— 
2.0±0.326 

7.213∙10-3 2.0±0.034; 
1.0±0.034; 
— 
2.0±0.134 

1.243∙10-3 

From Tables I-III it can be seen that for some point objects 
for the approach based on the difference in P-wave arrival on 
two neighboring receivers, neither the Gauss-Newton method, 
nor the Levenberg-Marquardt method can calculate the 
position of the object. This may be due to the fact that the 
difference in the P-wave entry times on two neighboring 
receivers may be commensurate with the error in determining 
the P-wave entry on the receiver. In such cases, it is possible 
to carry out an experiment when P-waves enter the receivers 
that are at a greater distance from each other. 

IV. CONCLUSION 

This paper shows the applying features of the seismic 
event localization algorithm to the localization of objects of 

the geophysical model of the environment. The possibilities of 
using numerical methods for approaches based on the use of 
information about the difference in the arrival of S- and P-
waves on one receiver and on the difference in the arrival of 
S- and P-waves on two neighboring receivers are given. An 
approach to defining objects of a particular form as a set of 
point objects is proposed, and the possibility of applying a 
parallel approach to this task is described. 

To solve the set tasks, the algorithm of localization of point 
objects of the geophysical model of the environment was 
developed, implemented in the MATLAB environment and 
tested on model data. A comparative analysis of the applied 
numerical methods for this algorithm is given. 
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