
Parallel Numerical Algorithms



On the Parallel Strategies
in Mathematical Modeling

Valery Il’in(B)

Institute of Computational Mathematics and Mathematical Geophysics RAS,
Novosibirsk State University, 6 Pr. Lavrentieva, 630090 Novosibirsk, Russia

ilin@sscc.ru

Abstract. The article considers parallel strategies and tactics at differ-
ent stages of mathematical modeling. These technological steps include
geometrical and functional modeling, discretization and approximation,
algebraic solvers and optimization methods for inverse problems, post-
processing and visualization of numerical results, as well as decision-
making systems. Scalable parallelism can be provided by combined
application of MPI tools, multi-thread computing, vectorization, and
the use of graphics accelerators. The general method to achieve high-
performance computing consists in minimizing data communications,
which are the most time and energy consuming. The construction of
efficient parallel algorithms and code optimization is based on various
approaches at different levels of computational schemes. The implemen-
tation of the biggest interdisciplinary direct and inverse problems in
cloud computing technologies is considered. The corresponding applied
software with a long life cycle is represented as integrated environment
oriented to large groups of end users.

Keywords: Scalable parallelism · Domain decomposition · Runtime ·
Communications · Multi-thread computing · Vectorization · Exchange
buffers · Hierarchical memory · Speedup · Accelerators

1 Introduction

The idea of parallelization is very old, and consists in the simultaneous oper-
ation of different hardware units. Modern heterogeneous supercomputer multi-
processor systems (MPS) have a rich architecture: a large net of nodes with dis-
tributed memory, sets of multi-core CPUs with shared hierarchical memory and
very fast registers, and several graphics accelerators (at each node) of GPGPU
or Intel Phi type, with a complicated internal structure. We can, accordingly,
consider four-level hybrid programming tools: Message Passage Interface (MPI
system), multi-thread computing (OpenMP), CUDA system, and vectorization
of machine operations by applying AVX instructions inside the CPU or the Phi

The work was supported by the RFBR grant N 16-29-15122 and the RSF grant
N 15-11-10024.

c© Springer International Publishing AG 2017
L. Sokolinsky and M. Zymbler (Eds.): PCT 2017, CCIS 753, pp. 73–85, 2017.
DOI: 10.1007/978-3-319-67035-5 6



74 V. Il’in

unit. Moreover, programmers can use different hints for code optimization, taking
into account detailed peculiarities of the memory access. We should emphasize
that the evolution of computer platforms is dramatically fast, and applied soft-
ware must be flexibly adapted to hardware changes in order to provide a long
numerical life cycle of the environment.

Scalable parallelism is a challenging problem when solving interdisciplinary
direct and inverse super-tasks concerned with mathematical modeling (MM),
which now constitute the main tool for obtaining new fundamental knowledge
and optimizing industrial production. One of the main trends of development of
computational and informational technologies (CIT) to study various processes
and phenomena consists in the convergence of MM approaches and CAD-CAE-
CAM applications. Other important feature of the current situation is associated
with a rapid upsurge of new results in theoretical and computational mathemat-
ics. It is well-known that the most “clever” and efficient algorithms are difficult
to parallelize. Thus, the most urgent issue concerning MM support is to strike
the right balance between the mathematical efficiency of an algorithm and the
computer performance of its program implementation.

The bottleneck is programmer’s labor productivity, which lags far behind
the growth rates of supercomputer capacity. Overcoming the world-wide cri-
sis requires a new paradigm of development. The existing long-term practice is
the implementation of applied software packages (ASPs), either commercial or
publicaccess, for concrete classes of problems. Examples of such products are
ANSYS [1] and FeniCS [2]. Developments of other types are program libraries
that implement a totality of algorithms for a certain type of computational
tasks. For instance, Netgen [3] is responsible for mesh generation, PETSc [4]
is a suite of algebraic solvers, and so on. Another versions that are becoming
increasingly popular nowadays are instrumental computational systems Open-
FOAM [5], DUNE (Distributed Unified Numerical Environment) [6] and Basic
System of Modeling (BSM) [7]. Some general issues that arise when creating
a program environment for mathematical modeling are considered in [8]. It is
worth mentioning an interesting project devoted to algorithms and their parallel
implementations: the Open Encyclopedia of Properties of Algorithms [9].

This paper is organized as follows. Section 2 contains the algorithmic descrip-
tion of the main technological stages of mathematical modeling. In Sect. 3, we
discuss specific features of parallel tactics at different steps of a large-scale numer-
ical experiment. In the Conclusions, we make some remarks on parallelization
strategies for cloud computing and Data Center frameworks.

2 Technological Stages of Large-Scale Numerical
Experiments

Regardless of the subject orientation of applied software, a computational exper-
iment goes through similar technological stages. We can implement these steps
almost independently if we define the internal interfaces correctly, in accordance



On the Parallel Strategies in Mathematical Modeling 75

with Virt rule: “Program = Algorithms + Data Structure”. Some performance
and intellectuality issues of supercomputer modeling are discussed in [10].

Geometric and functional modeling. At the first stage, the user formulates a
computational task, which may include a description of a complex geometric
configuration consisting of subdomains with different material properties. While
geometric objects and operations have long been assimilated in numerous CAD
products (CAE, CAM, PLM) and graphics systems, functional modeling requires
operating with formalisms such as equations in subdomains, boundary conditions
on border segments, various coefficients, etc.

The formal description of an initial boundary value problem for partial dif-
ferential equations (PDEs) can be presented, for example, as follows:

Lu = f(x , t), x ∈ Ω̄, 0 < t ≤ T < ∞,
lu = g(x , t), x ∈ Γ, u(x , 0) = u0(x ),

L = A
∂

∂t
+ ∇B∇ + C∇ + D, Γ = ΓD ∪ ΓN ,

u
∣
∣
ΓD

= gD, (DNu + AN ∇nu)
∣
∣
ΓN

= gN .

(1)

Here x and t are spatial and time variables, L and � are differential operators, u
is the solution sought (in general, a vector), A,B,C,D are some matrices, and
ΓD, ΓN are border segments with different types of boundary conditions.

In addition to input data, we should specify what we want to obtain and
in which form. Methods to be applied or even detailed computational schemes,
which unambiguously determine the process of mathematical modeling in a con-
crete environment, may also be prescribed. Emphasizing the above aspects, we
have come, in fact, to the automation of the model and algorithm construc-
tion. Some questions on these topics, including geometric and functional data
structures (GDS and FDS), are discussed in [11].

Problem discretization. The solution of non-trivial mathematical equations essen-
tially always begins with constructing a grid. To show the diversity of questions
that arise in this respect, it suffices to mention the most popular types of grids,
such as adaptive, structured, unstructured and quasi-structured, matching, non-
matching and mortar, regular and irregular, static and dynamic, and so on.
Modern real super-tasks require a quite large number of nodes (109 and more).
Important questions on the performance of this stage, as well as a review of
algorithms and numerical software are presented in [12].

The most effective approaches to discretization are associated with suffi-
ciently complex discrete objects and their transformations, including sequences
of hierarchical grids and their local refinement, decomposition of grid domains
into subdomains, dynamic reconfiguration of grids, and an a posteriori and/or
a priori account of the properties of the desired solutions. Although there are
quite a few indicators of the quality of grids, the determination of the optimal
grid remains a very complicated problem, which practical studies do not even
formulate. The most frequently used principle of choice can be reduced to an
empirical approach: the use of distribution densities of mesh nodes according to



76 V. Il’in

general qualitative considerations. Individual methodological recommendations
relate to particular cases and are mere exceptions to the rule. The global applied-
software market offers both very expensive and free mesh generators, which use
a certain number of mesh data structures (MDSs) recognized by the compu-
tational community. The effective use of this colossal materialized intellectual
potential appears to be a very important task.

Discretization is a technological stage that is important for both resource
intensity as a whole and computational resolution, which largely determines the
success in application of the modeling. This is especially true for problems with
a complex spatial and temporal behavior of the solution, including actual sit-
uations with strong multi-scale characteristics. Therefore, mesh generation is
a highly intelligent methodology; the lack of substantial theoretical and algo-
rithmic results causes us to orient not toward automatic but toward automated
mesh construction accompanied by immediate visualization and participation of
an expert in controlling the computational process.

Approximation of equations. When the previous stages have been executed and
an MDS has been formed, which, together with the geometric and functional
data structures (GDS and FDS), reflects the whole information about the initial
problem at a discrete level, its approximation becomes possible. The result is
a system of finite-dimensional algebraic relations, i.e. an algebraic data struc-
ture (ADS) that can effectively use widespread matrix representations for sparse
algebraic systems. As an example, let us mention the Compressed Sparse Row
format (CSR).

The operations performed in this case are the most science-based and are
represented by diverse theoretical approaches: finite-difference, finite-volume and
finite-element methods (FDM, FVM and FEM); different spectral algorithms;
integral equation methods, etc. The logical complexity of the “approximators”
particularly increases when methods of a high order of accuracy are used, espe-
cially on unstructured grids, formulas for which would eventually extend over
several pages. This circumstance hinders their wide dissemination despite their
significant advantages. A cardinal solution to this situation is the use of artifi-
cial intelligence potentialities, namely the means of automating analytic symbolic
transformations. In principle, such tools are present in large specialized systems
of the Reduce or Maple types, and are successfully used, for example, in the
FEniCS package [2]. In the above cases, the problem is simplified by the FEM-
and FVM-based unique element-by-element technology of independent and eas-
ily parallelized computation of local matrices with the subsequent assembly of a
global matrix. Some general questions of approximation techniques are described
in [13].

Solving algebraic problems. At this stage, various matrix-vector operations are
performed that require the largest computer resources, since the volume of both
arithmetic operations and necessary memory often grows nonlinearly as the num-
ber of degrees of freedom (d.o.f.) of the problem grows. The performed computa-
tions may require implementing recurrent sequences, solving systems of algebraic
equations (linear, SLAEs, and nonlinear, SNAEs), solving eigenvalue problems,



On the Parallel Strategies in Mathematical Modeling 77

and optimizing algorithms for mathematical programming. These tasks consti-
tute vast fields of computational algebra, characterized by a colossal diversity
of conceptual approaches, concrete versions of methods, and particular ways
of their application. It is here where the issues of parallelization of algorithms
and their implementation on MPS architectures, particularly on cluster systems
containing heterogeneous nodes with classical and specialized processors, arise.

The international market offers a big amount of algebraic software, which is
continuously updated and expanded, owing to adaptive modifications for new
computer platforms and architectures, and the rapid development of new algo-
rithms. The rapid growth and regular updating create the problem of coordinated
re-use of existing products. Let us note that there are serious achievements in
this area: standard universal data structures and libraries with the basic set of
matrix-vector operations (BLAS, SPARSE BLAS) [14].

The diversity of algebraic methods is associated, first of all, with a vari-
ety of types of considered matrices: Hermitian and non-Hermitian, real and
complex, symmetrical and non-symmetrical, degenerate and non-degenerate,
positive-definite and indefinite, and so on. Matrices of all types are divided into
dense and sparse, and approaches to their processing are significantly different.
Moreover, the choice of optimal algorithms largely depends on structural prop-
erties of matrices (band, triangular, etc.), as well as on their dimension (the
notion of “large” matrices continuously changes depending on the capacity of
the current generation of computers, being in the post-petaflops era 109 to 1012

orders of magnitude). Ill-posed problems with a strong instability of numeri-
cal solutions relative to inherent or computer rounding errors are particularly
complicated.

The most efficient modern algorithms are characterized by high logical com-
plexity: algebraic multigrid approaches, domain decomposition methods, vari-
able ordering optimization, matrix scaling techniques, and so on. We can affirm
that the most resource-intensive algebraic methods also require an active use of
artificial intelligence. The conception of an integrated numerical environment for
computational algebra is presented in [15].

Optimization approaches to solving inverse problems. The solution of direct prob-
lems of mathematical modeling (1), which require to find the desired functions,
given the coefficients of the equations and the initial and boundary conditions,
may have a high computational complexity. But this is usually only a part of
the difficulties associated with the solution of an inverse problem. The latter is
characterized by the fact that some of its initial data depend on unknown para-
meters, which should be found by minimizing the described objective functional
under certain additional restrictions on the problem properties. For example,
when computing technical devices or instruments, the engineer usually aims not
only at studying their properties but also at the computer-aided design of opti-
mal configurations that would ensure the required characteristics. In addition,
almost always there are additional restrictions associated with the size, weight or
other functional conditions. Another characteristic example of an inverse prob-
lem is the identification of the parameters of a mathematical model based on
comparison of estimated results with data from natural measurements.



78 V. Il’in

The optimization statement of an inverse problem can be written in the form

Φ0(u(x , t,popt)) = min
p

Φ0(u(x , t,p)), p = {pk},

Lu(p) = f , pmin
k ≤ pk ≤ pmax

k , k = 1, ...,m1,
Φl(ū(x , t,p)) ≤ δl, l = 1, ...,m2,

(2)

where Φ0 is the goal functional, p is an unknown vector parameter, pmin
k and pmax

k

define linear constraints, Φ� and δ� are non-linear constraints, and Lu(p) = f
denotes a constitutive equation that is defined, in fact, by the whole direct
problem (1).

The main universal approaches to solving inverse problems rely on the use
of constrained minimization methods, which imply a directed sequential search
for a local or a global minimum and the intermediate values of the objective
functional being computed at each step, which is nothing but the solution of
a direct problem. Consequently, in the general case, the solution of an inverse
problem requires repeated solutions of direct problems.

In recent decades, optimization methods have been actively developed, giv-
ing rise to new trends, such as algorithms of interior points, sequential quadratic
programming and trust regions. Note, however, that the minimization of func-
tionals with complex geometric characteristics, especially those of the ravine
type, is something at the interface between science and art. That is why a fully
automated computational process is possible only in the simplest situations. In
fact, even in this case, highly intelligent technologies are necessary, entailing a
step-by-step implementation of the entire problem in dialogue with the user, who,
based upon his experience, should control the behavior of sequential approxima-
tions and govern the parameters of the algorithms to achieve the ultimate goal
as soon as possible.

Post-processing and visualization of results. Computational process control and
decision-making tools. The results of algebraic computations lack any physical
meaning and obviousness, primarily owing to their large volumes. For example,
the FEM makes it possible to obtain the coefficients of the expansion of the
required solutions with respect to the basic functions used in grid cells, whereas
the user needs a compact and illustrative picture of multidimensional vector
fields. Hence the reason why applied software should have a developed set of
instruments to construct typical representations, such as isosurfaces, force lines,
cross sections, various graphs, and so on. This is the first requirement. The
second one is associated with the fact that one cannot foresee everything, and
an intelligent modeling system should contain the means for automating the
programming of various possible characteristics of final data. Finally, the third
factor is that end users may come from different professions, and all of them
want to obtain a comfortable representation of the results of using a computer,
determining its production effect.

It is important that even ideal applied software does not preclude the fact
that computer-aided modeling of complicated processes or phenomena is a mul-
tifold creative activity. For example, to study some applications systemically,



On the Parallel Strategies in Mathematical Modeling 79

one should first make sure that the models and methods applied meet the spec-
ifications; for this, it is necessary, first, to perform test computations and then
to analyze whether the data obtained are adequate. Then it appears possible to
start the study itself, which can be a large-scale machine experiment preceded by
planning and method-selection procedures. The latter are unattainable without
providing for the flexible to compile computational schemes, which implies the
creation of the corresponding languages (declarative or imperative) to control the
computational processes. Finally, modeling is not an end in itself but a tool for
cognitive or production activities, therefore, to ensure the adoption of a decision
with computational results, applied software should contain either some cogni-
tive principles or means for connecting to CAD infrastructures or technologies
that support and optimize the operation regimes of concrete processes. However,
these issues are beyond the frame of mathematical modeling.

3 Scalable Parallelism: Problems and Solutions

Modern mathematical modeling offers a huge set of real applications, models and
numerical methods, as well as an essential diversity of hardware and computing
platforms. This provides a great possibility to choose tactics and strategies for
the optimization of computational processes.

Some general issues of parallelization. A universal requirement on applied soft-
ware is the absence of software restrictions on both the number of d.o.f. of the
problem to be solved and the quantity of processors and/or cores used. At the
same time, it should be recalled that there are important algorithm paralleliza-
tion characteristics such as weak and strong scaling. Weak scaling means that
computation time remains practically the same as the number of d.o.f. and the
number of computing devices grow. Strong scaling means a proportional time
decrease for a fixed problem as the number of computers grows.

Ideally, a solution to the problem of automation and optimization of algo-
rithm parallelization should be sought through simulation of a computer system
as a whole. However, this is too complicated: that is why one has to employ
semi-empirical techniques or the simplest models of computer calculations. Two
values can be mentioned as examples of parallelization characteristics, namely
the coefficients of computational speedup and the processor utilization efficiency:

Sp = T1/Tp, Ep = Sp/P,

where Tp is the time required for the execution of a task or algorithm on P
processors. An ideal situation is that where the value of Sp is directly propor-
tional to P and Ep = 1. In practice, however, we often have to content ourselves
with efficiency factors of only several percent.

Let us note that if the portion of consecutive operations is equal to θ, then
the maximum speedup is defined by Amdahl’s law [16]:

Sp = T1/(θT1 + (1 − θT1))/P = P/[1 + θ(P − 1)].



80 V. Il’in

The development of supercomputer technologies occurs in two main direc-
tions: high-performance computing (HPC) and operations with Big Data. Note
that the convergence of these two trends (intensive data computing) has recently
been observed. On the whole, the evolution of MPS generations and extremum
modeling problems is accompanied by a similar growth of RAM speed and capac-
ity (the number of teraflops or petaflops is quite similar to the number of ter-
abytes or petabytes of the computer).

The main objective of programming parallel algorithms is to minimize the
information exchange, since the total problem time T equals the sum of two
terms:

T = Ta + Tc, Ta = Naτa, Tc = M(τ0 + Ncτc),

where τa and τc are the average times required, respectively, for one arithmetic
operation and for one transfer, Na is the number of arithmetic operations, M
is the number of memory accesses, τ0 is the exchange operation delay (setting)
time, and Nc is the average volume of one transferred array. We should bear in
mind the characteristic relation τ0 � τc � τa. The requirement to reduce data
transfer is explained not only by a need to increase speed, but also by the energy
consumption of communications.

It is evident from all the above that the notion of the quality of algorithms
changes for large tasks: from any two methods being compared, the best is not
the one that requires fewer computations but the one that is executed faster
on MPSs of the type under consideration. In other words, there appears a new
concept of computation optimization based on the search for approaches that
would significantly reduce the volume of data transferred between processors,
even if they increase the number of arithmetic operations.

An important point of interest is the necessity to overcome the uzer mental
inconvenience when we have no supercomputer “within reach”. With modern
cloud technologies, it is sufficient to have Internet access to a computing center
for collective users (CCCU or Data Center). Of course, to intellectualize the user
interface, a workstation should be equipped with specialized means; however, this
is beyond the scope of this paper.

Characteristic features of the parallelization of technological studies. Paralleliza-
tion tactics at each computation stage are determined by the volume of data
and the number of operations. The stage of geometric and functional modeling,
substantial in intellectual loads and crucial for the user input interface, deals
with macro-objects, which should not be too many (tens, hundreds or, at worst,
thousands). Therefore, it seems desirable to manage without exchanges, copying
the computations in all MPI processes and storing in them the geometric and
functional data structures obtained.

The mesh generation may formally be represented as a data transformation:
GDS + FDS → MDS. Note that the mesh data structure for the entire compu-
tational space may have a large volume. For this reason, it is natural to create
an MDS by each MPI process for “its” mesh subdomain (with a certain over-
lapping). The formation of distributed data at the initial stage is reasonable,



On the Parallel Strategies in Mathematical Modeling 81

so much so that the decomposition of domains is the main instrument of paral-
lelization. However, since the estimated mesh domain should also be identified
as an integral object, all its nodes and other elementary objects (edges, faces,
cells) should be numbered twice, namely locally by a subdomain and globally.
Decomposition problems can employ two tactics: subdomain construction, which
precedes mesh generation (for example, it is natural to separate media with
contrasting material properties), or direct formation of mesh subdomains. We
should also bear in mind that many efficient algorithms are based on special re-
arrangements of components (one may speak of such tasks in terms of graphs as
well), and all the respective procedures should be accessible to all MPI processes
or subdomains, which will, on the whole, substantially reduce data exchange.
The popular software packages METIS, parMETIS and other tools for graph
partition are effective re-arrangement instruments (see, for example, the review
in Algowiki [9]).

Moving boundary problems are the most computationally complex, since
they imply that adaptive grids are dynamically reconfigurable as well. Many
efficient methods are based on a local refinement and multigrid approaches,
whose instrumental support should also be distributed.

Upon obtaining the distributed data arrays, mapping onto MDS, GDS and
FDS, one can approximate the original problem in parallel. For this purpose,
FEM and FVM have a unique technology for computing local matrices and
assembling a global matrix. Since the “approximator” works in parallel by sub-
domain or MPI processes, with already distributed necessary data, the obtained
matrix-vector structures must be in their subdomain. Therefore, this stage can be
perfectly implemented without exchanges. The principal operations performed
by the mesh cells independently of each other can be effectively parallelized
using multi-thread computing. In non-stationary problems and also in nonlinear
or optimization computations, approximations are repeated. However, from the
point of view of adaptation to computing devices, this usually changes nothing.

Linear systems are the most important intermediate elements when solv-
ing algebraic problems. Owing to this, we will focus on them. Special attention
should be given to very large SLAEs with sparse matrices, which emerge after
the FEM- or FVM-assisted approximation of differential or respective variational
multi-dimensional problems on unstructured grids. From the point of view of
the classification of algorithms, the SLAEs to be solved can be divided into two
major classes: special and general ones. For the former, which comprise systems
occurring in boundary value problems with separable variables, there are super-
fast direct and/or iterative problem solvers, as the fast Fourier transform or
alternating direction implicit (ADI) methods with optimal sets of iterative para-
meters. These approaches have been in demand over the last decades, because
of practical requirements to solve the actual Lyapunov and Sylvester matrix
equations.

Direct methods for large sparse SLAEs of the general type are actively
improving; however, in the most advanced versions of the popular PARDISO
[14] and MUMPS programs, their applicability is limited, mainly because of their



82 V. Il’in

requirements on RAM volume. Iterative additive domain decomposition meth-
ods (DDMs) constitute the main tool for a parallel highly productive solution of
SLAEs of this type. DDMs are covered in a considerable body of specialized liter-
ature (see, for example, the review in [17]), and have been discussed at 23 major
international conferences devoted to this topic. The essence of these decomposi-
tion methods consists in dividing a computational mesh domain into subdomains
with parametrized overlapping (in a particular case, without intersections) at
the internal boundaries of which certain interface boundary conditions are set
to determine informational interrelations between neighboring subdomains. In
the simplest case, iterations are formed according to the block Jacobi method,
which leads to solving auxiliary SLAEs in subdomains simultaneously with data
exchange between them. To accelerate this process, optimal algorithms in Krylov
subspaces are primarily used. For further increase in speed, various two- or multi-
level approaches are employed, such as deflation, aggregation, coarse-grid cor-
rection, low-rank matrix approximations, which are implemented in the library
KRYLOV [15]. A systematic analysis of modern approaches in algebraic DDMs is
presented in [18]. As examples of well-known libraries for parallel solving SLAEs,
we can mention PETSc [4] and pARMs [19].

Parallel time integration methods for solving evolution problems are a special
topic of interest. An overview of the exciting and rapidly developing area of
parallel time algorithms is given in [20].

To attain scalable parallelization, hybrid programming technologies are used:
MPI processes are formed over the memory distributed by computational nodes,
one per subdomain, inside which multi-threaded computations are performed
using OpenMP in common memory. Note that a substantial acceleration is
achievable if inter-processor exchanges are matched with synchronous perfor-
mance of arithmetic operations in subdomains. A separate problem is how
to effectively use universal graphics accelerator cards with a great number of
computer cores but relatively slow communications (General Purpose Graphic
Processor Units, GPGPU), as well as Intel Xeon Phi units and advanced Field
Programmable Gate Arrays (FPGAs).

The adaptation of modern decomposition methods to existing computer plat-
forms is, in terms of philosophy and methodology, a problem of mapping algo-
rithms onto the MPS architecture. This basic (in terms of significance) scientific
trend is largely experimental, and only numerous comparisons of real perfor-
mance measurements can be the foundation for elaborating practical recom-
mendations on solving classes of problems.

A special topic of parallelization analysis is that of optimization approaches
to solving inverse problems. Some computational issues of this important area
are described in [21]. Usually, the solution of an inverse problem requires solving
successively a set of direct tasks. In this case, the speedup of parallel computing
does not change. Exceptions must be made for the search for several minima of
the goal functional and the solution of a global minimization problem. In these
cases, we can decompose the domain in the spaces of parameters that should
be determined in the original problem, and find an auxiliary inverse constrained
subproblem independently in each subdomain.



On the Parallel Strategies in Mathematical Modeling 83

The post-processing and visualization of computational results is the most
favorable field for parallelization. Despite its apparent mathematical simplicity,
this technological stage is the key to the success of a large modeling project. High-
quality color graphics, especially with dynamic scenarios and regular control of
intermediate data, requires significant computer resources, and in a large-scale
computational experiment, it can take the lion’s share of machine time. Since
one of the main requirements on the quality of visualization is high speed of
image generation, a natural technical solution is the use of a high-speed graphics
processor. An important feature of visualization is that the resultant multi-
dimensional vector fields, which should be graphically presented to the user,
are distributed over hierarchical memory units of various processors. Another
circumstance is related to the presence of a large number of professional graphic
products (Visual Studio, OpenGL, and so on), and one of the main problems for
the developers of a modeling system is their effective re-use.

From the point of view of large-scale parallelization, optimization meth-
ods and computational experimentation control are a superstructure over data-
intensive computing stages, and we can expect no special problems here,
although the decisions made at the upper block level play a significant role
in reaching the final high performance.

4 Conclusions

From the previous analysis of computational models, algorithms and technolo-
gies, we can conclude that the infrastructure of large-scale mathematical model-
ing constitutes a sufficiently large and complicated system. Also, the optimal con-
trol of parallel computing requires a careful analysis of the peculiarities of every
technological stage. Tactics and strategies of scalable parallelism can be different
in terms of both the algorithm and the total task to be solved. We want to make
two more comments. First, creating a high-performance integrated numerical
environment for solving a wide class of applications on heterogeneous supercom-
puters with distributed and hierarchical shared memory is a big management
problem, which can be solved on the base of common component architecture
(CCA) principles (see a discussion in [22]). And second, the implementation of
large mathematical experiments should be actually done in a cloud computing
framework, with the task-flow technologies at Data Center, and here we have
another view to parallelism problems. It is possible to analyze the optimiza-
tion statement for the runtime, the performance or the speedup in terms of one
algorithm, a particular technological stage or a concrete applied mathematical
problem. In a sense, we obtain at different levels various local constrained mini-
mization or global multi-variable minimization problems, and the final strategy
solutions will be different. However, the main objective of this paper has just
been to outline some issues, while the real solutions of these subjects are topics
for a special additional research.



84 V. Il’in

References

1. ANSYS - Simulation Driven Product Development. http://www.ansys.com
2. Logg, F., Mardal, K.-A., Wells, G.N. (eds.): Automated Solution of Partial Dif-

ferential Equations by Finite Element Method: The FEniCS Book. Springer,
Heidelberg (2011)

3. Schoberl, J.: Netgen - an advancing front 2D/3D mesh generator based on abstract
rules. Comput. Vis. Sci. 1, 41–52 (1997). doi:10.1007/s007910050004

4. PETSc. http://www.mcs.anl.gov/petsc
5. Open FOAM - The Open Source Computational Fluid Dynamics (CFD) Toolbox.

http://www.open-foam.com
6. DUNE Numerics. Distributed Unified Numerical Environment. http://www.

dune-project.org
7. Il’in, V.P., Skopin, I.N.: Computational programming technologies. Programm.

Comput. Softw. 37(4), 210–222 (2011). doi:10.1134/s0361768811040037
8. Ilin, V.P.: Fundamental Issues of mathematical modeling. Herald Rus. Acad. Sci.

86, 118–126 (2016). doi:10.1134/s101933161602009x
9. AlgoWiki: Open encyclopedia of algorithm properties. http://algowiki-project.org

10. Il’in, V.P., Skopin, I.N.: About performance and intellectuality of super-
computer modeling. Program. Comput. Softw. 42, 5–16 (2016). doi:10.1134/
s0361768816010047

11. Golubeva, L.A., Il’in, V.P., Kozyrev, A.N.: Programming technologies in geometric
aspects of mathematical modeling. Vestnik NGU. Seria: Inf. Tekhnol. 10, 25–33
(2012). (in Russian)

12. Il’in, V.P.: DELAUNAY: A technological environment for mesh generation.
Siberian Zhurnal Indus. Math. 16, 83–97 (2013). (in Russian)

13. Butygin, D.S., Il’in, V.P.: Chebyshev: Principles of automation of algorithm con-
struction in an integrated environment for mesh approximations of initial bound-
ary value problems. In: Proceedings of International Conference on Parallel Com-
putational Technologies 2014, Izd. YuUrGU, Chelyabinsk, pp. 42–50 (2014). (in
Russian)

14. Intel Math. Kernel Library. http://software.intel.com/en-us/intel-mkl
15. Butyugin, D.S., Gurieva, Y.L., Il’in, V.P., et al.: Functionality and technologies

of algebraic solvers in Krylov’s library. Mathematical Modeling, Programming &
Computer software, pp. 76–86. Bulletin of south Ural state university, Russain
Federation (2013). (in Russian)

16. Konshin, I.N.: Parallel Computational Models to Estimate an Actual Speedup
of Analyzed Algorithm. Russian Supercomputing Days: Proceedings of the Inter-
national Conference, pp. 269–280. MSU Publ. (2016) (in Russian). doi:10.1007/
978-3-319-55669-7 24

17. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposi-
tion Methods: algorithms, theory and parallel implementation. doi:10.1137/1.
9781611974065.. https://archives-ouvertes.fr/cel-01100932

18. Il’in, V.P.: Problems of parallel solution of large systems of linear algebraic equa-
tions. J. Math. Sci. 216, 795–804 (2016). doi:10.1007/s10958-016-2945-4

19. Saad, Y., Sosonkina, M.: pARMS: A package for the parallel iterative solution of
general large sparse linear systems user’s guide. Report UMSI 2004–8, Minnesota
Supercomp. Inst., Univer. of Minnesota, MN (2004)

20. Gander, M.J.: 50 Years of Time Parallel Time Integration. doi:10.1007/
978-3-319-23321-5 3. http://www.unige.ch/∼gander/Preprints/50YearsTime
Parallel.pdf

http://www.ansys.com
http://dx.doi.org/10.1007/s007910050004
http://www.mcs.anl.gov/petsc
http://www.open-foam.com
http://www.dune-project.org
http://www.dune-project.org
http://dx.doi.org/10.1134/s0361768811040037
http://dx.doi.org/10.1134/s101933161602009x
http://algowiki-project.org
http://dx.doi.org/10.1134/s0361768816010047
http://dx.doi.org/10.1134/s0361768816010047
http://software.intel.com/en-us/intel-mkl
http://dx.doi.org/10.1007/978-3-319-55669-7_24
http://dx.doi.org/10.1007/978-3-319-55669-7_24
http://dx.doi.org/10.1137/1.9781611974065.
http://dx.doi.org/10.1137/1.9781611974065.
https://archives-ouvertes.fr/cel-01100932
http://dx.doi.org/10.1007/s10958-016-2945-4
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://dx.doi.org/10.1007/978-3-319-23321-5_3
http://www.unige.ch/~gander/Preprints/50YearsTimeParallel.pdf
http://www.unige.ch/~gander/Preprints/50YearsTimeParallel.pdf


On the Parallel Strategies in Mathematical Modeling 85

21. Il’in, V.P.: Numeric solving of direct and inverse problems of electromagnetic
prospecting. Sibirian Zhurnal of Vychislitelnoi Mathematiki 6, 381–394 (2003).
(in Russian)

22. Il’in, V.P.: Component technologies of high-performance mathematical modeling.
In: Proceedings of the International Conference on Parallel Computational Tech-
nologies - 2015 (UFU, IMM UrO RAN, Yekaterinburg), pp. 166–171 (2015). (in
Russian)


