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Abstract. We consider different parallel versions of the least squares
methods in the Krylov subspaces which are based on computing vari-
ous basis vectors. These algorithms are used for solving very large real,
non-symmetric, in gerenal, sparse systems of linear algebraic equations
(SLAEs) which arise in grid approximations of multi-dimensional bound-
ary value problems. In particular, the Chebyshev acceleration approach,
steepest descent and minimal residual, conjugate gradient and conjugate
residual are applied as preliminary iterative processes. The resulting min-
imization of residuals is provided by the block, or implicit, orthogonaliza-
tion procedures. The properties of the Krylov approaches proposed are
analysed in the “pure form”, i.e. without preconditioning. The main crite-
ria of parallelezation are estimated. The convergence rate and stability of
the algorithms are demonstated on the results of numerical experiments
for the model SLAEs which present the exponential fitting approxima-
tion of diffusion-convection equations on the meshes with various steps
and with different coefficients. AQ1

Keywords: Large sparse systems of linear algebraic equations ·
Non-symmetric matrices · Block implicit least squares methods · Krylov
subspaces · Parallel technologies · Numerical experiments

1 Introduction

The mathematical modeling in real extremal interdisciplinary problems includes
the solution of the multi-dimensional direct and inverse tasks, linear and non-
linear, stationary and non-stationary, which are approximated by various order
numerical schemes on the non-structured grids in the complicated computational
domains. In any case, at a low level of these procedures, the multi-fold solution
to the systems of linear algebraic equations (SLAEs) is required. The practical
high resolution demands very large degrees of freedom (dof). So, the solution of
the corresponding ill-conditioned SLAEs is the bottle-neck of the general numer-
ical process, because necessary computational resources grow nonlinearly at this
stage if the dimension of the system increases (for example, 1010 and higher).
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2 V.P. Il’in

In this case the road map to provide a high performance consists in parallel
implementation of modern multi-preconditioned iterative processes in the Krylov
subspaces based on the domain decomposition methods (DDM) (see [1,2] and
the references therein). The main achivements are based on the combination of
efficient mathematical discoveries and scalable parallel technologies on the multi-
processor systems (MPS) with distributed and hierarchical shared memory.

This paper deals with just one particular side of the general problem. Namely,
we consider the possibility of parallel “implicit” construction of the iterative
methods in the Krylov subspace “in the pure form”, i.e. without preconditioning,
which is supposed to be a separate problem.

Let us consider the solution of the SLAE

Au =
{ ∑

l′∈ωl

al,l′ul′
}

= f, A = {al,l′} ∈ RN,N ,

u = {ul}, f = {fl} ∈ RN

(1)

with a large real sparse matrix resulting from grid approximations of multi-
dimensional boundary value problems by finite element, finite volume, or other
methods. In general, this matrix is non-symmetric and ill-conditioned. In Eq. (1),
ω� denotes a set of indices of nonzero entries in the �-th row of the matrix
A, whose number N� is assumed to be much smaller than N . The algorithms
considered below can easily be extended to the case of complex SLAEs.

In [3], the authors have offered special procedures for accelerating the conver-
gence of the Jacobi method as an “efficient alternative” to the classical Krylov
methods. In order to solve a linear system, they have used the Anderson acceler-
ation, which had been originally proposed in [4] for solving systems of nonlinear
algebraic equations, A comparative experimental analysis presented in [3] has
demonstrated a considerable superiority of the original alternating Anderson-
Jacobi (AAJ) method over the popular generalized minimal residual method
(GMRES) as concerns the solution time. The idea of the AAJ method con-
sists in periodical (after a prescribed number of stationary iterations) use of
an acceleration method based on solving an auxilary least squares problem not
involving successive orthogonalization of the direction vectors, which is typical
of the Krylov variational type methods.

The present paper aims at generalization and experimental study of the sim-
ilar approaches. We apply several non-stationary iterative algorithms as a pre-
liminary tool for constructing some basis vectors in the Krylov subspaces and
further minimization of the residual vector norm by means of the least squares
method. In this context, parallel implementation of the approaches proposed is
considered.

This paper is organized as follows. In Sect. 2, we present the idea of implicit,
or block, least squares method in the Krylov subspaces which uses a preliminary
construction of the basis vectors. Section 3 is devoted to analyzing the efficiency
of parallel versions of the iterative algorithms considered in comparison with
the classical variational method of semi-conjugate residuals in the Krylov sub-
spaces. Section 4 discusses the results of numerical experiments obtained for the
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On the Parallel Least Square Approaches in the Krylov Subspaces 3

algorithms offered on a series of the test SLAEs, resulting from the grid approxi-
mation of two-dimensional boundary value problems for the convection-diffusion
equation. In conclusion, we observe the efficiency of the algorithms presented and
discuss some plans for future studies.

2 Versions of the Least Squares Methods in the Krylov
Subspaces

The wide class of iterative processes for solving SLAE (1) can be written in the
form

un+1 = un + αnpn = u0 + α0p
0 + ... + αnpn,

rn+1 = rn − αnApn = r0 + α0Ap0 + ... + αnApn.
(2)

Here u0 and r0 = f −Au0 are the initial guess and the corresponding residual
vector, and pn, αn are some direction vectors (usually p0 = r0) and the iterative
parameters which are defined from the additional conditions in the different
approaches.

If A is a symmetric positive definite (spd) matrix, then the following conju-
gate direction (CD) methods [1,5]:

pn+1 = rn+1 + β(s)
n pn,

α
(s)
n =

(Asrn, rn)
(Apn, Aspn)

, β
(s)
n =

(Asrn+1, rn+1)
(Asrn, Asrn)

,
(3)

for s = 0, 1 present the classical conjugate gradient (CG) and conjugate resid-
ual (CR) algorithms, respectively, which minimize the functionals Φ(s)

n (r0) =
(A−srn+1, rn+1) in the Krylov subspaces

Kn(r0, A) = span (r0, Ar0, ..., Anr0). (4)

The residual and direction vectors in these approaches for all k, n satisfy the
orthogonal properties

(Asrk, rn) = (Asrn, rn)δk,n, (Aspk, Apn) = (Aspn, Apn)δk,n (5)

where δk,n is the Kronecker symbol.
However, if A is a non-symmetric matrix, then these methods have no such

variational and orthogonal properties. In such cases, the global minimization of
the functionals Φ(s)

n is provided by the general minimized residual type (GMRES)
approaches or by the equivalent, in some sense, semi-conjugate direction (SCD)
methods [6]

pn+1 = rn+1 −
n∑

k=0

β
(s)
n,kpk, β

(s)
n,k = (Apk, Asrn+1)/(Apn, Aspn). (6)

Let us remark that the formulas (6) realize the orthogonal properties (5) by
Gram–Schmidt procedure. It fact, this procedure should be changed by more
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4 V.P. Il’in

stable modified Gram–Schmidt (MGS) orthogonalization [7]. If α
(s)
n are defined

by (3) then for s = 0, 1 from (6) we provide the extremum conditions

∂Φ(s)
n /∂αn = 0, Φ(s)

n = (rn+1, As−1rn+1), (7)

and for s = 1 the functional Φ(s)
n has the minimum in the Krylov subspace (4).

In this case the resulting residual vectors are not conjugate, but semi-
conjugate only, i.e.,

(Asrn, rk) =
{

0, k < n,
σn, k = n,

and for s = 0, 1 we have a semi-conjugate gradient and a semi-conjugate residual
(SCG and SCR) methods, respectively.

Let us remark, that for spd - matrix A, the CD methods (both CG and CR),
as well as SCD approaches (SCG and SCR) have the same theoretical number
of iterations, see [1,5]:

n(ε) ≈ 0.5|�n(ε/2)|(condA)−1/2,

where condA is the condition number of A and Φ(s)
n ≤ ε2Φ(s)

n−1, 0 < ε � 1.
But if A is non-symmetric, the same estimate is valid for SCD but not for CD
methods.

In the general case, to compute the vectors un and rn using (2)–(6), it is nec-
essary to store all the vectors pn, pn−1, ..., p0 and Apn, Apn−1, ..., Ap0. In practice,
these methods are realized with periodic restarts every m iteration. This means
that the residual vector is computed from the original equation

rml = f − Auml, � = 0, 1, ..., (8)

rather than using (2), and the subsequent approximations are computed “from
the beginning”, i.e., for n > m one should change n for n = ml in the formulas.
Here, it is necessary to store only the last m + 1 vectors pn, pn−1, ..., pn−m,
and Apn, Apn−1, ..., Apn−m. The restarted versions of SCD methods, similar to
restarted GMRES, have lower convergence rate, but this is the cost for the
memory saved.

The most expensive stage of the SCD methods consists in successive com-
putations of the direction vectors pn+1 by means of long recursions (6). In
accord with the Anderson acceleration approach, we can simplify (6) and use
in the sum the last direction vector pn only (but save the vectors pn, ..., pn−m

and Apn, ..., Apn−m). In these cases, the minimization of the residual norm
||rn+1||2 = (rn+1, rn+1)1/2 in the Krylov subspace

Kn,m(rn, A) = span (rn, Arn, ..., Amrn) (9)

can be provided by the following least squares method:

rn+m = rn − Wn,mγ̄n,m ≈ 0, Wn,m = (wnwn+1 ... wn+m) ∈ RN,m+1,
wn+k = Akpn, γ̄n,m = (γn, γn+1, ..., γn+m)T ∈ Rm+1.

(10)
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On the Parallel Least Square Approaches in the Krylov Subspaces 5

The coefficient vector γ̄n,m can be computed from the over-determined SLAE

Wn,mγ̄n,m = rn, (11)

which can be solved, for example, by means of the singular value decomposi-
tion (SVD) or an other approach (see [7]). In particular, the left-hand Gauss
transformation procedure

Bn,mγ̄n,m = gn,m, Bn,m = WT
n,mWn,m ∈ Rm+1,m+1, gn,m = Wn,mrn ∈ Rm+1

(12)
can be here efficiently applied.

In fact, the computing vectors pk, Apk in such algorithms can be realized by
formulas (2), (3), and we call them CD-LSM-� (CG-LSM-� and CR-LSM-� for
s = 0, 1, respectively) where the integer � = 1, 2 corresponds to application of
formulas (11) or (12).

If the coefficient vector γ̄n,m is known, the improved numerical solution can
be computed by the formulae

un+m = un + γnpn + ... + γn+mpn+m. (13)

The considered algorithms can be simplified even to a greater extent if we
use instead CG or CR method, the two-terms formulas of the steapest descent
(SD) or the minimal residual (MR) method, which can be formaly described (for
s = 0, 1 respectively) as follows, see [1,5]:

α(s)
n = (Asrn, rn)/(Arn, Asrn), βn = 0, pn = rn. (14)

For the spd-matrices, these approaches provide the local variational proper-
ties only, i.e. for just one iteration, but minimization of the functional Φ(s)

n,m =
(As−1rn+m, rn+m) in the Krylov subspaces Kn,m(rn, A) can be achieved by the
LSM-� approaches (11) or (12). Such methods will be called SD-LSM-� and
MR-LSM-�, � = 1, 2. Of course, for SD and MR methods with local variational
properties, the convergence rates of iterations are worse as compared to the pre-
vious algorithms (n(ε) ∼ condA only ), but let us remind that it is just the way
to obtain the basis vector for LSM optimization.

In all the approaches considered above, we use the least squares methods,
based on the direction vectors pn with weak orthogonal, or variational, prop-
erties. Instead of this, we can construct the basis vectors by application of the
some spectral iterative process. If the matrix A has real positive eigenvalues
λ ∈ [0 < λ1, λN ], then the optimal convergence rate of iterations is provided by
the Chebyshev acceleration [1,5,8]. Such approaches can be implemented in dif-
ferent forms, and we use the two-terms recurrent representation, which consists
of the following relations:

p0 = r0 = f − Au0,
un = un−1 + αn−1p

n−1,
rn = rn−1 − αn−1Apn−1,
pn = rn + βnpn−1.

(15)
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6 V.P. Il’in

Here we use the restarted procedures which also suppose applying the LSM
approaches by (11) or (12) after each m iteration. The coefficients in (15) are
defined via three terms description of the Chebyshev acceleration presented in [8]:

u1 = u0 + τ r0, τ = 2/(λ1 + λN ), rn = f − Aun,
un+1 = un + τnτ rn + (τn − 1)(un − un−1), τ0 = 2,
τn = 4(4 − τn−1γ)2) − 1, γ = (1 − c)/(1 + c), c = λ1/λN .

(16)

The values of αn, βn from (15) provide the equivalence to reccurences (16)
by the formulas

α0 = τ, αn = τnτ, βn = (τn − 1)αn−1/αn. (17)

After each m iterations by formulas (15)–(17) we can apply the acceleration
procedures according to (10)–(13). The corresponding algorithms we will call
the Chebyshev least squares methods (CHEB-LSM-1 and CHEB-LSM-2). We
conclude this section with the following two remarks. First, it is easy to check
that from theoretical viewpoint, LSM-1 and LSM-2 coincide because, in exact
arithmetic, by solving Eqs. (11) and (12) one obtains one and the same vector
γ̄n,m. Second, an approach similar to the one considered above was applied by
P.L. Montgomery in [9] (see [10] also) in solving special systems of linear algebraic
equations over a finite field and was referred to as the block Lanczos method.

3 Properties of Parallel Implementation

As is seen, the implementation of the optimal SCR method includes at each
iteration the following main stages:

• one matrix-vector multiplications (MV-operations);
• 2m+3 vector-vector (VV) operations, i.e. linear combinations of the vectors;
• computing the m + 2 inner vector products.

It is important that all these operations are fulfilled successively. The idea
of parallel implementation of the methods proposed with LSM-2 approaches
consists in the simultaneous computation of the entries of the matrix

Bn,m = {b
(n,m)
k,� = (wk, w�); k, � = n, ..., n − m}.

And for m � N , we can neglect the costs for solving SLAEs (12) and compute
the vector γ̄n,m by formula (13) on the all processor units simultaneously.

Now we compare parallel realizations of a cycle of m iterations in the methods
LSM and SCR. This will suffice for a qualitative comparison of the performances
of the algorithms in question because they minimize the same functional in
the same Krylov subspace and, consequently, are theoretically equivalent with
respect to the convergence rate. Concerning the methods considered, we assume
that they are applied to a block system of linear equations of the form (1), and
the block rows Ak = {Ak,�, � = 1, .., P} ∈ RNk,N , Nk

∼= N/P, N1+...+Np = N
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On the Parallel Least Square Approaches in the Krylov Subspaces 7

of the coefficient matrix A are distributed in the memory of the corresponding
MPI processes used for the first level of parallelizing the algorithms, as is done
in the domain decomposition methods (where every block row corresponds to
a subdomain, see [11]). Note that in fact to different MPI processes different
computer processors correspond (though this is not formally necessary). In the
SCR method, the direction vectors pn, pn−1, ..., pn−m and also the current vectors
un and rn are partitioned into subvectors of lengths Nk, each being stored in
the corresponding k-th MPI process. As the iterations proceed, data exchanges
among processes are needed, and their volumes should be minimized. When
arithmetic operations are performed in the k-th MPI process using a multicore
processor, “inner” parallelization (of the second level) can be effected based on
multi-thread computations (here, we omit the details). A similar distributed data
structure is formed in the least squares methods, in which case the block partition
is used for the vectors wk, k = 1, ...,m. We assume that in all the algorithms
the standard double-precision computer arithmetics is used. For a comparative
analysis of the performances of the methods considered, we estimate the time TP

of performing a cycle of m iterations on P MPI processes based on the following
simple model of the computation process:

TP = T a
P + T c

P ≈ τaNa + (τ0 + τcVc)Nc. (18)

Here, T a
P and T c

P are the times for performing arithmetic and communication
operations, respectively;; τa is the average time of a single arithmetic operation,
and Na is the number of such operations (for one processor); Nc is the total
number of data transmittings; τ0 is the delay (tuning) time of a single transac-
tion; τc is the average time of transmitting a real number, and Vc is the average
volume of one package of data transmitted. Note that in view of the relations
τ0 � τc � τa, it is natural to attempt to minimize not only the total volume of
information to be transmitted but also the number of exchanges. This is impor-
tant not only from the viewpoint of the time of data transmissions but also in
view of high energy costs of communication operations.

It is easy to check that in CG-LSM-2 or CR-LSM-2 for n �= m we need to
compute by formulas (2), (3) just 2 inner products and 3 VV-operations. And
if we use SD or MR approaches by (2), (14) with local variational properties,
then we must perform 2 inner products and 2 vector linear combination, i.e. the
difference is not significant as compared with CG or CR methods.

Let us now consider the combination of the Chebyshev acceleration (15)–(17)
and the LSM approach. These algorithms do possess orthogonal or variational
properties, but have the same optimal estimation of n(ε). And what is important:
the spectral iterations do not need computation of inner products!

The last circumstance is highly valuable in terms of the implementation of
the iterative process at the MPS, because these operations obviously need data
communications. But this approach demands the knowledge of the spectrum
boundaries of the matrix. Of course, this is too strong requirement, but in many
practical problems the necessary estimations can be obtained.

It should be remarked that the implementation of the LSM with different pre-
liminary iterative approaches does not need the computation of the vectors un,

A
u

th
o

r 
P

ro
o

f



8 V.P. Il’in

because at the end of any algorithms considered, the resulting vector is realized
by (13). Of course, this operation can also be parallelized efficiently.

4 Discussion of Numerical Experiments

Let us consider the Dirichlet problem [8] for the convection-diffusion equation

−∂2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω, u|Γ = g(x, y), (19)

in a square computational domain Ω = (0, 1)2 with the boundary Γ and the
convection coefficients p, q, which for simplicity are assumed to be constant.
This boundary value problem is approximated on a square grid with the step
size h = 1/(L + 1) and the total number of interior nodes N = L2,

xi = ih, yj = jh, i, j = 0, 1, ..., L + 1, (20)

using the five-point finite-volume monotone approximations of exponential
type [12]

(Au)l = al,lul + al,l−1ul−1 + al,l+1ul+1 + al,l−Lul−L + al,l+Lul+L = fl, (21)

having the second order of accuracy. Here, � is the “global” number of a grid
node in the natural node ordering, � = i+(j−1)L. Generally speaking, formulas
for the coefficients in equations (20) may be different, and we use the following
ones:

al,l±1 = e±ph/2/h, al,l±L = e±qh/2/h,
al,l = al,l−1 + al,l−L + al,l+1 + al,l+L.

(22)

Equations (21) are written for the interior nodes of the grid, but for the near-
boundary nodes with the subscripts i = 1, L or j = 1, L the values of the solution
on the boundary should be substituted into the system of equations and moved
to the right-hand side; here, the corresponding coefficients of the left-hand side
can be formally set to zero. In our experiments, we have actually solved the
normalized equations, which are obtained by the following transformations with
the diagonal matrix D = diag {a�, �}:

D−1/2AD−1/2D1/2u = D−1/2f,
Āū = f̄ , Ā = D−1/2AD−1/2, ū = D1/2u, f̄ = D−1/2f.

(23)

The numerical experiments have been carried out using the standard double-
precision arithmetic for computing the values of the functions f(x, y) = 0 and
g(x, y) = 1 corresponding to the exact solution u(x, y) = 1 of problem (19). Since
the convergence rate of iterations depends on the initial error u−u0, its influence
has been analyzed by comparing the results for the initial guesses u0 = 0 and
u0 = P2(x, y) = x2 + y2. The stopping criterion used has been of the from
(rn, rn) ≤ ε2(f, f), with ε = 10−7. The computations have been carried out on
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On the Parallel Least Square Approaches in the Krylov Subspaces 9

grids with N = 72, 152, 312, 632, and 1272 nodes and for the restart parameter
m = 8, 16, 32, 64, and 128. In the tables below, we present the results obtained
in solving problem (19) with the convection coefficients p = q = 0 and p =
q = 4 on the grids with N = 72, 152, 312, 632, 1272 nodes and for different initial
guesses. The algorithms applied differ in the method of forming the auxiliary
linear system for finding the coefficient vector of correction (to be exact, the
systems obtained in LSM-1 and LSM-2 have been solved using the SVD program
(the singular value decomposition algorithm) from LAPACK, included into the
program library MKL Intel [13]). Let us remark that the matrix Bn,m from
SLAE (12), which corresponds to LSM-2, has a bigger condition number, as
compared to the matrix Wn,m from (11). So, LSM-1 is more preferable, from
the stability point of view. But in our experiments, the resulting errors are
approximately equal as for LSM-1 and LSM-2. So, in the following tables we
present the numerical results for LSM-2 only.

The main goal of our experimental research consists not in demonstration
of the high performance of algorithms for very large SLAEs, but in study of
the stability and convergence rate of LSM approaches with preliminary cheap
iterative processes. All the calculations have been carried out on the Siberian
Super Computing Center cluster (http://www2.sscc.ru).

In the each cell of the following tables we present two values: the upper
is the number of iterations, and the lower is the resulting maximal error δ =
max

i,j
{|1 − un

i,j |}. In our experiments the results are approximately the same for

different initial guesses, and we present data for u0 = x2 + y2 only.
In the Tables 1 and 2 we give the results for CHEB-LSM-2 algorithm for

symmetric and non-symmetric SLAEs. In both cases the boundaries λ1, λN of
matrix spectrum in formylas (16), (17) were taken for p = q = 0, but the
presented results are close to each other enough. The columns with m = ∞
correspond to “pure” Chebyshev acceleration without LSM. It is evident from
these tables, that in all cases considered there is an optimal value m.

The Tables 3 and 4 demonstrate the similar results for CR-LSM-2 algorithm.
The symmetric case (p = q = 0) show that conjugate residual is optimal for such
SLAEs, and least squares approach is not reasonable here. But for non-symmetric
algebraic systems the application of LSM gives the considerable improvement of
the iterative process. Let us remark, that the resulting numbers of iteration and
errors δ are approximatelly the same in CR and CHEB.

In the Tables 5 and 6, we present the results for CG-LSM, which confirm
that the efficiency of conjugate residual method, in combination with the least
squares approach is approximately the same that of CR algorithm.

At last, in the Table 7 we give the similar results for the minimal residual
method with local variational properties. This approach presents a big disadvan-
tage in efficiency, as compared to the previous algorithms, even with application
of the least squares methods. The close effect is demonstrated for steepest decent
(SD) method, both for symmetric and non-symmetric matrices.
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10 V.P. Il’in

Table 1. CHEB-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞
72 34 29 32 41 41 41

2.4 · 10−7 7.8 · 10−8 9.9 · 10−16 1.3 · 10−7 1.3 · 10−7 1.3 · 10−7

152 90 75 63 64 82 82

1.2 · 10−6 5.3 · 10−7 5.3 · 10−8 5.9 · 10−9 2.0 · 10−7 2.0 · 10−7

312 281 197 140 127 128 163

3.6 · 10−6 3.5 · 10−6 1.3 · 10−6 1.6 · 10−7 3.1 · 10−8 3.0 · 10−7

632 960 586 390 267 251 327

1.0 · 10−5 1.0 · 10−5 9.6 · 10−6 6.8 · 10−6 2.3 · 10−6 3.1 · 10−7

1272 3429 1991 1148 734 528 653

2.9 · 10−5 2.9 · 10−5 2.9 · 10−5 2.7 · 10−5 2.2 · 10−5 3.5 · 10−7

Table 2. CHEB-LSM-2, p = q = 4, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞
72 34 31 32 45 45 45

7.5 · 10−8 2.6 · 10−8 4.6 · 10−15 8.2 · 10−8 8.2 · 10−8 8.2 · 10−8

152 67 75 71 64 91 91

5.0 · 10−7 2.6 · 10−7 3.4 · 10−7 9.8 · 10−9 1.6 · 10−7 1.6 · 10−7

312 210 158 142 149 128 184

2.9 · 10−6 3.4 · 10−7 1.3 · 10−6 8.6 · 10−7 4.3 · 10−8 2.2 · 10−7

632 740 421 348 285 271 363

7.9 · 10−6 6.6 · 10−6 3.7 · 10−6 3.6 · 10−6 2.7 · 10−6 1.8 · 10−7

1272 2654 1531 884 662 543 719

2.4 · 10−5 2.3 · 10−5 2.1 · 10−5 1.8 · 10−6 7.6 · 10−6 1.7 · 10−7

Table 3. CR-LSM-2, p = q = 4

N \ m 8 16 32 64 128

72 34 31 63 127 255

1.3 · 10−7 7.9 · 10−8 1.6 · 10−9 4.6 · 10−12 5.1 · 10−13

152 74 64 94 127 255

8.8 · 10−7 9.7 · 10−7 2.2 · 10−7 3.1 · 10−9 3.9 · 10−12

312 236 149 129 190 255

2.9 · 10−6 2.0 · 10−6 8.1 · 10−7 3.0 · 10−8 7.3 · 10−7

632 592 472 305 331 382

8.1 · 10−6 8.0 · 10−6 4.3 · 10−6 4.6 · 10−6 1.9 · 10−7

1272 2612 1347 897 539 659

2.4 · 10−5 2.3 · 10−5 2.1 · 10−5 1.3 · 10−5 1.2 · 10−5
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Table 4. CR-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128

72 37 20 20 20 20

2.7 · 10−7 4.2 · 10−8 5.4 · 10−9 5.4 · 10−9 5.4 · 10−9

152 99 75 42 40 40

6.9 · 10−7 8.3 · 10−7 3.1 · 10−7 8.8 · 10−8 8.8 · 10−8

312 314 199 145 83 83

3.6 · 10−6 304 · 10−6 2.6 · 10−6 1.2 · 10−6 2.4 · 10−7

632 1084 626 390 283 160

1.0 · 10−5 1.0 · 10−5 9.2 · 10−6 8.4 · 10−6 2.6 · 10−6

1272 3860 2119 1185 746 538

2.9 · 10−5 2.9 · 10−5 2.8 · 10−5 2.8 · 10−5 2.1 · 10−5

Table 5. CG-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128

72 38 20 20 20 20

1.8 · 10−7 4.7 · 10−8 5.4 · 10−9 5.4 · 10−9 5.4 · 10−9

152 99 76 43 41 41

5.4 · 10−7 5.5 · 10−7 1.5 · 10−7 2.6 · 10−8 2.6 · 10−8

312 316 211 156 86 81

3.0 · 10−6 1.3 · 10−6 9.9 · 10−7 5.7 · 10−7 1.7 · 10−7

632 1086 631 404 316 167

9.8 · 10−6 8.6 · 10−6 5.1 · 10−6 2.3 · 10−6 1.2 · 10−6

1272 3865 2131 1210 757 614

2.9 · 10−5 2.7 · 10−5 2.1 · 10−5 2.2 · 10−5 3.6 · 10−6

Table 6. CG-LSM-2, p = q = 4, u0 = x2 + y2

N \ m 8 16 32 64 128

72 34 31 63 127 255

1.5 · 10−7 1.6 · 10−8 2.5 · 10−10 3.8 · 10−12 2.1 · 10−13

152 78 69 94 127 455

1.3 · 10−7 2.2 · 10−7 2.2 · 10−8 1.1 · 10−9 6.6 · 10−11

312 239 151 156 190 255

2.1 · 10−6 1.5 · 10−6 7.5 · 10−7 1.9 · 10−8 5.2 · 10−8

632 596 481 311 337 382

7.8 · 10−6 5.8 · 10−6 1.7 · 10−6 7.1 · 10−7 9.9 · 10−8

1272 2612 1351 900 568 736

2.4 · 10−5 1.9 · 10−5 1.9 · 10−5 2.9 · 10−6 3.9 · 10−6
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Table 7. MR-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞
72 37 21 32 64 128 185

2.7 · 10−7 5.5 · 10−8 7.0 · 10−9 2.8 · 10−9 2.8 · 10−9 4.8 · 10−7

152 99 76 67 82 128 703

5.4 · 10−7 5.5 · 10−7 4.3 · 10−7 2.1 · 10−7 2.6 · 10−8 1.3 · 10−6

312 316 202 187 253 267 2614

3.0 · 10−6 3.1 · 10−6 1.3 · 10−6 1.9 · 10−7 1.4 · 10−6 3.7 · 10−6

632 1086 631 559 505 636 9622

9.8 · 10−6 8.6 · 10−6 6.1 · 10−6 2.1 · 10−6 4.8 · 10−6 1.0 · 10−5

1272 3860 2123 1427 1702 1906 35050

2.9 · 10−5 2.9 · 10−5 2.6 · 10−5 2.2 · 10−5 1.7 · 10−5 2.9 · 10−5

5 Conclusion

We consider the generalization of Anderson acceleration, for parallel solving
non-symmetric large SLAEs with sparse matrices, on the base of least squares
methods applied to some preliminary “cheap” iterative process, which is used
just for computing basis vectors for implicit, or block, implementation of the
Krylov type algorithms with periodically minimization of the residual vector
before restarts. The comparative experimental analysis of the variational con-
jugate gradient and conjugate residual methods, as well as spectral Chebyshev
acceleration demonstrates reasonable stability and convergence rate of the iter-
ations the methods proposed. The idea of increasing parallelism consists in the
simultaneous computations of big number of inner products, in contrast to suc-
cessive computations in the conventional Krykov algorithms. The performance
of the proposed approaches at the real multi-processor systems with distributed
and hierarchical shared memory is the topic of further research.

This work was supported by the Russian Science Foundation (project N 14-
11-00485) and the Russian Foundation for Basic Research (project N 16-29-
15122).
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