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Abstract. This paper describes the conception, general architecture,
data structure, and main components of an Integrated Computational
Environment (ICE) for the high-performance solution of a wide class of
numerical algebraic problems on heterogeneous supercomputers with dis-
tributed and hierarchical shared memory. The tasks considered include
systems of linear algebraic equations (SLAEs), various eigenvalue prob-
lems, and transformations of algebraic objects with large sparse matrices.
These tasks arise in various approximations of multidimensional initial
boundary value problems on unstructured grids. A quite large variety of
types of matrices, featuring diverse structural, spectral, and other prop-
erties are allowed; there can also be a wide diversity of algorithms for
computational algebra. There are relevant issues associated with scalable
parallelism through hybrid programming on heterogeneous multiproces-
sor systems, MPI-processes, multithread computing, and vectorization
of operations, including those without formal constraints on the num-
ber of degrees of freedom and on the number of computing units. The
numerical methods and technologies are implemented in the KRYLOV
library, which provides the integrated subsystem of the ICE. There are
various technical requirements imposed upon the software: extendibil-
ity of the set of problems and algorithms, adaptation to the evolution of
supercomputer architecture, ability to reuse external products, and coor-
dinated participation of development groups taking part in the project.
The end goal of these requirements is to provide a product featuring
a long life cycle, high performance, and general acceptance among end
users of diverse professional backgrounds.
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1 Introduction

Solving systems of linear algebraic equations (SLAEs) is by far the main task
in computational algebra, which is, in turn, the key stage when solving prob-
lems of mathematical modeling of processes and phenomena. After discretiza-
tion, approximation, and linearization are carried out, all the diversity of initial
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statements (e.g., classical and generalized, differential and/or integral, stationary
and evolutionary, linear and nonlinear) leads to the necessity of solving SLAEs.
This stage is a “bottleneck” in large-scale computational experiments where the
number of resources required by applications grows, as a rule, nonlinearly with
respect to the number of degrees of freedom and accounts for the main part
in estimates of the computational complexity. Among other tasks of numeri-
cal algebra, we can mention eigenvalue problems, systems of nonlinear algebraic
equations (SNLAEs), matrix equations, and various matrix and/or vector trans-
formations.

Naturally, the main object of our attention is the solution of “large” and “dif-
ficult” systems of equations on modern heterogeneous multiprocessor computing
systems (MPS) with distributed and hierarchical shared memory. A SLAE with
a number of unknowns N of the order of 108 to 1011 is considered to be large,
and a SLAE in which the matrices have condition numbers between 1012 and
1015 is considered to be difficult. We henceforth assume that arithmetic opera-
tions are performed with numbers in standard 64-bit double-precision floating-
point format, which gives a relative error of about 10−15. It is important to
emphasize that with the advent of supercomputers capable of post-petaFLOPS
performances and more, the task of solving SLAEs does not lose its relevance.
Indeed, as a matter of fact, “appetite comes with eating” and, as supercomputer
performances increase, both the order of current implementations of algebraic
systems and their condition numbers also grow. One can confidently predict that,
in the near future, double precision will not be sufficient for stable calculations.
For example, the problem of using “smart” arithmetic operations with variable
numbers of digits, including representations with numbers of bits both greater
than 100 and less than 50, will become unavoidable.

SLAEs of considerable interest are those obtained after the original multidi-
mensional boundary value problems for differential equations or their generalized
variational statements are approximated by finite-difference methods, finite vol-
ume methods, finite element methods, or discontinuous Galerkin methods (FDM,
FVM, FEM, or DGM, respectively) on unstructured grids. The matrices gen-
erated in this manner have two important features. First, they are sparse and
banded, i.e. the total number of nonzero entries is relatively small (NNZ � N2)
and, moreover, all of them are located in a band of width M � N around the
main diagonal. Secondly, their portraits have an irregular structure, i.e. the num-
bers of non-diagonal nonzero elements in the matrix lines can be specified only
by enumeration. This leads to the need of saving the matrices in sparse com-
pressed formats (for example, Compressed Sparse Row (CSR)) which rely on
storing in memory only the nonzero entries and their numbers. This fact implies
a significant specificity for the software implementations of the algorithms and
slows down the process of access to the values of the matrix entries.

An important feature of SLAEs that significantly affects algorithms created
for their solution is the block structure of the matrix. It is determined by the spe-
cific properties of the initial boundary value problem, the grid and approximation
methods used, and by the ordering of the vector entries. The most complicated



Integrated Computational Environment 93

matrices, in the structural sense, are those arising from grid approximations of
multidimensional interdisciplinary problems described by systems of functional
equations with many unknown vector functions (for example, density distri-
butions of simulated substances present temperature, velocity, electromagnetic
fields, etc.).

The main means for solving large systems are iterative methods, thanks to
their less strict requirements on the amount of memory used and the number
of computational operations needed. The most effective and common are the
preconditioned algorithms in the Krylov subspaces. During decades, these algo-
rithms have been used in active research. From the large amount of literature
devoted to them, we will restrict our references in this paper to the monographs
[1,2].

A special place in these issues corresponds to the problem of scalable paral-
lelization of algorithms on MPS. Here, the main tool is the domain decompo-
sition method (DDM), which has become one of the current divisions of com-
putational algebra and to which special monographs, conferences, and Inter-
net sites have been devoted (see [3,4]). The primary principle of the DDM is
the partitioning of the original problem for a complex calculation domain into
interconnected auxiliary problems for subdomains. Then, each subproblem can
be synchronously solved approximately by a processor of a supercomputer. As
for the parallelization technologies, the scaling is attained using MPI-processes,
multithreaded computing, and operation vectorization. In a sense, multigrid
approaches appeared as an alternative to the DDM (see [5] and the literature
cited there). Those approaches give asymptotically optimal (from the theoreti-
cal standpoint) estimations of the computation volume which are inadequate for
parallelization on MPS.

The study of iterative methods and their practical applications has recently
been a matter of research in two major directions. The first of them is the devel-
opment of efficient methods for preconditioning the initial SLAEs with the aim
of improving their conditioning. To this end, numerous algorithms for approx-
imate matrix vectorization have been deeply involved (see the reviews [1,2]).
The second direction is the development of iterative processes assuming they
are considered in Krylov subspaces. In this case, there are various approaches
associated with a number of methods: deflation, aggregation, coarse-grid correc-
tion, low-rank matrix approximations, etc. [6,7].

Another important fact is that a quite large number of algebraic methods
have already been implemented and are widely available over computer networks.
A rather complete list of such methods is given in [8]. In this respect, it is worth
mentioning the BLAS and SPARSE BLAS libraries of vector-matrix operations,
containing, in particular, high-performance implementations on supercomputers
of different types. The use of such standard functions in applications significantly
increases, at large, the efficiency of the designed software.

The objective of this study is to develop the concept, architecture, data
structure, and main components of an Integrated Computing Environment (ICE)
for the high-performance solution of a wide class of SLAEs. We focus on the
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creation of a product that can be effectively used in applied software systems and
is capable of motivating a high demand among end users of diverse professional
backgrounds. The considered mathematical software is a part of the KRYLOV
library [9], which is a subsystem of the Basic System Modeling (BSM) [10],
designed to support all major technological stages of mathematical modeling.

The paper is organized as follows. In Sect. 2, we classify the types of SLAEs
considered in the paper. Sections 3 and 4 offer a brief presentation of meth-
ods for solving algebraic systems and existing software for their implementa-
tion. The next section describes the general structure and main components of
the KRYLOV library. In the Conclusions section, we discuss plans for a fur-
ther research on the development of an integrated tool environment for solving
problems of computational algebra. For the sake of brevity, we often omit the
references to terms and concepts from computational algebra that can be easily
found on the Internet.

2 Classification of the Considered Tasks

From a formal point of view, we consider a trivial mathematical problem involv-
ing a SLAE:

Au = f, A = {al,m} ∈ RN,N , u = {ul}, f = {fl} ∈ RN , (1)

where, for simplicity, the matrix A of order N is assumed to be real, square, and
positive definite in the sense of the condition

(Av, v) ≥ δ‖v‖2, δ > 0, (v, w) =
N∑

i=1

viwi, ‖v‖2 = (v, v). (2)

However, symmetry is not required. Most algorithms considered below are appli-
cable to more general SLAEs: complex (Hermitian or non-Hermitian), degener-
ate, or non-definite. A particular attention is given to sparse systems arising
from the approximation of multidimensional boundary value problems by var-
ious methods, such as finite differences, finite volume, finite elements, and the
discontinuous Galerkin algorithms on unstructured grids (see [8] and the litera-
ture cited therein). This type of grid equations is, for simplicity, written as

ai,iui +
∑

j∈ωi

ai,juj = fi, i ∈ Ωh, (3)

where ωi denotes the set of off-diagonal nonzero entries placed on the i-th row
of the matrix. On the other hand, sometimes matrices are presented in a block
form,

Aq,quq +
n∑

r∈Ωq

Aq,rur = fq, q = 1, . . . , P, (4)

Aq,r ∈ RNq,Nr , fq ∈ RNq, N1 + . . . + NP = N,
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where Ωq is the set of numbers of nonzero matrix computing blocks located in
the q-th block row.

In the case of grid algebraic equations, the block representation of a SLAE can
be visually associated with the geometric decomposition of the grid computation
domain Ω to non-intersecting subdomains Ωq:

Ω = Ω1 + . . . + ΩP , where Ωq ∩ Ωr = 0 for q �= r. (5)

Relations (5) can also be interpreted as an algebraic decomposition if Ωq is
simply considered as a subspace of Nq induces corresponding to the uq or fq

subvector.
The transformation of matrices to the block form is associated with renum-

bering vector components and matrix rows, which can generate a large number of
computational methods and technologies. For example, based on the initial alge-
braic decomposition of a grid computational domain of the form of (5) without
intersections, it is possible to form a decomposition with parametrized intersec-
tions for different numbers of common grid layers. Moreover, for large matrices,
it is natural to consider their memory representation in a distributed way, both
in the sense of various physical processors and at the logical level of MPI pro-
cesses. Similar problems of renumbering and shaping various block structures
also arise in efficient multigrid approaches to solving SLAEs (see the review in
[5]).

The structural properties of the matrices under consideration strongly
depend on the features of the initial boundary value problems and on the meth-
ods applied for their approximation. Typical block characteristics and matrix
portraits can be classified according to the type of a system of equations for the
corresponding applied problems: heat and mass transfer, hydro-gas dynamics,
stress-strain state, multiphase filtration, electromagnetism, and others. It is also
important to emphasize that, from theoretical and practical points of view, we
are not interested in solving a specific SLAE on a fixed grid with a character-
istic step h but a series of algebraic systems of the same type on a sequence of
condensed (possibly nested) grids.

During last decades, approximations of higher orders have been made more
exact, reaching an error in the numerical solution of the order of O(hγ), where
γ > 1. As the order grows (up to γ = 2, 4, 6, . . .), the number NNZ of nonzero
matrix entries and the computational complexity of the algorithms increase, but
the amount of memory required to ensure a given accuracy of the result signifi-
cantly decreases. The last factor leads to a reduction in communications, and it is
well known that communications not only slow down the overall computational
process but also constitute the most energy-intensive operations.

From a technological point of view, it is also important to classify matrices
according to the methods used f or storing them. It should be noted that, in
addition to the universal CSR format, there are other common matrix represen-
tations and software converters from one format to another (see, for example,
the Intel MKL library [11]). Let us mention, in particular, “small-block” for-
mats, which are built similarly to CSR but store matrices of a fixed small size
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instead of numeric entries of the matrix. It is also natural that more efficient
formats can be created for some matrices of simple structure. For example, for
a symmetric matrix, it suffices to store only the main diagonal and one of its
triangular parts (above or below the main diagonal). In the case of a Toeplitz,
a quasi-Toeplitz, or a band matrix, the problem of storing its nonzero entries is
absolutely trivial. Finally, let us note a special type called the block-structured
matrices, characterized by different storage methods for different blocks. Also,
representations can be highly efficient when using quasi-structured grids [12], in
which the computational domain is divided into subdomains with different types
of grids, including regular and uniform ones.

We should also note such tasks as the solution of SLAEs at each time step
using implicit approximations for the numerical integration of multidimensional
initial boundary value problems. In [7], for example, it was shown that a special
choice of initial approximations using the method of least squares significantly
reduces the computational complexity.

3 Preconditioned Methods in Krylov Subspaces

In this section, we give a brief overview of modern iterative algorithms for solving
SLAEs, their parallelization, and software implementations in public libraries.

3.1 Multi-conditional Methods for Semi-conjugate Directions

Preconditioned iterative methods in Krylov subspaces are currently the main
approaches to solving large sparse SLAEs. By their computational complexity
and resource-intensity, and by the methods of implementation, these methods
are divided into two groups: for symmetric and for asymmetric algebraic systems.
The first group includes the efficient conjugate gradient (CG) and the conjugate
residual (CR) methods, based on short (two-term) recursions. To solve asym-
metric systems, there are algorithms based on the biorthogonalization of the
computed vectors, also using short recursions. Examples from this group are the
BiCG and the BiCR methods, as well as their stabilized versions: BiCGStab and
BiCRStab. These algorithms are less developed from the theoretical and prac-
tical standpoints. The most popular and reliable are the generalized minimal
residual methods (GMRES or FGMRES), which have theoretically an optimal
rate of convergence of iterations and high practical reliability (robustness), but
are based on computations of long vector recursions.

We consider methods of semi-conjugate directions that are equivalent in the
rate of convergence of iterations and are a direct generalization of the CG and
CR algorithms for asymmetric SLAEs. We give a formal presentation of these
iterative processes in a “multi-conditional” version with the possibility of using
several preconditioning matrices at each step; the number of such matrices and
their form may vary. These methods belong to the class of block methods since
they use several directional vectors. Therefore, it is natural to consider the Krylov
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subspaces generated by these vectors as blocks (see [13] and the references cited
therein):

r0 = f − Au0, n = 0, . . . , un+1 = un + Pnān,

rn+1 = rn − APnān = rq − APqāq − · · · − APnān, 0 ≤ q ≤ n, (6)
Pn = (pn

q , . . . , pn
Mn

) ∈ RN,Mn , ān = (an,1, . . . , an,1)� ∈ RMn .

Here, ān are the coefficient vectors and Pn is a matrix in which each of its Mn

columns is a direction vector pn
l associated with the corresponding precondition

matrix Bn,l, l = 1, . . . ,Mn, whose form is not determined yet. Relation (6) has a
remarkable property, namely if the directional vectors satisfy the orthogonality
conditions

(Apn
k , Aγpn′

k′ ) = ρ
(γ)
n,kδk,k′

n,n′ , ρ
(γ)
n,k = (Apn

k , Aγpn′
k′ ),

γ = 0, 1, n′ = 0, 1, . . . , n − 1, k, k′ = 1, 2, . . . ,Mn, (7)

then the following relations are valid for the residual functionals:

Φ(γ)
n (rn+1) ≡ (rn+1, Aγ−1rn+1) = (rq, Aγ−1rq) −

n∑
k=q

Mn∑
l=1

(rq, AγP k
l )2

ρ
(γ)
k,l

, (8)

unless the coefficients are defined by the formulas

αn,l =
σn,l

ρ
(γ)
n,n

, σn,l = (r0, AγPn
l ), (9)

in which case functional (8) attains a minimum in the block subspace

Hn = Span{r0, Ap0
1, . . . , Ap0

M0 , . . . , Apn
1 , . . . , Apn

Mn
}, M = 1+M0 + · · ·+Mn, (10)

if γ = 1. For a symmetric matrix A, the minimum of Φ
(γ)
n is attained for any

value of γ.
The orthogonality conditions are satisfied, in particular, if the directional

vectors are determined with the help of certain preconditioning non-degenerate
matrices Bn,l from the following recurrence relations:

p0
l = B−1

0,l r0, pn+1
l = B−1

n+1,lr
n+1 −

n∑

k=0

Mk∑

l=1

β
(γ)
n,k,lp

k
l , n = 0, 1, . . . ;

Bn,l ∈ RN,N , i = 1, . . . , Mn; γ = 0, 1,

β̄
(γ)
n,k = {βγ

n,k,l} =
(
β
(γ)
n,k,1 . . . β

(γ)
n,k,Mn

)T

γ ∈ RMn . (11)

β
(γ)
n,k,l = −

(
Aγpk

l , AB−1
n+1,lr

n+1
)

ργ
n,l

, n = 0, 1, . . . ; k = 0, . . . , n; l = 1, . . . , Mn.

In this case, formula (11) defines the multi-preconditioning of the Krylov sub-
space. In the case when the matrices A and Bn,l in formulas (6)–(11) are sym-
metric, we obtain preconditioned methods for conjugate gradients and conjugate
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residuals (MPCG and MPCR) for γ = 0, 1, respectively, whereas β
(γ)
n,k,l = 0 for

k < n, and the direction vectors are computed from two-term recursions.
If A �= A�, then, apparently, the most appropriate is the multi-

preconditioned semi-conjugate residual method (MPSCR). In this case, when
solving ill-conditioned asymmetric SLAEs associated with a large number of iter-
ations due to the resource-intensity of long recursions (mainly due to an increase
in the amount of memory used), they have to be shortened by force, which is
done by either introducing the so-called restart procedure or limiting the number
of orthogonalized directional vectors (or matrices with multi-preconditioning),
or by applying both approaches simultaneously. In all these cases, the rate of
convergence of the iterations drops, sometimes very noticeably, which is the
inevitable price of saving memory.

To overcome this degrading effect, we will consider the application of the
method of least squares (MLS) [6], restricting ourselves to using restarts in a
“pure form”. Assume, for simplicity, that the restarts are periodically repeated
through the same number m of iterations. This means that at each iteration
of number nt = mt, t = 0, 1, . . ., the residual vector is calculated not from the
recurrence relations (6), but from the original equation, i.e.

rnt = f − Aunt . (12)

Then, the recursion is used again in the usual way. More precisely, such an
iterative process is conveniently described by the two-index notation of the cor-
responding numbers of consecutive approximate vectors

unt = ut,0, un = ut,k, k = n − nt for n ∈ [nt, nt+1].

Let us assume that we already know the values of the “restart” approximations
un0 , un1 , . . . , n0 = 0. For the correction of the last iterative approximation, we
will write a linear combination of the vectors

ûnt = unt + b1v1 + . . . + btvt = unt + Vtb̄, b̄ = (b1, . . . , bt)�,

Vt = {vk = unk − unk−1 , k = 1, . . . , t} ∈ RN,t, (13)

with coefficients bn that will be found from the generalized solution of the overde-
termined system obtained after multiplying Eq. (13) by the original matrix A:

Wtb̄ = rnt = f − Aunt , Wt = AVt. (14)

There are several ways to solve SLAE (14): using SVD or QR decompositions
for the matrix Wt, finding the generalized inverse matrix W+

t using the Greville
formulas, calculating the normal solution by the method of least squares (using
the left Gauss transformation, i.e. multiplying the common parts of Eq. (14) on
the left by W�

t ), or applying a “lightweight” (by condition number) transforma-
tion by reducing to the square system

V �
t AVtb̄ = V �

t rnt . (15)
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In all these cases, after finding the vector b̄ and carrying out the correction
of the iterative approximation by formula (15), the next “restart” begins with
the calculation of the residual

rnt+1 = f − Aunt+1, unt+1 = ûnt . (16)

3.2 Parallel Domain Decomposition Methods

Historically, the DDM came into existence in the 19th century as an alternating
Schwartz method for the theoretical study of geometrically complex boundary
value problems by reducing them to simpler ones. If we turn from the differential
equations to the grid ones, then, in algebraic terms, the initial decomposition of
a domain into subdomains corresponds to the use of the Seidel block method.
In due course, this method was transformed into the additive Jacobi–Schwartz
block method, which is a natural way to parallelize the computational process
on an MPS. Currently, both geometric and algebraic interpretations of the DDM
exist on equal terms, mutually generalizing each of the approaches.

Referring to the block representation of SLAE (4), we can write down the
iterative Jacobi–Schwartz method in the following form:

Bq,qu
n+1
q ≡ (Aq,q +θDq)un+1

q = fr +θDqu
n
q −

∑

r∈Ωq

Aq,ru
n
r , r = 1, . . . , P, (17)

where θ ∈ [0, 1] is the iterative parameter and Dq is the diagonal matrix defined
by the relation

Dqe =
∑

r∈Ωq

Aq,re, e = (1, . . . , )� ∈ RNq.

Let us turn to the geometric interpretation of this algorithm and emphasize that
the solution of each q-th Eq. (12) is an independent solution of the auxiliary
boundary value problem in the subdomain Ωq. In this case, the formally intro-
duced values θ and Dq correspond to the use of interface conditions between the
contacting subdomains (see [13] for more details).

The iterative process (12) can be represented in the form:

un+1 = un + B−1
1 (f − Aun), un = {un

q }, B1 = block−diag{Bq,q}, (18)

where B1 is the preconditioning matrix of this version of the DDM, which can be
used in formulas (7), thereby generating preconditioned methods in the Krylov
subspaces.

Let us now consider the possibility of accelerating the described block itera-
tive Krylov-type methods based on the deflationary approach (see review in [14]).
In this case, in addition to the conventional variational and/or orthogonal prop-
erties of computational successive approximations, supplementary conditions of
orthogonality are imposed on them to the specially introduced m-dimensional
fixed deflation subspace associated with a rectangular matrix

V = (v1 . . . vm) ∈ RN,m.



100 V. Il’in

For the sake of brevity, we will discuss the use of the deflation method as applied
to the conjugate residual algorithm for solving a SLAE with a symmetric matrix
A. First, there is an approach to optimizing, in a certain sense, the vector of the
initial iterative approximation u0. Let an arbitrary vector u−1 be given. Then,
we define the vectors

u0 = u−1 + V c, r0 = r−1 − AV c. (19)

The vector of unknown coefficients c = (c1, . . . , cm)T in (19) is determined
(assuming formally that r0 = 0) from the solution of the overdetermined system

Wc = AV c = r−1. (20)

Applying the method of least squares (MLS) to (20), we find the normal
solution

c = (W�W )+W�r−1,

providing a minimum norm of the residual vector:

r0 = T0r
−1 T0 = I − W (WT W )−1WT ,

(r0, r0) = (r−1, r−1) − (W (WT W )−1WT r−1, r−1)
= (WT Wz, z) − ((WT W )−1z, z), z = WT r−1,

(21)

where the matrix T0 is a symmetric (orthogonal) projector with the following
properties:

T0 = TT
0 = T 2

0 , WT T0 = T0W = 0,

that is, the space Span(W ) belongs to the kernel N (T0). Further, from the initial
direction vector in the form

p0 = r0 − V (WT W )−1WT Ar0 = Br0, B = I − V (WT W )−1WT A, (22)

we obtain the deflation orthogonality conditions

WT r0 = 0, WT Ap0 = 0, (23)

for the vectors r0 and p0. Moreover, the introduced matrix B has the following
easily verifiable orthogonal properties:

WT AB = 0, BV = 0. (24)

Further iterations of the derived Deflated Conjugate Residual deflation algo-
rithm are performed according to the “standard” formulas of the method of
conjugate residuals with a preconditioning matrix, whose role in this case is
played by B from (22):

un+1 = un + αnpn, αn = σn/ρn, ρn = (Apn, Apn),
rn+1 = rn − αnApn, σn = (ABrn, rn),
pn+1 = Brn+1 + βnpn, βn = σn+1/σn.

(25)
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In this case, at each iteration, the minimum of the residual norm ‖rn‖ in the
preconditioned Krylov subspace

Kn(A, r0, B) = Span
(
r0, ABr0, . . . , (AB)n−1

r0
)
,

and the computed vectors satisfy the orthogonality conditions

(ABrk, rn) = σnδk,n, (Apk, Apn) = ρnδk,n, k = 0, 1, . . . , n − 1,
WT rn = 0, WT Apn = 0, n = 0, 1, . . . .

(26)

Note that the introduced preconditioning matrix B is degenerate since BW = 0.
Nevertheless, relations (24) and (26) ensure the orthogonality of all residual
vectors to the kernel N (Ā) = Span(W ) of the matrix Ā = AB, thereby ensuring
the convergence of iterative process (21)–(25).

The considered deflationary approach is quite universal and was studied in
different ways under the names of aggregation methods, coarse-grid correction,
and low-rank approximations of matrices (see [13]). Deflationary preconditioning
matrices of the form Bz from (17)–(20), in particular, can be effectively used in
conjunction with Bz in the multi-preconditioned semi-conjugate residuals (MP-
SCR). In this case, we will in fact make use of the coarse-grid correction to
accelerate the DDM, and each column of the matrix V from (14)–(17) corre-
sponds to certain subdomains (see [13,14]).

On the whole, it can be said that there are a lot of versions of the DDM
in Krylov subspaces, as well as a lot of adjoining multigrid methods, but here
we do not dwell on them. For example, according to the methodology of quasi-
structured grids in individual subdomains, auxiliary special-type SLAEs can
be solved either by fast Fourier transform algorithms, or by optimal implicit
alternating direction methods, or by modern adaptive incomplete factorization
techniques, or by low-rank approximations of HSS matrices (hierarchical semi-
separable approximations; see [15]), and so on.

4 On the Technology of Programming Parallel
Algorithms

The final performance of computer-aided implementations of the SLAE solution
methods obviously depends on two main factors: the mathematical efficiency of
the application of the algorithms (which we already discussed in the previous
section) and the adaptability of their mapping onto the supercomputer architec-
ture, which determines the quality of the parallelization of a computing process
of heterogeneous type with heterogeneous arithmetic devices (universal CPUs)
or specialized accelerators of the type of GPGPU or Intel Phi, functioning with
distributed or hierarchical shared memory.

In the framework of two-level methods for decomposing functioning domains
in Krylov subspaces, scalable parallelization is generally achieved by means of
hybrid programming. At the top level, the Jacobi–Schwartz block matrices for
the subdomains with interprocessor exchanges are implemented in a distributed
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way by organizing the MPI processes. At a lower level, the simultaneous solution
of auxiliary SLAEs in the subdomains is performed on multi-core processors with
shared memory, by using multithread computing. Additional acceleration can
be accomplished using vectorization of operations in the AVX-type command
system.

To ensure a high performance, several technological aspects need to be con-
sidered. First, to avoid idle processors that implement the solution of various
auxiliary SLAEs, it is necessary to construct a balanced partition of the domain
into subdomains, something that is not generally an easy task. Strictly speak-
ing, all SLAEs in subdomains must be solved at the same time; this is highly
problematic to attain on heterogeneous devices. For example, the equality of
the dimensions of the algebraic systems does not ensure their being solved syn-
chronously, even in case of identical calculators. The second point is associated
with a decrease in communication losses. One of the possibilities of the task is
associated with matching of data transfer and arithmetic operations in time, and
the other, with the formation of information buffers and special management of
communication operations. In general, it should be noted that the study and
design of optimal computational schemes, including parallel ones, is mainly an
experimental work whose success largely depends on the quality of planning and
on the equipment used.

When developing a new generation of mathematical software, one cannot but
bear in mind that there is already a huge number of publicly available libraries
that implement computational algebra methods, including high quality ones and
those adapted for modern supercomputer platforms, in which a considerable
intellectual potential is incorporated.

The world scientific community engaged in numerical methods for linear alge-
bra has historically turned out to be well organized, has its own regular journals
and conferences, and has actively participated in contact groups throughout
many years. What is even more important, these activities are not only com-
mitted with the development and theoretical analysis of new methods but also
with the development of software and experimental research into the efficiency
and performance of computer implementations on modern platforms.

The greatest success has been achieved in computational algebra problems
involving relatively small matrices, both dense and sparse, corresponding to the
BLAS and SPARSEBLAS libraries which have become standard and are widely
used (for example, in the Intel MKL library, which features one of the most
effective “direct solvers”: PARDISO). Taking into account the current state of
affairs, it can be said that the fundamental issues concerning software problems
are basically close to each other, although research is steadily conducted to
improve both algorithms and their implementations on newly emerging computer
architectures.

Regarding the development and testing of methods for large problems with
sparse matrices, the research in this case is carried out mostly in an academic
style since it is associated with general high-tech problems of mathematical mod-
eling, including the construction of grids, approximations of initial equations, and
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others, that are related to indivisible stages of a single computing process. In
particular, the construction of subdomains for large tasks must be started at the
stage of generation of grids and distributed among processors, since the global
matrix may not fit in the memory of a single computing node.

At the same time, libraries for solving large sparse SLAEs are available in
fairly large numbers. Among the best known, we can mention SPARSE KIT,
PETSc, HYPRE (see an informative review in [8]), and LParSol [16]. During
the last decades, however, a noticeable trend in the development of software for
mathematical modeling has been the creation of integrated computing environ-
ments focused on coordinating the participation of various groups in the design
of products with a long life cycle, showing a steady development of functionality
and adaptation to the evolution of computer architectures. To a certain extent,
DUNE [17], INMOST [18], and BSM [10], which include libraries of algebraic
solvers, can serve as examples of such developments.

5 Technical Requirements for the Creation of an ICE

An overview of the classes of tasks and methods for solving them suffices to
see that the creation of mathematical software that claims to be an integrated
computing environment for a broad range of problems is a big and complex
process that requires significant investments and the involvement of highly qual-
ified specialists from various fields. Obviously, such a knowledge-intensive and
resource-demanding project should be planned on a strict methodological basis
which can be defined through the following list of technical requirements for the
content of research and development (R & D):

– A wide range of functionality with a regular support on modern scientific and
technological levels. In our particular case, this implies a flexible expansion of
the composition of solved SLAEs by means of different spectral, variational,
structural, and other properties, and also with methods used and adapted
to the specific features of the algebraic systems and information methods for
their presentation and architectural specifications used by MPS. In particu-
lar, redundant functionality should generally provide for the selection of the
best algorithm from the library to solve a specific problem to achieve highly
contradictory features as of efficiency and universality.

– High performance of the code, with scalable parallelization of computations
using hybrid programming tools, and without formal restrictions either on
the number of degrees of freedom of the implemented tasks and algorithms or
on the number of used computing nodes, cores, and other devices in hetero-
geneous supercomputers with distributed and hierarchical shared memory.

– Adaptability to the evolution of computer platforms and the multi-versatility
of the functional core of the library, provided by modern component tech-
nologies and through the coordination of the external and internal working
interfaces of the software-tool kernel.

– Universal and convertible data structures that are consistent with existing
common formats and have the ability to reuse external software products
that represent a high intellectual potential.
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– Multilingual and cross-platform software functional content, ability to benefit
from different styles of teamwork and openness for coordinated participation
in the project of various groups of developers.

– Availability of user and internal interfaces that are both intelligent and
friendly and focus on wide applications and active demand in diverse pro-
duction areas by specialists of various professional backgrounds. In particu-
lar, it is necessary to distinguish between the support of effective activities
of mathematicians-developers of new algorithms, information technologists
(including experts in parallelization), and the end user, who needs only a
minimum of information about the “backstage” activity of an ICE.

These architectural principles focus on the long life cycle of the product
developed, as well as on the high productivity of the programming work of the
participants in such a high-tech project. At the same time, the focus on super-
computing involves not only the speed of the algorithms but also the intelligence
of the tool environment and skilled work with big data to avoid communication
losses.

Naturally, the system infrastructure of the ICE must include the following
library tools, necessary for the active development, maintenance, and efficient
operation of a production software product:

– means for automated testing and comparative analysis of the efficiency of
algorithms on characteristic SLAEs from methodological and practical prob-
lems, including the international matrix collections MATRIX MARKET,
FLORIDA, BOEING, and others, as well as matrix generators for standard
applications;

– user documents with descriptions of source data and features of the use
of library algorithms, including examples (EXAMPLEs) of running solvers
and recommendations on their choice for specific types of SLAEs, as well as
archives of computational scenarios with the calculation results;

– configuration management tools and support for multi-version of the func-
tional core of a library, providing a flexible expansion of the composition of
computing modules and their adaptation to computer platforms;

– means of forming interfaces with developers, end users, and external soft-
ware products, as well as the integration of the formed library modules with
application software packages;

– regularly updated knowledge base on methods and technologies of computa-
tional algebra, containing up-to-date information with cognitive analysis and
target search for scientific publications, software implementations, and sets
of test examples.

Some prototypes of such developments, mainly of the information type, are
the integration project “Tree of Mathematics” (www.mathtree.ru), supervised
by the Siberian Branch of the Russian Academy of Sciences, and the ALGO
WIKI project (www.parallel.ru), developed by Moscow State University.

It should be borne in mind that at the stages of development, verification, val-
idation, and testing of computational library modules, as well as in the course of

www.mathtree.ru
www.parallel.ru
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trials or production operations, program codes are in different forms and require
the corresponding methods of support. Different stages of product availability
can be defined depending on the organization of the technological process, from
a trial or an experimental version (alpha version) to a final product with high-
quality performance indicators. An extensive range of features in the considered
products, from the level of requirements of the modern scientific world to a high
technological level, determines the hierarchy of qualifications of the project par-
ticipants: from experts of academic background to specialists in supercomputing
technologies.

It should be specially noted the importance of creating educational versions
of an ICE, accompanied by cognitive techniques and relevant materials, aimed at
students with university lecturers and professionals in advanced computer skills
training courses.

6 Conclusions

The main result of this study is that we managed to give a concrete expression
to conceptual propositions concerning the creation of mathematical software of
new generation for the high-performance solution of a wide class of computa-
tional algebra problems. The software was constructed in the framework of an
integrated computing environment focused on a long life cycle and steady devel-
opment of a functional core and is able to adapt to the evolution of computer
architectures. It has been designed to support the coordinated participation of
various groups of developers and the active reuse of external software products. It
intends to respond to the demand of end users from various professional areas.
The system content of such a project is designed to significantly increase the
productivity of programmers through intelligent automation tools for building
parallel algorithms and their mapping onto a supercomputer architecture. In an
industrial language, the considered ICE should ensure the transition to the pro-
duction of the means of production in applied software systems as a basis for
predictional mathematical modeling.
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