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Abstract. We consider the algebraic and geometric issues of the
advanced parallel domain decomposition methods (DDMs) for solving
very large non-symmetric systems of linear algebraic equations (SLAEs)
that arise in the finite volume or the finite element approximation of
the multi-dimensional boundary value problems on the non-structured
grids. The main approaches in question for DDM include the balanc-
ing decomposition of the grid computational domain into parameterized
overlapping or non-overlapping subdomains with different interface con-
ditions on the internal boundaries. Also, we use two different sructures of
the contacting the neigbour grid subdomains: with definition or without
definition of the node dividers (separators) as the special grid subdo-
main. The proposed Schwarz parallel additive algorithms are based on
the “total-flexible” multi-preconditioned semi-conjugate direction meth-
ods in the Krylov block subspaces. The acceleration of two-level iterative
processes is provided by means of aggregation, or coarse grid correc-
tion, with different orders of basic functions, which realize a low - rank
approximation of the original matrix. The auxiliary subsystems in sub-
domains are solved by direct or by the Krylov iterative methods. The
parallel implementation of algorithms is based on hybrid programming
with MPI-processes and multi-thread computing for the upper and the
low levels of iterations, respectively. We describe some characteristic fea-
tures of the computational technologies of DDMs that are realized within
the framework of the library KRYLOV in the Institute of Computational
Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk. The
technical requirements for this code are based on the absence of the
program constraints on the degree of freedom and on the number of
processor units. The conceptions of the creating the unified numerical
envirement for DDMs are presented and discussed.
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1 Introduction

We consider the parallel computational methods and technologies for solving
very large non-symmetric sparse SLAEs with positive definite matrices

Au = f, A = {al,m} ∈ RN,N , u = {ul}, f = {fl} ∈ RN ,

(Av, v) ≥ δ||v||2, δ > 0, (v, w) =
N∑

i=1

viwi, ||v||2 = (v, v),
(1)

which arise in finite element or finite volume approximations of the multi-
dimensional boundary value problems (BVPs) on the adaptive non-structured
grids. Let we have PDE

Lu(r) = f(r), r ∈ Ω,
lu|Γ = g(r), r ∈ Γ, Ω̄ = Ω

⋃
Γ,

(2)

where L is some linear differential operator with piece-wise smooth coefficients
and l is boundary condition operator which has different types (Dirichlet, Neu-
mann or Robin) at the different surface segments of Γ , in general. The computa-
tional domain Ω̄ = Ω

⋃
Γ may have complicated geometry with multi-connected

piece-wise boundary surfaces and contrast material properties in subdomains.
We suppose that initial data of BVP (2) provide the existence of the unique
solution u(r) with the smooth enough properties, which are sufficient for valid-
ity of the numerical methods to be applied.

In recent decades, there are a lot of literature on the parallel domain decom-
position methods, and we present in the reference some books and papers only
[1–4]. The main approaches in question for DDM include the balancing decom-
position of the grid computational domain into parameterized overlapping or
non-overlapping subdomains with different interface conditions on the internal
boundaries. Also, we use two different structures of the contacting the neigbour
grid subdomains: with definition or without definition of the node dividers (sep-
arators) as the special (sceleton) grid subdomain. The first type decomposition
(with sceleton grid subdomain) is usual for FETI approach of DDM, see [1,2], but
in the second case the original matrix A has more regular block-diagonal struc-
ture. The proposed Schwarz parallel additive algorithms are based on the flexible
multi-preconditioned semi-conjugate direction methods in the block Krylov sub-
spaces. The acceleration of two - level iterative processes is provided by means
of aggregation, or coarse grid correction approach, with different orders of basic
functions, which realize a low - rank approximation of the original matrix. The
auxiliary subsystems in subdomains are solved by direct or by the Krylov iter-
ative methods. The parallel implementation of algorithms is based on hybrid
programming with MPI-processes and multi-thread computing for the upper
and the low levels of iterations, respectively.

This paper is organized as follows. In the Sect. 2 we consider the geometric
issues of the different types of domain decompositions. The next section includes
the description of the two level iterative processes for solving SLAEs in Krylov
subspaces, on the base of multi-preconditioning approache which was proposed
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by C. Greif with his colleagues in [5–7]. The Sect. 4 is devoted to the parallel
implementation of the algorithms, which are realized in the framework of the
library KRYLOV, Institute of Computational Mathematics and Mathematical
Geophysics, SB RAS, Novosibirsk. The technical requirements of this code are
based on the absence of the formal program constraints on the degree of freedom
and on the number of processor units. In the conclusion we discuss the efficiency
of the proposed methods and technologies, as well as the conceptions of the
creating the unified numerical envirenment for fast solving very large sparse
SLAEs and high perfomance computing for parallel DDMs.

2 Geometric Issues of DDM

Domain decomposition approaches can be considered at the continuous level
and at the discrete level. We use the second way and suppose that the original
computational domain Ω is discretized already into grid computation domain
Ωh. So, in the following, DDM is implemented to the grid domains only, and
upper index “h” is omitted for bravity.

Let us decompose Ω into P subdomains (with or without overlapping):

Ω =
P⋃

q=1
Ωq, Ω̄q = Ωq

⋃
Γq, Γq =

⋃

q′∈ωq

Γq,q′ , Γq,q′ = Γq

⋂
Ω̄q′ , q′ �= q. (3)

Here Γq is the boundary of Ωq which is composed from the segments Γq,q′ , q′ ∈
ωq, and ωq = {q1, ..., qMq

} is a set of Mq contacting, or conjuncted, subdomains.
Formally, we can denote also by Ω0 = Rd/Ω the external subdomain:

Ω̄0 = Ω0

⋃
Γ, Γq,0 = Γq

⋂
Ω̄0 = Γq

⋂
Γ, Γq = Γ i

q

⋃
Γq,0, (4)

where Γ i
q =

⋃

q′ �=0

Γq,q′ and Γq,0 = Γ e
q mean internal and external parts of the

boundary of Ωq. We define also an overlapping Δq,q′ = Ωq

⋂
Ωq′ of the neigh-

bouring subdomains. If Γq,q′ = Γq′,q and Δq,q′ = 0 then overlapping of Ωq and
Ωq′ is empty. In particular, we suppose in (3) that each of P subdomains has no
intersection with Ω0 (Ωq

⋂
Ω0 = 0).

The idea of DDM includes the definition of the sets of BVPs for all subdo-
mains which should be equivalent to the original problem (1):

Luq(r) = fq, r ∈ Ωq, lq,q′(uq)
∣
∣
Γq,q′

= gq,q′ ≡ lq′,q(uq′)
∣
∣
Γq′,q

,

q′ ∈ ωq, lq,0uq|Γq,0 = gq,0, q = 1, ..., P.
(5)

At each segment of the internal boundaries of subdomains, with operators
lq,q′ from (4), the interface conditions in the form of the Robin boundary condi-
tion are imposed:

αquq + βq
∂uq

∂nq

∣
∣
Γq,q′

= αq′uq + βq′
∂uq′

∂nq′

∣
∣
Γq′,q

, |αq| + |βq| > 0, αq · βq ≥ 0.

(6)
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Here αq′ = αq, βq′ = βq and nq means the outer normal to the boundary seg-
ment Γq,q′ of the subdomain Ωq. Strictly speaking, at each part of the internal
boundary Γq,q′ , q′ �= 0, the pair of different coefficients α

(1)
q , β

(1)
q and α

(2)
q , β

(2)
q for

the conditions of the type (5) should be given. For example, α
(1)
q = 1, β

(1)
q = 0

and α
(2)
q = 0, β

(2)
q = 1 correspond formally to the continuity of the solution

to be sought for and its normal derivative respectively. The additive Schwarz
algorithm in DDM is based on the iterative process, in which the BVPs in each
q-th subdomain are solved simultaneously, and right hand sides of boundary
condition in (5), (6) are taken from the previous iteration.

We implement domain decomposition in two steps. At the first one, we define
subdomains Ωq without overlapping, i.e. the contacting grid subdomains have
no the joint nodes, and each node belongs to one subdomain only. Then we
define the grid boundary Γq = Γ 0

q of Ωq, as well as the extensions of Ω̄t
q =

Ωt
q

⋃
Γ t

q , Ω0
q = Ωq, t = 0, ...,Δ, layer by layer:

Γq ≡ Γ 0
q = {l′ ∈ ω̂l, l ∈ Ωq, l′ /∈ Ωq, Ω1

q = Ω̄0
q = Ωq

⋃
Γ 0

q },
Γ t

q = {l′ ∈ ω̂l, l ∈ Ωt−1
q , l′ ∈ Ωt−1

q , Ωt
q = Ω̄t−1

q = Ωt−1
q

⋃
Γ t−1

q }.
(7)

Here Δ means the parameter of extension, or overlapping.
At the Fig. 1, we present an example of 2D grid domain decomposition with

grid sceleton subdomain whose node dividers are denoted by crosses.

Fig. 1. Decomposition of 2-D domain with grid sceleton subdomain

The second example is presented at the Fig. 2 where we have the grid decom-
position without node separators for overlapping parameter Δ = 3.
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Algebraic interpretation of DDM, after approximations of BVPs (5), is
described by the block version of SLAEs (1):

Aq,quq +
∑

r∈ω̂q

Aq,rur = fq, q = 1, ..., P, (8)

where uq, fq ∈ RNΔ
q are subvectors with the components which belong to corre-

sponding subdomain ΩΔ
q , and NΔ

q is the number of nodes in ΩΔ
q .

In the case for Fig. 1, if the sceleton subdomain is numbered as the last one,
the block matrix A has the following arrow type structure:

A = {Aq,r} =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A1,1 0 A1,P+1

. . .
...

0 AP,P AP,P+1

− − − − − − − − − − − −
AP+1,1 · · · AP+1,P AP+1,P+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

In the second case (decomposition without node dividers, Fig. 2), the matrix
A has more regular block-diagonal structure.

Fig. 2. Decomposition of the grid domain without dividing nodes

The implementation of the interface conditions between adjacent subdomains
can be described as follows. Let the l-th node be a near-boundary one in subdo-
main Ωq, see Fig. 3. Then write down the corresponding equation in the form

(Bq,qu)l ≡ (al,m + θl

∑

m/∈ωq

al,m)ul +
∑

m∈ωq

al,mum = fl +
∑

m/∈ωq

al,m(θlul − um).

(9)
Here θl is some parameter which corresponds to different type of bound-

ary condition at the boundary Γq: θl = 0 corresponds to Dirichlet condition,
θl = 1 corresponds to Neumann condition, and θl ∈ (0, 1) – to the Robin
boundary condition. The diagonal blocks Bq,q define the block-diagonal matrix
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Fig. 3. The grid stencil for near boundary node

Bs = block-diag {Bq,q} for the additive Schwarz (AS) iterative process. In the
implementation of AS we take the right hand side of (9) from the previous
iteration.

The additive Schwarz iterative algorithm is defined by the corresponding
preconditioning matrix BAS which can be described as follows. For subdomain
ΩΔ

q with overlapping parameter Δ we define a prolongation matrix RT
q,Δ ∈

RN,NΔ
q which extends vectors uq = {ul, l ∈ ΩΔ

q } ∈ RNΔ
q to RN by the relations

(RT
q,Δuq)l =

{
(uq)l if l ∈ ΩΔ

q ,
0 otherwise.

The tranpose of this matrix defines a restriction operator which restricts
vectors in RN to the subdomain ΩΔ

q . The diagonal block of the preconditioning
matrix BAS , which presents the restriction of the discretized BVP to the q-th
subdomain, is given by Âq = Rq,ΔART

q,Δ. In these terms, the additive Schwarz
preconditioner is defined as

BAS =
P∑

q=1

BAS,q, BAS,q = RT
q,ΔÂ−1

q Rq,Δ.

Also, we define so called restricted additive Schwarz preconditioner by consider-
ing the prolongation RT

q,0 instead of RT
q,Δ, i.e.

BRAS =
P∑

q=1

BRAS,q, BRAS,q = RT
q,0Â

−1
q Rq,Δ.

Let us remark, that BRAS is non-symmetric matrix even A is symmetric one.
The second preconditioning matrix which we use for the DDM iterations in

Krylov subspaces is responsible for the coarse grid correction, or aggregation
approach, based on the low-rank approximation of the original matrix A. We
define coarse grid, or macrogrid, Ωc and corresponding coarse space with degree
of freedom Nc � N , as well as some basic functions wk ∈ RN , k = 1, ..., Nc. We



Multi-preconditioned DDMs in the Krylov Subspaces 101

suppose that the rectangular matrix W = (w1...wNc) ∈ RN,Nc has a full rank
and define the coarse grid preconditioner Bc as follows:

B−1
c = WÂ−1WT , Â = WT AW ∈ RNc,Nc ,

where small matrix Â is low rank approximation of A,W is called restriction
matrix and transposed matrix WT is prolongation one.

In some papers, see [4,8], aggregation, or deflation, technique is applied for
improvement of the initial guess for Krylov’s iterative methods. Let u−1 be an
arbitrary vector. Then we can compute the initial vectors u0 and r0 by the
formulaes

u0 = u−1 + B−1
c r−1, r−1 = f − Au−1,

r0 = f − Au0, p0 = r0 − B−1
c r0,

(10)

which provide the orthogonal properties

WT r0 = 0, WT Ap0 = 0, (11)

where p0 is convential initial direction vector in the Krylov’s methods.
It is possible to choose the basic functions wk(r) from the approximation

principle. If the solution u of the original problem is smooth enough, we can
write

u =
{
ul ≈ uc

l =
Nc∑

k=1

ckwk(r l)
} ∼= Wû,

where the vector û = {ck} ∈ RNc consists of the coefficient of the expansion.
If we substitute this representation in (1), we obtain the approximate equation
AWû ≈ f . From here, we have by multiplication with WT the both sides of this
equation,

WT AWû ≈ WT f, û ∼= Â−1WT f, Â = WT AW,

u ≈ Wû ≈ B−1
c f, Bc = WÂ−1WT .

(12)

It is natural to use basic function wk(r) as some finite interpolation functions
of the different orders. In the simplest case the functions wk(r), k = 1, ..., Nc =
P , are choosen as unit in k-th subdomain and equal to zero in the other sub-
domains. It is important, that in general the coarse grid Ωc does not depend of
the domain decomposion.

Let us remark, that instead of the deflation approach (12), which is based on
the multiplication of the both sides of the original SLAE with WT , we can use
multiplication with WT AT . In this case we obtain

WT AT AWǔ ≈ WT AT f, ǔ = Ǎ−1WT AT f,
u ≈ Wǔ ≈ B̌−1

c f, Ǎ = WT AT AW, B̌c = WǍ−1W,

and application of the formulae (10) with B̌c, instead of Bc, provides the initial
guess with the other kind of orthogonal properties:

WT AT r0 = 0, WT AT Ap0 = 0.
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3 Multi-preconditioned SCR

Now, we present the general description of the multi-preconditioned semi-con-
jugate residual iterative method. Let r0 = f − Au0 be an initial residual of
the algebraic system, and B

(1)
0 , ..., B

(m0)
0 – be a set of some non-singular easily

invertible preconditioning matrices. Using them, we define a rectangular matrix
composed of the initial direction vectors p0k, k = 1, ...,m0:

P0 = [p01 · · · p0m0
] ∈ RN,m0 , p0l = (B(l)

0 )−1r0, (13)

which are assumed to be linearly independent.
Successive approximations un and the corresponding residuals rn will be

sought for with the help of the recursions

un+1 = un + Pnᾱn = u0 + P0ᾱ0 + ... + Pnᾱn,
rn+1 = rn − APnᾱn = r0 − AP0ᾱ0 − ... − APnᾱn.

(14)

Here ᾱn = (α1
n, ..., αmn

n )T are mn-dimensional vectors. The direction vec-
tors pn

l , l = 1, ...,mn forming the columns of the rectangular matrices Pn =
[Pn

1 · · · Pn
mn

] ∈ RN,mn are defined as orthogonal ones in the sense of satisfying
the relations

PT
n AT APk = Dn,k = 0 for k �= n, (15)

where Dn,n = diag{ρn,l} is a symmetric positive definite matrix, because the
matrices Pk have the full rank as is supposed.

Orthogonal properties (15) provide the minimization of the residual norm
||rn+1||2 in the block Krylov subspace of the dimension Mn:

KMn
= Span{P0, ..., A

n−1Pn−1}, Mn =
n−1∑

k=0

mk, (16)

if we define the coefficient vectors ᾱn by the formula

ᾱn = {αn,l} = (D−1
n,n)−1PT

n AT r0. (17)

For such values of ᾱn it is easy to check that the vectors pn
k , rn

k satisfy to
semi-conjugation condition, i.e.

PT
k AT rn+1 = 0, k = 0, 1, ..., n. (18)

In this case, the following relations are valid for the functionals of the residuals:

||rn+1||2 ≡ (rn+1, rn+1) = (rn, rn) − (Cnr0, r0) =
(r0, r0) − (C0r

0, r0) − ... − (Cnr0, r0), Cn = PnAD−1
n,nAT PT

n .
(19)

Let us remark that such properties are valid for any direction vectors pn
k which

satisfy to orthogonal condition (15). We will look for the matrices composed of
the direction vectors from the recurrent relations

Pn+1 = Qn+1 −
n∑

k=0

Pkβ̄k,n, (20)
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where the auxiliary matrices

Qn+1 = [qn+1
1 ... qn+1

mn
], qn+1

l = (B(l)
n+1)

−1rn+1, l = 1, ...,mn, (21)

are introduced, B
(l)
n+1 are some non-singular easy invertible preconditioning

matrices and β̄k,n are the coefficient vectors, which are defined after substitution
of (18) into orthogonality conditions (15,) by the formula

β̄k,n = D−1
k,kPT

k AT AQn+1. (22)

The following statement is valid.

Theorem 1. Let the matrices A and B
(l)
n , n = 0, 1, ...; l = 1, ...,mn be nonsin-

gular, and the matrices Pn have a full rank. Then the iterative process (14), (17),
(20)–(22) provides minimization of the residual norm ||rn|| in the block Krylov
subspaces (16). Moreover, the following semi-orthogonal properties of residual
vectors are valid:

(AγB−1
k,l r

n, rk) =

{
0, k < n,

σ
(γ)
n = (AγB−1

n,l r
n, rn), k = n.

(23)

Also, the coefficients αn,l can be computed by the formula

α
(γ)
n,l = (AγB−1

n,l r
n, rn)/ρn,l. (24)

instead of (17).

The presented MPSCR method use the dynamic, or flexible, definition of the
preconditioners B

(l)
n and, moreover, their number mn is variable at the different

iteration steps. We propose to use the “total-flexible” variants of “coarse” pre-
conditioning matrics Bc and Jacobi-Schwarz ones Bs. It means that at each n-th
iteration we can apply several number of the different coarse grids Ωl′

c,n, l′ =
0, 1, ...,mc

n, of the corresponding dimensions N l′
c,n, and different number of

Schwartz – type preconditioners Bl′′
s,n, l′′ = 0, 1, ...,ms

n (ms
n = 0 or mc

n = 0
means no using the corresponding preconditioning at the current iterations).
Let us note that application of several Schwarz preconditioners at each iteration
corresponds to weighted version of domain decomposition, proposed by Greif in
[7], and using several aggregation approaches at one iterative step can be inter-
pretated, in a sense, as additive multi-grid techniques. The simplified versions
of SCR where considered in [9]–[11], and in [10] it is called as Generalized Con-
jugate Residual (GCR) method. In a sense, SCR method is an alternative to
wellknown GMRES, see [12].

The disadvantage of the considered algorithm, as well as other Krylov’s
methods for solving non-symmetric SLAEs, is the necessity of saving the all
direction vectors what requires a lot of memory for large number of itera-
tions. There are two main ways to avoid these circumstances. The first one
consists into developing the restarts periodically: at each iteration with the
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numbers nr = r · nrest, r = 1, 2, ..., the current residual vector is computed
not by recurion (14), but from equation rnr = f − Aunr , and the next val-
ues un+1, rn+1, Pn+1 are computed recursivaly again from the beginning. In the
second way the limited orthogonalization is used, and only nlim last direction
matrices Pn, Pn−1, ..., Pn−nlim

are saved and used in the formula (20). Also, for
the case when we have too large deminsions of the Krylov subspaces, in [7] it
was proposed to use selected multi-preconditioning when some preconditioners
and corresponding direction vectors are omitted on some steps of the iterative
process.

Let us remark also, that in the overlapping DDM the vectors un are overde-
termined in the intersections of the subdomains, and we use restricted additive
Schwartz approach with the preconditioner BRAS in this case.

4 Parallel Algorithms and Technologies

The presented principles of the constructing the algorithms are implemented in
the library Krylov [12], Institute of Computational Mathematics and Mathe-
matical Geophysics, SB RAS, Novosibirsk, for the efficient parallel solution of
the large SLAEs with sparse matrices, which are saved in the compressed sparse
row format (CSR, [13]). Of course, the convertors to other convential the key
approach for the automatical construction partitioning of the weighted oriented
graph that presents the structure of grid set of equation, see Fig. 4. The synchro-
nization of the distributed computing in DDMs is provided by the MPI-processes
which are implemented for corresponding subdomains at the multi-core CPUs
with shared memory.

The main requirements to develop a proper software are the following:

– no program formal restrictions on the degree of freedom of algebraic systems
to be solved and on the number of the processor units or computational cores
used; in another words, the numerical envirenment would be provide the scal-
able parallelism in the weak and/or in the strong sense;

– application of the advanced iterative methods, with the possibility of the
extension of the library functionality;

– robust implementation on the base of hybrid programming of two-level compu-
tational process: using MPI tools for outer Krylov’s iterations and multi-thread
techniques for solving the algebraic subsystems in subdomains;

– high performance computing by using the efficient SPARSE BLAS tools [13]
and communication optimization.

The library tools include automatical construction of the balancing domain
decomposition, application of the different number of subdomains, size of over-
lapping, type of interface conditions, using various preconditioners and Krylov’s
algorithms, etc. The current version of the library does not use multi-GPU com-
puter configuration yet, and corresponding development is in progress.
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Fig. 4. The example of oriented weighted graph

5 Conclusion

At present time, there are many wellknown libraries and packages of alge-
braic iterative solvers for large sparse SLAEs: HYPRE, PETSc, Sparse Kit,
and others,– which are available by context at the Internet. The goal of the
creating the new library Krylov consists in the development of the extendable
efficient envirenment for scalable parallel solving the various types of grid alge-
braic systems (real and complex, symmetric and non-symmetric, positive definite
and non-definite, Hermitian and non-Hermitian, etc.) by advanced approaches of
DDM by means of hybrid programming at the geterogenous multi-CPU, multi-
core and multi-GPU computers. The program implementation is organized as
Open Source adapted to the evolution of the computer architectures and plat-
forms. This library has two-fold destinations. The first one consists in the pro-
viding the numerical tools for automatical construction of the algorithms, fast
developing, validation, verification, testing, and comparative analysis of the new
methods. The second aim includes the development of the high preformance code
and friendly interface for the end users. In principle, this is not group project, and
it is oriented to the wide cooperation of the computational algebra community.

Acknowledgements. The paper is supported by the Russian Scientific Foundation
grant N 14-11-00485 and RFBR grant N 14-07-00128.
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