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Abstract. The use of a neural network approach is associated with high requirements for 

software implementation. The main criteria is a high degree of accuracy in the recovery of the 

desired geological-physical model of the environment (GPME) and processing speed. The 

paper presents a description of the developed neural network architecture for solving the 

inverse problem of geophysics for determining the geometric properties of GPME objects. The 

performance of a single neural network and an ensemble of neural networks (NN) has been 

evaluated. The results are presented comparing the operating time of the NN when restoring 

models on various computing devices: CPU and GPU. The results of experiments on the 

restoration of various GPME using the developed NN based on the LSTM layer and the U-Net 

architecture are presented. This work was supported by the RFBR grant No. 19-07-00170. 

1.  Introduction 

The aim of the work is the development and study of a methodology that uses basically neural 

networks. This approach is used to solve the problem of reconstructing geological and physical models 

of media from wave field patterns [1]. To this end, we developed software for the implementation of 

the NN architecture and tested the developed neural networks. The results showed a good match with 

the original pictures of the models of GPME. Thus, the paper shows the high practical significance and 

applicability of the neural network approach to solving the inverse problem of geophysics. The 

solution of such a problem is connected with the restoration of 2D GPME and the determination of the 

geometric characteristics of the object in the form of a cavity located in the medium. Under the cavity 

should be understood as an oval region with non-zero values of elastic parameters. The elastic medium 

model is represented by a rectangular area in a 2D coordinate system. The case of an isotropic 

inhomogeneous medium described by three parameters is considered: two velocities of elastic waves 

and density. To train a neural network, it took the results of solving a direct geophysical problem of 

modeling the propagation of elastic waves in a 2D environment. As a result of a series of numerical 

experiments, a set of initial GPME models and a set of 2D field images were obtained. The presented 

calculation results are used as test data for testing the performance of the NN. 2D modeling of the 

propagation of elastic waves was performed using the computational resources of the Siberian 

Supercomputer Center of the Siberian Branch of the Russian Academy of Sciences: cluster НКС-30Т 

and НКС-1П. 
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Analysis of the wave field images showed that for high-quality NN work it is necessary to store 

information about the sign of the wave amplitude. The use of a three-channel image at the input of the 

NN leads to a significant increase in the amount of memory occupied by the model in the learning 

process. Therefore, when working with a neural network, it is necessary to convert a three-channel 

snapshot of the wave field into a single-channel one, while preserving the information about the wave 

amplitude. 

It should be noted that the simulation results presented in the images are interrelated. The observed 

pattern of wave propagation of the current image depends on the picture in the previous image 

(iteration step in the calculation time). So The neural network must store certain information about 

previous images to form a qualitative opinion on the structure of the GPME. 

It can be concluded that the target model of the neural network is faced with the task of analyzing 

the sequence of images for working with the wave field, as well as the task of segmentation to restore 

the position and size of the cavity. 

2.  Neural network development 

2.1.  Neural network training 

To obtain a trained neural network model, it is necessary to solve the problem of optimizing the 

function defined by this model. First of all, it is necessary to determine the loss function, depending on 

the task set for the NN. The loss function is a function whose arguments are the correct answer to the 

input data set and the answer received by the neural network. When teaching NN its parameters tend 

to lead to such a form that the loss function takes the smallest value. In other words, when training a 

neural network, it is required to choose its weights so that the loss function takes the minimum value 

[2].  

In order to apply gradient descent for training an NN, a backpropagation method was developed. It 

consists in propagating error signals from the network outputs to its inputs, in the opposite direction. 

This is achieved at the expense of the chain rule - the rule of differentiation of a complex function, 

which allows us to calculate the derivative of the composition of several functions on the basis of 

individual derivatives. 

Using the method of back propagation of error, it becomes possible to study deep NN. Such NN 

have 2 or more layers in their structure. At the expense of the rule of the chain, the error during 

training extends from the output of the NN to its initial layers. 

When teaching neural networks, stochastic gradient descent is widely used, since it offers an 

advantage in speed compared to standard gradient descent. When used, the value of the gradient is 

approximated by a gradient of the cost function calculated on one element of training [3, 4]. 

2.2.  Data preparation 

The size of the GPME and the obtained wave field images for teaching the NN was originally 

929×186 pixels. It should be noted that the process of training the NN model to restore images of this 

size requires a large amount of computational resources — RAM and processor time. Therefore, to 

perform the work it was necessary to change the size of the input data in the form of images. First of 

all, the wave field and GPME were trimmed to sizes 736×184. It turned out that such a pruning did not 

spoil and did not remove the basic information, which reflects the presence of a cavity. Then the size 

of the images of wave field images and GPME was reduced to 256×64. This is for ease of operation 

and the need to use MaxPooling’s operation. This operation is used to quickly increase the end-

neurons of the field of perception. During this operation, the size of the incoming image is divided into 

two. Thus, the most advantageous dimensions of the sides of the input image for a model are multiples 

of 2. If one of the sides of the image is not such, at a certain stage of the model’s direct passage, 

information about a row or column of pixels may be lost, since the division will be integer and the 

remainder of the division will be discarded. 
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For high-quality training of any neural network that works with images, first of all, the requirement 

is to have a large amount of training data. During the study, there was a problem with a small number 

of GPME for training. In total, there were 107 models, each of which had 14 snapshots of the wave 

field propagation. 

To increase the amount of training data, noise from input images with normally distributed noise 

was used. For each GPME several copies were created, where the wave field patterns were noisy 

randomly. The mathematical expectation of the distribution of such noise was zero, and the dispersion 

was as small as possible and ranged from 10-8 to 5×10-8. Using this augmentation method, the number 

of images in the training sample was increased from several dozen to 4–5 thousand. On such a number 

of images, the target model of the neural network could already be trained and highlight any patterns 

in the data to solve the problem. 

2.3.  LSTM-based architecture 

To implement the model based on the LSTM layer, it was first necessary to create a neural network 

unit. Such a block is necessary to encode information from each snapshot of the wave field into a 

numerical vector. Then the vector can be transferred to the input of the recurrent layer. Simultaneous 

learning of such a model takes too much memory. The computing devices available for the job do not 

have the necessary resources. Therefore, the learning process of such a model consists of two stages. 

The first is the training of a wave field image encoder. The second is the training of the GPME restorer 

from a sequence of numerical vectors obtained using an encoder. 

In order to get a quality encoder, he was trained on the principle of auto-encoder. The autocoder is 

a neural network that has a narrowing in its architecture and is trained to play its own input. 

Autocoders are widely used in solving various problems. In particular, when solving the problem of 

generating semantic numerical vectors for words (word2vec). 

Figure 1 shows the structure of the simplest auto-encoder. In the place of narrowing of such an 

autocoder during training, such a numerical vector is formed, from which the model can then easily 

restore the original data. In this case, the appearance of the most representative numerical vector for 

the input data is said. After learning such an autocoder, its first part, before narrowing, can be used to 

encode the input data into a vector of smaller dimension. The first part of the autocoder is called the 

encoder. 

 

 
Figure 1. The simplest auto-encoder with a narrowing in the center on the example of NN from 

fully connected layers. 
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In the context of this task, the auto-encoder was assembled from convolution and pulling 

operations (encoder, first part) and sweep and anpuling (decoder, second part). The architecture of the 

auto-encoder was almost completely analogous to the architecture of the segmentation model of the 

neural network from [5], however, this technology was not applicable in this task due to the lack of 

data transmission over time within the model itself. 

2.4.  Reducer Architecture 

The reducer of the GPME should have taken as input a sequence of numerical vectors created by the 

encoder and synthesize the GPME in which, according to his assumption, this is precisely the 

propagation of the wave field. Obvious was the need to use the operations of unpilling and scanning to 

realize the possibility of generating images based on numerical data coming from the LSTM layer [5]. 

During the direct passage of the model. Figure 2 shows the final architecture developed by the NN. 

 

 
Figure 2. Developed NN architecture based on LSTM layer. 

2.5.  Restored GPME Architecture based on U-Net model 

To build a neural network model based on the U-Net architecture [6], it was necessary to solve the 

problem of storing information in time from all incoming wave field images. To solve this problem, it 

was decided to add the output information from each level of the model after running each snapshot of 

the wave field. Each shot at the same time passed through the same weight. In other words, one 

encoder was used for all wavefield images, instead of separate encoders for each image. Subsequently, 

the sum of the encoded properties from each level was processed by subsequent layers of the model at 

the same level. Thus, from each snapshot that came to the input of the model, features of different 

levels were extracted, which were then used by the decoding part. Figure 3 shows the architecture of 

such a model. 
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Figure 3. Designed by NS based on U-Net architecture. 

3.  Experimental results 

3.1.  Recovery examples 

To confirm the quality of the recovery of the GPME with the developed models, experiments were 

carried out on the direct processing of wave field images developed by the NN, followed by 

visualization of the results. 

The results of the restoration of the GPME on one wavefield pattern based on the LSTM layer 

 (Figure 4) and the U-Net architecture (Figure 5) are presented. GPME models with different sizes and 

position of a cavity in an isotropic medium were considered. 

 
Figure 4. Result of restoration of the GPME based on the LSTM layer. 
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Figure 5. Result of restoration of the GPME based on the U-Net architecture. 

 

Thus, when comparing the results presented in Figures 4 and 5, it can be seen that the model based 

on the U-Net architecture did much better than the model based on the LSTM layer. You can evaluate 

the quality of the restored model compared to the original. When using the U-Net, the oval area of the 

cavity is more fully restored.  

3.2.  Comparison of the working hours of the NN 

The process of developing an NN is associated both with the quality of the results obtained and with 

speed. To compare the work of the presented NN architectures, experiments were carried out to restore 

models on different computing devices: a CPU and two GPUs. The main difference used by the GPU 

in the type and size of memory. The Nvidia GTX 850M is equipped with 4 GB DDR3 memory. 

Nvidia Titan X is equipped with 12 GB GDDR5 memory. The core frequency is also different. While 

the GTX 850M has a core frequency of 876 – 936 MHz, the Titan X has a core frequency of 1000 – 

1089 MHz. All this gives Titan X an advantage in the processing speed of the NN model. 

Evaluation of the execution time is carried out for single models and for their ensemble. An 

ensemble should be understood as a set of models that process the same data, whose readings are then 

averaged to improve the quality of their work. 

In Figures 6, 7 shows the results of measuring the processing time of models based on the LSTM 

layer and the U-Net architecture on various devices. 
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Figure 6. Measurement times for processing models based on the LSTM layer on various devices. 

 

 
Figure 7. Measurement times for processing models based on the U-Net architecture on various. 

Devices. 
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Processing a single model based on the LSTM layer runs about twice as fast on the Titan X as on 

the Intel Core i5 CPU and about one and a half times faster than the GTX 850M GPU. When 

processing the ensemble, Titan X also wins. The processing time of the ensemble of models based on 

the LSTM layer on it is about 2 times less than on the CPU Intel Core i5 and one and a half times less 

than on the GTX 850M. 

Processing a single model based on the U-Net architecture takes about 15 times longer on an Intel 

Core i5 CPU and 6 times longer on a GTX 850M than on a Titan X. Processing an ensemble of such 

models takes about 22 times more time on an Intel CPU Core i5 and 5 times more time on the GTX 

850M than on the Titan X. 

When comparing the results obtained between the two models, it was concluded that, on average, 

models based on U-Net architectures are processed longer than models based on the LSTM layer. 

However, the time difference is compensated by the demonstrated quality of the work of models based 

on the U-Net architecture. 

4.  Conclusion 

The paper presents the architecture of the developed NN. The results of practical application of the 

developed NN architectures based on the LSTM layer and U-Net are shown. The features of the 

construction of such NN are described. The results of practical application of the developed software 

for the implementation of NN on test examples are presented. According to the obtained results, we 

can conclude that models based on the LSTM layer are processed faster than models based on the U-

Net architecture. Also the ensemble of these models is processed much faster. This is achieved due to 

the fact that the coding part of this architecture only needs to process the wave field images that came 

to the model input once. After that, you can analyze the resulting sequence of vectors with different 

models of reducing agent to get the result of the ensemble. Models based on the U-Net architecture 

have no divisions with common parts, therefore, to analyze the wavefield pattern, complete processing 

is required for each U-Net-based model. 

Despite the serious superiority of LSTM-based models in terms of processing time, both types of 

models are applicable to the on-site inspection task, since the processing time of a single model does 

not exceed 800 milliseconds, and the processing time of an ensemble of 5 models does not exceed 

3300 milliseconds on a conventional dual-core CPU. 

References 

[1] Yakimenko A A, Morozov A E, and Karavaev D A 2018 IOP Conf. Series: Journal of Physics: 

Conf. Series 1015 032148 doi: 10.1088/1742-6596/1015/3/032148 

[2] Gavrilov A V and Maliavko A A 2017 Proc. of the 2 Russian-Pacific conf. on computer 

technology and applications 64–67 

[3] LeCun Y and Bengio Y 1995 Convolutional Networks for Images, Speech and Time-Series (The 

Handbook of Brain Theory and Neural Networks MIT Press) pp 3361  

[4] Yue-Hei Ng, Joe and Hausknecht 2015 Proceedings of the IEEE conference on computer vision 

and pattern recognition 4694–4702 

[5] Noh H, Hong S, Han B 2015 Proceedings of the IEEE International Conference on Computer 

Vision (ICCV) 1520–1528 doi:10.1109/ICCV.2015.178 

[6] Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted 

Intervention 234–241  


