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LEAST SQUARES METHODS IN KRYLOV SUBSPACES

V. P. Il’in∗ UDC 519.6

The paper considers iterative algorithms for solving large systems of linear algebraic equations with
sparse nonsymmetric matrices based on solving least squares problems in Krylov subspaces and
generalizing the alternating Anderson–Jacobi method. The approaches suggested are compared
with the classical Krylov methods, represented by the method of semiconjugate residuals. The
efficiency of parallel implementation and speedup are estimated and illustrated with numerical
results obtained for a series of linear systems resulting from discretization of convection-diffusion
boundary-value problems. Bibliography: 12 titles.

1. Introduction

Consider solution of a system of linear algebraic equations (SLAE)

Au =
{ ∑

l′∈ωl

al,l′ul′
}

= f, A = {al,l′} ∈ RN,N , u = {ul}, f = {fl} ∈ RN , (1)

with a large real sparse matrix resulting from grid approximations of multidimensional boun-
dary-value problems by finite element, finite volumes, or other methods. In general, this matrix
is unsymmetric and ill-conditioned. In Eq. (1), ω� denotes the set of indices of nonzero entries
in the �th row of the matrix A, whose number N� is assumed to be much smaller than N . The
algorithms considered below can easily be extended to the case of complex SLAEs.

The main modern approaches to fast solution of the algebraic equations considered are based
on preconditioned iterative methods in Krylov subspaces. Main principles of such methods
are presented, for instance, in [2]. In particular, highly efficient computations with scalable
parallelism on a multiprocessor computer system (MPS) with distributed and hierarchical
shared memory are mostly based on applying domain decomposition methods, see [3] and the
references therein.

In the recent paper [1], the authors have suggested special procedures for accelerating the
convergence of the Jacobi method as an “efficient alternative” to the classical Krylov methods.
In order to solve a linear system, they have used the Anderson extrapolation, which had been
originally suggested in [4] for solving systems of nonlinear algebraic equations. A compar-
ative experimental analysis presented in [1] has demonstrated a considerable superiority of
the original alternating Anderson–Jacobi (AAJ) method over the popular generalized minimal
residual method GMRES as concerns the solution time. The idea of the AAJ method con-
sists of periodically (after a prescribed number of stationary iterations) using an acceleration
method based on solving an auxiliary least squares problem not involving orthogonalization
of the direction vectors, which is typical for Krylov variational type methods.

The present paper aims at generalizing and studying Anderson’s extrapolation algorithm
described in [1]. We suggest a nonstationary iterative algorithm and compare it with a typ-
ical Krylov approach for solving unsymmetric SLAEs, which is the semiconjugate residual
method [5] with periodic restarts. In this context, parallel implementation on multiprocessor
computer systems is considered.
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The present paper is organized as follows. In Sec. 2, we present matrix structures for some
algorithms of Anderson type, including the naturally generalized variant using Chebyshev ac-
celeration. Section 3 is devoted to analyzing the efficiency of parallel versions of the iterative
algorithms considered in comparison with the classical variational method of semicojugate
residuals in Krylov subspaces. Section 4 discusses the results of numerical experiments ob-
tained for the algorithms suggested on a series of test SLAEs, resulting from grid approximation
of two-dimensional boundary-value problems for the convection-diffusion equation.

2. Extrapolation algorithms in Krylov subspaces

Let the coefficient matrix of system (1) be written in block form as A = {Ak,k′ ; k, k′ =
1, . . . , P}, where A = D − C and D = block-diag{Ak,k} is a nonsingular block diagonal
matrix with LU factorization D = LU . Then the original system reduces, by left and right
preconditionings, to the form

L−1(D − C)U−1U u = L−1f = Ãũ = (I − T )ũ = f̃ ,

Ã = L−1AU−1 = I − T, ũ = U u, f̃ = L−1f, T = L−1CU−1.
(2)

Here, if the original matrix A is symmetric and positive definite, then both Ã and T also
are symmetric and positive definite. In this case, by 0 < λ1 < λN we denote the extreme
eigenvalues of the preconditioned matrix Ã. Note that in (2) one can also include one-sided
preconditionings, setting L = D or U = D.

The linear system (2) can be solved by the following stationary Richardson method (called
the weighted Jacobi (WJ) method in [1]):

ũn+1 = ũn + ω(f̃ − Ãũn) = ω(T ũn + f̃) + (1 − ω)ũn = Tωũn + ωf̃. (3)

If the spectrum λ(Tω) = 1−ωλ(Ã) of the iteration matrix Tω = ωT + (1−ω)I is real, then
its spectral radius ρ = max |λ(Tω)| is minimal for ω = 2/(λ1 + λN ). In the general case, the
Richardson iterations converge, provided that ω < 2/‖A‖.

In what follows, for shortness, the symbol “∼” is omitted. Following [1], given an arbi-
trary initial guess u0, we consider the following Anderson–Jacobi iterative method, based on
supplementing relations (3) with a correction procedure:

un+1 = ǔn + ωřn, řn = f − Aǔn, ǔn = un + Wncn, n = 0, 1, . . . ,

ǔ0 = u0.
(4)

Here, cn = (cn
1 , . . . , cn

mn
) ∈ Rmn , mn ≥ 1, is a certain vector of iterative parameters, and

Wn = (w(n)
1 , . . . w

(n)
mn) ∈ RN,mn is the rectangular matrix whose columns are defined as follows:

w(n)
s = un−s+1 − un−s, s = 1, . . . ,mn, 1 ≤ mn � N. (5)

The corresponding formulas for recomputing the residual vectors is given by

řn = rn − Rncn, Rn = AWn ∈ RN,mn . (6)

If we want to minimize the residual norm and set

cn = arg min
cnk

‖řn‖2, ‖řn‖2 = (řn, řn),

then from the associated least squares problem [6] the vector of iterative parameters is found
as the solution of the linear equations

(RT
n Rn)cn = RT

n rn. (7)
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If the matrix Rn is of full rank, then, after substituting the solution cn = (RT
n Rn)−1RT

n rn

into (6) and (4), the iteration formula can be written as

un+1 = un + B−1
n rn, (8)

where B−1
n formally represents the preconditioning matrix

B−1
n = [ω I + (Wn − ωRn)](RT

n Rn)−1RT
n . (9)

The vector ǔn (4) can be represented as

ǔn = un + cn
1 (un − un−1) + · · · + cn

mn
(un−mn+1 − un−mn),

and this actually is a procedure for extrapolating the current approximate solution un using
mn previous solutions un−1, . . . , un−mn , which explains the name of the method. The values
mn ≤ n may vary from iteration to iteration.

Observe that in the algorithm considered, the matrices Wn, Rn, and Bn must be recomputed
at every iteration. Moreover, the matrix Rn is not necessarily of full rank, in which case the
positive semidefinite matrix Qn = RT

n Rn ∈ Rmn,mn is ill-conditioned or singular. In the latter
case, a generalized inverse matrix should be used. In [1], in particular, the Moore–Penrose
inverse is used.

In order to simplify the realization of the above algorithm, the authors of [1] suggest the
alternating Anderson–Jacobi (AAJ) method,

un+1 =

{
un + ωrn, [an]f �= 0,

un + B−1
n rn, [an]f = 0,

(10)

where [an]f denotes the integral part of an = (n + 1)/M and M is a certain integer. Here, the
extrapolation procedure is applied periodically, whereas the remaining steps use the stationary
iterative process. In the algorithm (10), the residual vectors satisfy the relations

rn+1 =
{

rn + ωArn, [an]f �= 0,
rn + AB−1

n rn, [an]f = 0.
(11)

Obviously, the AAJ method is a dynamically preconditioned iterative process in the “reduced”
Krylov subspaces

KM,m(r0, A) = span (AM−mr0, . . . , AMr0), (12)
where it is assumed that 1 ≤ mn = m ≤ M . In the case where M = m = n, we have the
ordinary “complete” Krylov subspace

Kn(r0, A) = span (r0, Ar0, . . . , Anr0).

From (11) we obtain the relation

rM+1 = řM − AřM ,

where the vector řM is defined by (6) for n = M . This implies that the optimal coefficient
vector ᾱM , which is characterized by relation (7), has the following orthogonality property:

W T
MrM+1 = 0. (13)

The approach considered can be generalized as follows. Consider an iterative process

un+1 = un + ωn(f − Aun), (14)

where ωn are some iteration parameters, which can be chosen, for instance, using the roots
of the Chebyshev polynomials [7]. Let, for a certain n ≥ m > 1, we have an approximate
solution, which can be refined using a linear combination of the previous solutions as in (4):

u = un + Wncn + δn, cn ∈ Rm, Wn ∈ RN,m. (15)
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Here, cn is an unknown vector; the rectangular matrix Wn is determined in accordance with (4)
and (5), and δn is the approximation error. Upon substituting (15) into the original linear
system, we obtain

A(un + Wncn + δn) = f.

If, in this relation, we ignore the error δn, then for the coefficient vector we have the equation

Rncn = rn, Rn = AWn ∈ RN,m. (16)

When (16) is solved, the new approximate solution is computed by the formula

un+1 = un + Wncn (17)

rather than by (14).
The system of algebraic equations (16) is overdetermined, and the normal solution of the

resulting least squares problem can be found in different ways, see [6]. If to (16) we apply
the left Gaussian transformation, i.e., multiply both sides by the transposed matrix RT

n , then
we obtain a compatible system of the form (7), with a symmetric positive-semidefinite or an
ill-conditioned symmetric positive-definite matrix Qn = RT

nRn. In this case, for the corrected,
or extrapolated approximate solution we have, instead of (17), the formula

un+1 = un + Q̄nAT rn, Q̄n = Wn(W T
n AT AWn)−1W T

n ∈ RN,N . (18)

Note that in the modern terminology, the matrix Q̄n is a small-rank approximation (see [3]
and the references therein) of the inverse matrix (AT A)−1 (or of the generalized inverse of
AT A if the latter matrix is singular).

More numerically stable methods for solving (17) are based on applying the singular value
decomposition or QR-factorization directly to (16) because the matrix Qn obviously has an
essentially larger condition number than Rn.

Note that instead of using (14), one can apply the following three-terms algorithm of Cheby-
shev acceleration:

u1 = u0 + τ rn, τ = 2/(λ1 + λN ),

un+1 = un + τnτ rn + (τn − 1)(un − un−1), τ0 = 2,

τn = 4(4 − τn−1γ)−1, γ = (1 − c)/(1 + c), c = λ1/λN .

(19)

Here, λ1 and λN are the smallest and largest eigenvalues of the symmetric matrix A.
We emphasize that formulas (19) ensure that the current approximate solution is optimal

(in the spectral sense) for any value of n. In the case where A is a nonsymmetric matrix, one
can apply generalizations of (19), provided that the complex eigenvalues of A lie in an ellipse
with known geometric parameters, see [2, 7].

Based on the Chebyshev acceleration method, we consider two iterative periodic processes
that consist of M steps performed in accordance with (19) and a subsequent correction of
the approximate solution, using one of the following algorithms for solving the least squares
problem:

• the first variant, LSM-1, of the least squares method is based on solving the auxiliary
linear algebraic system (7), obtained by the preliminary Gaussian transformation;

• the second variant, LSM-2, differs in that the coefficient vector cn of the correction
is computed by solving the overdetermined system (16) itself using the singular value
decomposition algorithm SVD (the same algorithm is used for computing the vector cn

in LSM-1).
Upon correction, or extrapolation by formulas of the type (17), the subsequent residual

vector is computed from the original equation. In this manner, the cycles consisting of the
Chebyshev acceleration and correction are repeated until an approximate solution is computed
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with a desired accuracy. Observe that in all the above-considered methods, the residual vectors
lie in Krylov subspaces of the form (12).

Note that from the theoretic viewpoint, the variants LSM-1 and LSM-2 coincide because,
in exact arithmetic, by solving Eqs. (7) and (16) one obtains one and the same vector

cn = (P (m)
n )T S−1

n (P (N)
n )T rn, (20)

where P
(m)
n ∈ Rm,m and P

(N)
n ∈ RN,N are orthogonal matrices, whereas S−1

n = diag {s−1
k ; i =

1, . . . ,m < N} ∈ RN,m is a diagonal matrix whose nonzero entries s−1
i,j = s−1

i δi,j are the
reciprocals of the singular values si of the matrix Rn, which follows from the singular value
decompositions of the matrices

Rn = P (N)
n SnP (m)

n , Qn = (P (m)
n )T ST

n SnP (m)
n .

We conclude this section with the following two remarks. First, construction of extrapolation
processes of the form (8), (10) with the matrices Bn actually means polynomial precondition-
ing, see, e.g., [8]. Second, an approach similar to the one considered above was applied by
Montgomery in [9] in solving special systems of linear algebraic equations over a finite field
and was referred to as the block Lanczos method.

3. parallel realizations of least squares methods and the method of
semiconjugate residuals in Krylov subspaces

In this section, we consider acceleration in parallel versions of the least squares method
and the algorithm of semiconjugate residuals (SCR, [5]) with no preconditioning, which is
equivalent, with respect to the convergence rate, to the popular algorithm of generalized
minimal residuals (GMRES, [12]) but is described by the following simpler formulas:

un+1 = un + αnpn, αn = σn/ρn, p0 = r0 = f − Au0,

rn+1 = rn − αnApn, ρn = (Apn, Apn), σn = (Arn, rn).
(21)

This iterative process minimizes the norm ‖rn+1‖ in the Krylov subspace Kn(r0, A), and the
resulting residual vectors are semiconjugate, i.e.,

(Arn, rk) =
{

0, k < n,
σn, k = n,

provided that the direction vectors pn are orthogonal in the sense that

(Apn, Apk) = ρnδn,k, (22)

where δn,k is the Kronecker symbol. Relations (22) are satisfied if the vectors pn are computed
from the recursive relations

pn+1 = rn+1 −
n∑

k=0

βn,kp
k, βn,k = (Apk, Arn+1)/ρn. (23)

Observe that at every iteration of the SCR method only one matrix-vector multiplication
is required because from (23) it follows that we also have the relation

Apn+1 = Arn+1 −
n∑

k=0

βn,kApk.

If the matrix A is symmetric, then the residual vectors become A-orthogonal, and the
recursions (23) are short because

(Arn, rk) = σnδn,k, βn,k = βn,nδn,k. (24)

Thus, we come to the conjugate residual algorithm (CR, see [2]).
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In the general case, in computing the vectors un and rn using (20)–(23), it is necessary to
store all the vectors pn, pn−1, . . . , p0. In practice, the SCR methods are realized with periodic
restarts every M iterations. This means that the residual vector is computed from the original
equation,

rMl = f − AuMl, l = 0, 1, . . . , (25)

rather than using (21), and the subsequent approximations are computed “from the beginning”,
i.e., for n > M one should change n for n − Ml in the formulas. Here, it is necessary to store
only the last M + 1 vectors pn, pn−1, . . . , pn−M .

Now we compare parallel realizations of a cycle of M iterations in the methods LSM and
SCR. This will suffice for a qualitative comparison of the performances of the algorithms
in question because they minimize the same functional in the same Krylov subspace and,
consequently, are theoretically equivalent with respect to the convergence rate.

Concerning the methods considered, we assume that they are applied to a block system of
linear equations of the form (2), and the block rows Ak = {Ak,l, l = 1, . . . , P} ∈ RNk,N , Nk

∼=
N/P , N1 + · · · + Np = N , of the coefficient matrix A are distributed in the memory of the
corresponding MPI processes, used for the first level of parallelizing the algorithms, as is done
in the domain decomposition methods (where every block row corresponds to a subdomain,
see [10]). Note that in fact to different MPI processes different computer processors correspond
(though this is not formally necessary).

In the SCR method, the direction vectors pn, pn−1, . . . , pn−M and also the current vectors un

and rn are partitioned into subvectors of lengths Nk, each of which is stored in the correspond-
ing kth MPI process. As the iterations proceed, data exchanges among processes are needed,
and their volumes should be minimized. When arithmetic operations are performed in the kth
MPI process using a multicore processor, “inner” parallelization (of the second level) can be
effected based on multithread computations (here, we omit the details). A similar distributed
data structure is formed in the least squares methods, in which case the block partition is
used for the vectors w

(M)
s , s = 1, . . . ,M . We assume that in all the algorithms the standard

double-precision computer arithmetic is used.
For a comparative analysis of the performances of the methods considered, we estimate the

time TP of performing a cycle of M iterations on P MPI processes based on the following
simplest model of the computation process:

TP = T a
P + T c

P ≈ τaVa + (τ0 + τcVc)Nc. (26)

Here, T a
P and T c

P are the times for performing arithmetic and communication operations,
respectively; τa is the average time of a single arithmetic operation, and Na is the number
of such operations (for one processor); Nc is the total number of data transmittings; τ0 is
the delay (tuning) time of a single transaction; τc is the average time of transmitting a real
number, and Vc is the average volume of one package of data transmitted. Note that in view
of the relations τ0 
 τc 
 τa, it is natural to attempt to minimize not only the total volume of
information to be transmitted but also the number of exchanges. This is important not only
from the viewpoint of the time of data transmissions but also in view of high energy costs of
communication operations.

Comparing formulas (19) for the Chebyshev acceleration (we will consider their application
in LSM-1 only) with relations (21), (23) for the semiconjugate residual method, we arrive at
the following conclusions. The method SCR requires, at every iteration, one matrix-vector
multiplication and 2(M +1) vector operations, as well as computation of M +2 inner products
of vectors. In the case of a symmetric matrix A, where we come to the CR method, the above-
indicated number of vector operations reduces to 4 and 2, respectively. It is of importance
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that this package of operations, which are carried out at each of the M iterations, can be
performed only sequentially.

On the other hand, implementation of every step of Chebyshev acceleration (19) requires
one matrix-vector multiplication and five vector operations, but no inner product is computed.
However, in implementing LSM-1, it is necessary to compute the M2 entries of the matrix
Qn = {qk,� = (Awk, Aw�)}, but all of them can be computed simultaneously when M iterations
are completed. In addition to an M -fold acceleration of the computations, this simultaneously
reduces, proportionally, the number of exchanges, which must be performed in computing
inner products of vectors distributed over different processors because the partial sums in
every CPU necessary for transmission can be assembled in one information buffer.

Thus, without going into technical details, we may claim that the Chebyshev acceleration
with correction of approximate solutions by the least squares methods has a considerable
advantage over the classical Krylov iterative methods as concerns their parallel implementation
on multiprocessor computer systems. Note that the Chebyshev acceleration formulas are not
optimal in the case where the coefficient matrix A of (1) has a complex spectrum. But this
is of little importance because in fact they are only used in order to construct a basis in the
Krylov subspace efficiently.

4. Discussion of numerical results

Consider the Dirichlet problem for the convection-diffusion equation

−∂2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω,

u|Γ = g(x, y),
(27)

in a square computational domain Ω = (0, 1)2 with boundary Γ and the convection coefficients
p, q, which are assumed to be constant for simplicity.

This boundary-value problem is approximated on a square grid with step size h = 1/(L+1)
and the total number of interior nodes N = L2,

xi = ih, yj = jh, i, j = 0, 1, . . . , L + 1,

using the five-point finite-volume monotone approximations of exponential type [11]

(Au)l = al,lul + al,l−1ul−1 + al,l+1ul+1 + al,l−Lul−L + al,l+Lul+L = fl, (28)

having the second order of accuracy. Here, � is the “global” number of a grid node in the
natural node ordering, � = i + (j − 1)L.

Generally speaking, formulas for the coefficients in Eqs. (28) may be different, and we use
the following ones:

al,l±1 = e±ph/2/h, al,l±L = e±qh/2/h,

al,l = al,l−1 + al,l−L + al,l+1 + al,l+L.
(29)

Equations (28) are written for the interior nodes of the grid, but for the near-boundary
nodes with the subscripts i = 1, L or j = 1, L the values of the solution on the boundary
should be substituted into the system of equations and moved to the right-hand side; here,
the corresponding coefficients of the left-hand side can be formally set to zero. In our experi-
ments, we have actually solved the normalized equations, which are obtained by the following
transformations with the diagonal matrix D = diag {a�,�}:

D−1/2AD−1/2D1/2u = D−1/2f,

Āū = f̄ , Ā = D−1/2AD−1/2, ū = D1/2u, f̄ = D−1/2f.
(30)
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The numerical experiments have been carried out using the standard double-precision arith-
metic for computing the values of the functions f(x, y) = 0 and g(x, y) = 1 corresponding to
the exact solution u(x, y) = 1 of the problem (27). Since the convergence rate of iterations
depends on the initial error u − u0, its influence has been analyzed by comparing the results
for the initial guesses u0 = 0 and u0 = P2(x, y) = x2 + y2. The stopping criterion used has
been of the from (rn, rn) ≤ ε2(f, f), with ε = 10−7. The computations have been carried out
on grids with N = 72, 152, 312, 632, and 1272 nodes and for m = 8, 16, 32, 64, and 128.

In the tables below, we present the results obtained in solving the problem (27) with the
convection coefficients p = q = 0 and p = q = 4 and for different initial guesses. The
algorithms applied differ in the method of forming the auxiliary linear system for finding the
coefficient vector of correction cn (to be exact, the systems obtained in LSM-1 and LSM-2
have been solved using the SVD program from LAPACK, included into the program library
MKL Intel [12]).

In Tables 1 and 2, we present the results of numerical experiments for LSM-1 and LSM-2
for the zero convection coefficients and the initial guesses u0 = x2 + y2. In every box of the
tables, the upper number stands for the total number of iterations, and the lower one stands
for the maximal error of the solution computed. The columns with m = ∞ correspond to the
cases where iterations have been repeated until the stopping criterion was satisfied using the
Chebyshev acceleration only, without correction of un using a least squares method.

Table 1. Numerical results for LSM-1, p = q = 0, u0 = P2(x, y).

N \ m 8 16 32 64 128 ∞
37 27 32 41 41 41

72 1.8 · 10−7 4.2 · 10−8 1.1 · 10−15 1.2 · 10−7 1.2 · 10−7 1.2 · 10−7

98 75 56 64 82 82
152 9.8 · 10−7 6.8 · 10−7 1.3 · 10−7 4.7 · 10−10 2.0 · 10−7 2.0 · 10−7

313 198 147 112 128 163
312 3.5 · 10−6 2.9 · 10−6 1.7 · 10−6 3.4 · 10−7 1.8 · 10−8 3.0 · 10−7

632 1083 625 389 291 206 327
1.0 · 10−5 1.0 · 10−5 8.9 · 10−6 4.6 · 10−6 9.6 · 10−7 3.1 · 10−7

1272 3859 2118 1184 746 537 653
2.9 · 10−5 2.8 · 10−5 2.8 · 10−5 2.8 · 10−5 2.0 · 10−5 3.5 · 10−7

Table 2. Numerical results for LSM-2, p = q = 0, u0 = P2(x, y).

N \ m 8 16 32 64 128 ∞
37 32 39 41 41 41

72 1.8 · 10−7 1.3 · 10−7 3.3 · 10−8 1.2 · 10−7 1.2 · 10−7 1.3 · 10−7

98 75 68 82 82 82
152 9.8 · 10−7 6.8 · 10−7 4.9 · 10−7 2.0 · 10−7 2.0 · 10−7 2.0 · 10−7

313 198 146 160 162 163
312 3.5 · 10−6 2.9 · 10−6 1.7 · 10−6 8.0 · 10−8 1.3 · 10−7 3.0 · 10−7

632 1083 624 389 262 298 327
1.0 · 10−5 1.0 · 10−5 8.9 · 10−6 3.0 · 10−6 7.4 · 10−7 3.1 · 10−7

1272 3859 2117 1183 556 537 653
2.9 · 10−5 2.8 · 10−5 2.8 · 10−5 2.0 · 10−5 2.0 · 10−5 3.5 · 10−7

Tables 3 and 4 present similar results for the convection coefficients p = q = 4.
Tables 5 and 6 provide the numerical results for the initial guess u0 = 0.
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Table 3. Numerical results for LSM-1, p = q = 4, u0 = P2(x, y).

N \ m 8 16 32 64 128 ∞
30 36 31 32 45 45

7 1.3 · 10−7 1.8 · 10−9 2.5 · 10−13 8.2 · 10−8 8.2 · 10−8 8.2 · 10−8

73 68 63 64 91 91
15 9.3 · 10−7 6.1 · 10−7 1.1 · 10−8 1.0 · 10−8 1.6 · 10−7 1.6 · 10−7

236 151 125 127 128 184
31 2.7 · 10−6 1.5 · 10−6 1.1 · 10−6 7.8 · 10−9 1.4 · 10−7 2.1 · 10−7

63 592 472 302 253 247 363
7.9 · 10−6 8.0 · 10−6 5.4 · 10−6 6.7 · 10−6 2.8 · 10−6 1.7 · 10−7

127 2612 1348 900 569 509 719
2.3 · 10−5 2.3 · 10−5 1.9 · 10−5 1.8 · 10−5 3.7 · 10−6 1.6 · 10−7

Table 4. Numerical results for LSM-2, p = q = 4, u0 = P2(x, y).

N \ m 8 16 32 64 128 ∞
36 31 46 45 45 45

7 1.3 · 10−7 1.4 · 10−7 7.5 · 10−8 8.2 · 10−8 8.2 · 10−8 8.2 · 10−8

73 68 63 94 91 91
15 9.3 · 10−7 6.1 · 10−7 2.3 · 10−7 1.0 · 10−7 1.6 · 10−7 1.6 · 10−7

236 151 125 163 128 184
31 2.7 · 10−6 1.5 · 10−6 9.7 · 10−7 7.8 · 10−7 1.2 · 10−13 2.1 · 10−7

63 592 472 302 253 247 363
7.9 · 10−6 8.0 · 10−6 5.3 · 10−6 6.7 · 10−6 2.8 · 10−6 1.7 · 10−7

127 2612 1349 900 569 509 730
2.3 · 10−5 2.3 · 10−5 1.9 · 10−5 1.8 · 10−5 3.7 · 10−6 3.0 · 10−7

Table 5. Numerical results for LSM-1, p = q = 0, u0 = 0.

N \ m 8 16 32 64 128 ∞
22 16 32 41 41 41

72 2.3 · 10−8 3.3 · 10−16 6.6 · 10−16 1.7 · 10−7 1.7 · 10−7 1.7 · 10−7

65 59 32 64 83 83
152 1.2 · 10−6 3.6 · 10−7 2.0 · 10−9 1.3 · 10−15 2.2 · 10−7 2.2 · 10−7

318 174 109 64 128 167
312 3.5 · 10−6 3.4 · 10−6 1.3 · 10−6 5.7 · 10−10 1.3 · 10−9 3.3 · 10−7

632 1116 635 384 215 128 335
1.0 · 10−5 1.0 · 10−5 9.1 · 10−6 3.0 · 10−6 1.5 · 10−7 3.9 · 10−7

1272 3987 2190 1217 764 382 670
2.9 · 10−5 2.8 · 10−5 2.7 · 10−5 2.7 · 10−5 9.9 · 10−6 3.9 · 10−7

Based on the numerical results presented, we may draw the following conclusions:
• Application of periodic correction of Chebyshev acceleration using least squares meth-

ods provides for a considerable acceleration of the iterative process; moreover, for
every grid, or dimension of the linear system, there is an optimal value of the restart
parameter m.

• The variants LSM-1 and LSM-2 considered are acceptably stable for different step sizes
of the grid and different initial guesses. At some iteration cycles, the matrices Rn do
not have full rank, but this has practically no influence on the number of iterations.
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Table 6. Numerical results for LSM-2, p = q = 4, u0 = 0.

N \ m 8 16 32 64 128 ∞
37 32 46 45 45 45

72 5.6 · 10−8 5.3 · 10−8 6.4 · 10−8 7.0 · 10−8 7.0 · 10−8 7.1 · 10−8

77 76 83 93 91 91
152 2.5 · 10−7 2.1 · 10−7 2.6 · 10−7 1.6 · 10−7 1.4 · 10−7 1.4 · 10−7

216 151 153 162 187 184
312 2.5 · 10−6 1.6 · 10−6 1.7 · 10−6 8.4 · 10−7 3.0 · 10−7 2.0 · 10−7

632 507 468 304 253 341 363
7.4 · 10−6 7.9 · 10−6 5.2 · 10−6 2.2 · 10−6 1.8 · 10−6 1.6 · 10−7

1272 2416 1071 914 569 509 721
2.3 · 10−5 2.3 · 10−5 2.3 · 10−5 1.1 · 10−5 4.2 · 10−6 1.7 · 10−7

• Iterative processes with LSM-1 and LSM-2 provide for an approximately the same con-
vergence rate for the considered symmetric and nonsymmetric linear algebraic systems
with various values of the convection coefficients p and q.

• The supplementary numerical experiments, whose results are not presented here for
shortness, demonstrate that the Chebyshev acceleration is sufficiently numerically sta-
ble with respect to perturbations. For instance, if, in formulas (19), the value of λ1

is increased several times or even if one sets τn = 1, i.e., the stationary Richardson
method is used, then the number of iterations somewhat increases but not much.

We conclude the paper with the following remark. Application of least squares methods,
considered in [1], should be regarded not as an “efficient alternative” to Krylov iterative
methods but as an essential enrichment of the class of algorithms considered, which is especially
promising from the standpoint of parallel implementation on multiprocessor computer systems.
As to issues concerning the performance and efficiency of these methods, including domain
decomposition techniques and various preconditioning methods, further studies are needed.

This work was supported by the Russian Science Foundation (project No. 14-11-00485) and
the Russian Foundation for Basic Research (project No. 16-29-15122).

Translated by L. Yu. Kolotilina.
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