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Abstract. In the paper, we describe one simple WENO reconstruction for the Godunov
method that allows one to get a version of the low-dissipation method. We describe in detail
the procedure for reconstructing the ”right” and ”left” values of physical variables, which are
used as arguments for an exact solution of the Riemann problem in the Godunov method. In
the discontinuity decay test, we verify the quality of the developed numerical method and study
its accuracy order. As a model task, the problem of multiple explosion of white dwarfs as a
result of their high-speed collision in a three-dimensional problem statement will be considered.

1. Introduction
The Godunov method has been known for over 60 years and it is successfully used to solve
hydrodynamic problems with discontinuous solutions and shock waves. After the original
method had been developed many modifications of the Godunov method, aimed to reduce its
numerical dissipation, have been proposed. The main modifications are MUSCL-like schemes
[1, 2] and Kolgan solver [3], piecewise-parabolic method [4] and its compact implementation
[5, 6] with extension to operator splitting approach [7], equations of magnetohydrodynamics [8]
and relativistic hydrodynamics [9].

The main idea of all modifications is the use of piecewise polynomial representations of the
solution. It brought with the development in the form of the WENO schemes [10, 11, 12, 13]
with piecewise cubic representation of the solution [14, 15] up to the 17th order of precision
[16]. Note that schemes like ”Harten - Lax - van Leer” [17] or Lax-Wendroff [18] had been as
the base solver. In this paper, we propose a new version of the modern implementation of the
Godunov scheme [19] using the WENO reconstruction to obtain the low-dissipation property of
the numerical method.

In the second section, we describe in detail the construction of the modern version of the
Godunov method and the reconstruction of the solution to obtain the low-dissipation property.
The third section deals with the verification of the numerical method on the Sod problem and
the study of the convergence order of the developed method. The fourth section demonstrates
the application of the developed numerical method to simulate multiple explosions of white
dwarfs during their high-speed collision in the form of the Iax supernova explosion. The fifth
section is a conclusion.
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2. Numerical Method
Let us consider the equations of hydrodynamics in a one-dimensional case:

∂ρ

∂t
+
∂ (ρu)

∂x
= 0,

∂ρu

∂t
+
∂
(
ρu2 + p

)
∂x

= 0,

∂

∂t

(
p

γ − 1
+
ρu2

2

)
+

∂

∂x

([
p

γ − 1
+
ρu2

2
+ p

]
u

)
= 0,

where ρ is a density, u is a normal velocity, p is a pressure, γ is an adiabatic exponent , c =
√

γp
ρ

is a sound speed.
In the computational domain, we introduce a uniform grid with a spatial step h. The time

step τ is computed from the Courant condition:

τ × (c+ max |u|)
h

= CFL < 1,

where CFL is Courant-Friedrichs-Lewy number. Also, to describe the numerical scheme, we
introduce the value of the total mechanical energy:

ε =
p

γ − 1
+
ρu2

2
.

The values of conservative (ρ, ρu, ε) and physical (ρ, u, p) variables are defined at the cell centers
with a half-integer index. The values of flows through the boundaries of cells (ρu, ρu2+p, [ε+p]u)
are defined at nodes with an integer index. The scheme of Godunov is written as:
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where Rni , Uni , Pni is a solution of the discontinuity decay problem or the Riemann problem.
Dirichlet-type conditions are used as boundary conditions.

Let us consider the solution of the linearized decay of the discontinuity for two neighboring
cells (the index L denotes the left cell, the index R stands for the right cell) in accordance with
the work [19]. In case of a supersonic flow on the left, when the condition uL > cL is satisfied,
the solution of the Riemann problem is:

P = pL, U = uL, R = ρL.

In the case of a supersonic flow on the right, that is, when the condition uR < −cR is satisfied,
the solution to the Riemann problem is:

P = pR, U = uR, R = ρR.
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Otherwise, the velocity of the left wave is computed by the equation:

dx/dt = uL − cL,

and the following condition is satisfied on it:

(uL − U) +
pL − P
ρLcL

= 0.

The speed of the right wave is computed by the formula:

dx/dt = uR + cR,

and there is the next condition on it:

(uR − U)− pR − P
ρRcR

= 0.

As a result, the values of the velocity U and pressure P at the boundary of the cells are computed
by the equations:

P =

pL
ρLcL

+ pR
ρRcR

+ uL − uR
1

ρLcL
+ 1

ρRcR

,

U =
ρLcLuL + ρRcRuR + pL − pR

ρLcL + ρRcR
.

In the paper [19] there had been proposed the original approach based on the constant value of
p− ρc2 at the characteristics dx/dt = u± c:

P −Rc2R = pR − ρRc2R, P −Rc2L = pL − ρLc2L.

As a result, the sign of the velocity U depends on the solution for the density R at the boundary
of the cells, calculated by the equation:

R =

 ρL

(
1− U−uL

cL

)
, U ≥ 0

ρR

(
1− uR−U

cR

)
, U < 0

.

Using the above formulas, fluxes across the boundary of the corresponding physical variables
are computed in the Godunov method.

For WENO, the reconstructions of the physical variables ρ, u and p (denoted by the function
f) on the interface i are computed by the following equations:

fWENO
L = ωL,1fL,1 + ωL,2fL,2 + ωL,3fL,3, fWENO
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To compute the coefficients ωL,i and ωR,i, the following equations are used:

ωL,i =
σL,i

σL,1 + σL,2 + σL,3
, ωR,i =

σR,i
σR,1 + σR,2 + σR,3

,

where σL,i and σR,i are calculated as:
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where ε = 10−36 has been used. Values of βL,i and βR,i are computed by the equations:
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After the WENO reconstruction, we solve the Riemann problem for the values:

fL =
3

10
fL +

7

10
fWENO
L , fR =

3

10
fR +

7

10
fWENO
R .

Note that the choice of some coefficients was based on computational experiments.

3. Verification
Consider the Sod problem for ideal gas with γ = 1.4 in the interval [0; 1] up to the time t = 0.2.
Gas is static u = 0 at the initial time. We choose the following statement of the problem: to
the left of the discontinuity at x0 = 0.5 the pressure is pL = 2 and the density is ρL = 2, to the
right of the discontinuity there are pR = 1 and ρR = 1. For all the experiments presented in
the paper, there are used the Courant number CFL = 0.2 and N = 100 (the number of cells in
the computational domain). The results of the computational experiments using the Godunov
method are presented in the figure (1). Note that when using the low-dissipation variant of the
Godunov scheme, it is possible to reduce the dissipation on the shock wave from nine to one
cell.
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Figure 1. Numerical solution when using original scheme (squares), low-dissipation scheme
(circles) and exact solution (solid line) for density (a), pressure (b), velocity (c) and internal
energy (d).

To estimate the convergence of this method, we study the behavior of the L1 norm errors:

L1 =
∑
i

h|ui − u(xi)|,

where u(xi) is the exact solution at xi, ui is the numerical result, and h is spacing of an uniform
grid. The behavior of the L1 norm for the Sod problem can be seen from the table (1). From
the table (1) it can be seen that the convergence for the density function drops almost to its half
value, then increases and becomes of the convergence order of ∼ 0.6. For pressure and velocity
functions, the behavior of the convergence order is similar. Such behavior of the convergence
order for a discontinuous solution took place for the classical Godunov scheme, also.

4. Astrophysics Simulation
As a model astrophysical problem, let us consider the multiple expolsion of white dwarfs of the
solar mass as a result of their high-speed collision in the three-dimensional formulation[20]. The
mathematical model of the evolution of white dwarfs is based on solving the overdetermined
system of gravitational hydrodynamics [21]. To close the gravitational hydrodynamics, the
adaptation of the stellar equation of state [22] is used. It consists of the contribution of the
pressure of a nondegenerate hot gas, pressure due to radiation and a degenerate gas. In the case
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Primitive variables Mesh L1 error Convergence Rate
Density 100 6.91e-03

200 4.16e-03 0.73
400 2.98e-03 0.48
800 2.07e-03 0.53
1600 1.36e-03 0.61
3200 8.81e-04 0.62

Pressure 100 5.69e-03
200 3.18e-03 0.84
400 2.38e-03 0.42
800 1.77e-03 0.43
1600 1.18e-03 0.58
3200 7.88e-04 0.59

Velocity 100 3.65e-03
200 1.87e-03 0.97
400 1.32e-03 0.49
800 9.39e-04 0.51
1600 6.15e-04 0.61
3200 4.12e-04 0.58

Table 1. L1 errors for the Sod test.

of a degenerate gas, the relativistic and nonrelativistic regimes are considered. As a net of nuclear
systems, we consider the α-network [23]. In the computational experiment, the temperature of
the dwarfs reached the value of T = 108 K. At the distance of 200 km from the point of explosion,
many satellite bubbles had appeared. The figure (2) shows the density isosurface at the time
of t = 5 seconds. It can be seen from the figure (2) that the combustion fronts are correctly

Figure 2. The density of the supernova Iax type simulation.
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reproduced due to the subsonic turbulent combustion of carbon. These results confirm the
conclusions that ignition and transition to the detonation combustion are not required to obtain
sufficiently powerful explosions. In the mathematical model, we use the ultimate adiabatic
model of the state equation for a degenerate gas, which limits our possibilities for a more
realistic account of the physics of the explosion in terms of chemical composition. However, the
state equation applied in this work and allowing to describe enough the hydrodynamics of the
evolution of white dwarfs and the supernova explosions is also widely used.

5. Conclusion
A simple low-dissipation WENO reconstruction of the Godunov scheme has been proposed. In
the paper there has been described in detail the procedure for reconstructing the ”right” and
”left” values of physical variables, which are used as arguments for the exact solution of the
Riemann problem in the Godunov method. The numerical method has been verified on the
Sod problem both in terms of the solution quality and accuracy order of the scheme. The
supernova explosion of Iax type based on a high-speed collision of white dwarfs has been used
as an astrophysical application to verify the numerical method.
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