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Abstract. A new code for modeling relativistic magnetohydrodynamic flows is described in
the paper. The developed program code is based on a combination of adaptive nested grids.
Magnetic hydrodynamics of the process is simulated using nested grids. Subgrid processes are
simulated using regular grids. In the paper, we will outline the main components of program
code building. These steps are common to other program codes for magnetized flows simulation.

1. Introduction
Many astrophysical phenomena are characterized by gas flows with relativistic velocities and the
presence of a magnetic field. The sources of such currents are the relativistic jets [1] in active
galatic nuclei [2, 3], microquasars [4], blazars [5, 6], gamma sources [7], extragalactic jets [8],
core collapse of massive stars [9, 10], black holes [11, 12, 13, 14] and double black holes [15],
neutron stars [16, 17, 18, 19], pulsars [20] and gravitational waves [21].

The top ten supercomputers listed in the 2019 November version of the Top 500 list are
equipped with graphic accelerators and Intel/Sunway processors with AVX technologies support.
Most likely, the first ExaScale performance supercomputer will be built based on the hybrid
approach. The code development for the hybrid supercomputers is not a solely technical problem,
but an individual complex scientific problem, requiring co-design of algorithms during all stages
of problem solving – from physical statement to development tools.

The problem of Mind the Gap for sub-grid processes remains even when using top-level
supercomputers when solving these problems. One possible solution to such problems is the
use of multi-level nested grids. The approach is to use adaptive nested grids to simulate
hydrodynamics. The next level of nesting of grids allows to reproduce the sub-grid more
correctly. Using the resources of SSCC, we were able to partially solve the Mind the Gap
problem by reproducing seven orders of magnitude. We hope that regular access to more
productive supercomputers will allow us to advance several orders of magnitude. Following
is a short review of codes, that allow you to use a high resolution.

The CAFE [22] program code developed to solve the problems of special relativistic ideal
magnetic gas dynamics. Such software package is based on the WENO scheme of fifth-order
accuracy with a method for solving the Riemann problem HLLE. To ensure the non divergence
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of the magnetic field, the Stokes theorem is used, similar to the approach implemented in the
Athena [23] code. The formulation of the method for cylindrical coordinates is given and code
testing is given in detail.

The GIRAFFE [24] code is developed to simulate the electrodynamic general relativistic
hydrodynamics that is to study of highly magnetized plasma flows. The code is built on the
infrastructure of The Einstein Toolkit framework and uses its main software components. Using
this infrastructure allowed us to concentrate on writing the mathematical part of the code, the
number of lines of which was only 1600 lines, which is very few for such simulations.

The main objects for modeling with the IllinoisGRMHD code [25] are black holes and
neutron stars, which are the main sources of gravitational waves. The code implements a model
of general relativistic hydrodynamics using an adaptive grid apparatus. A combination of the
piecewise parabolic method and the Lax-Harten method is used in the study. The code was
tested on a one-dimensional relativistic magnetohydrodynamic test, on point explosion in two-
dimensional cylindrical symmetry, on the Bondi accretion problem, on star collapse. And also
convergence tests were performed.

The model of semi-relativistic magnetic hydrodynamics is implemented in the MURAM
code [26]. The code is specifically designed to simulate the upper convection region of the solar
corona. The code implements the physics of thin losses based on radiation, the process of thermal
conductivity taking into account equilibrium ionization. Restriction of speeds of Alfvn and of
heat-conducting term is realized in the code using semi-relativistic magnetic hydrodynamics
with artificially reduced speed of light.

The WhiskyMHD code [27] is adapted for modeling the general relativistic magnetic
hydrodynamics of compact objects of solar masses. Among the potential range of tasks solved
by the code is the collapse of rotating magnetized stars into black holes and the phenomenology
of gamma-ray bursts. The code implements the polytropic equation of state and the ideal gas
model.

In the second section, we describe the concept of co-design, within which the numerical model
was developed. We also briefly summarize the information about numerical methods that was
used. The third section will be devoted to the parallel implementation of the code. In the fourth
section the results of relativistic magnetohydrodynamics jet simulation will be presented. The
conclusion is given in the fifth section.

2. The co-design of numerical model
As mentioned in the introduction, the development of software for supercomputers is a
complicated scientific problem and it requires the co-design at all stages of the numerical model
creation. We outline six co-design stages of numerical modeling Fig. 1. The main difference
between the co-design and the classic design of the computational model is the possibility of
returning to the previous development stage with the constraints at the current stage. This
makes it possible to build in a short time an effective computational model that takes into
account all the developments.

2.1. The parallel & distributed computing
The relativistic magnetohydrodynamics of jet is performed on architecture with shared memory
on adaptive nested meshes and is distributed using OpenMP tools within a single process. In our
computational experiments we used an Intel Optane node which has 700 GB RAM for a single
process. The sub-grid processes is performed on an architecture with distributed memory, with
a software implementation based on a one-dimensional geometrical decomposition of a regular
calculation domain by MPI tools and subsequent decomposition of the calculations into threads
using OpenMP tools within a single process. A diagram of calculations organization is shown
in Fig. 2. Regular grids at the second level of adaptive nested mesh are used to calculate
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Figure 1. The co-design conception of astrophysical problem solution method
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Figure 2. The organization of parallel and distributed computing in code

hydrodynamic turbulence, which begins with a uniform density distribution corresponding to
the cell. For a characteristic time step, one should not expect a local increase in density by
several orders of magnitude. Therefore, the use of regular grids on the second level is fully
justified.
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2.2. The numerical model
By the physics of process we apply a set of physical variables: ρ is density, v⃗ = (vx, vy, vz) is

velocity vector, p is pressure and B⃗ = (Bx, By, Bz) is magnetic field vector. We introduce the
concept of enthalpy h:

h = 1 +
γ

γ − 1

p

ρ
,

where γ is adiabatic exponent. Put the speed of light c ≡ 1. Then the Lorentz factor Γ is
determined by equation:

Γ =
1√

1− v⃗2
,

where v⃗2 = v2x + v2y + v2z . A similar expression holds for the square of the magnetic field vector.
We introduce the conservative variables of relativistic magnetic hydrodynamics. D = Γρ is

relativistic density and m⃗ = (mx,my,mz) is relativistic angular momentum defined by equations:

mx =
(
ρhΓ2 + B⃗2

)
vx −

(
v⃗, B⃗

)
Bx,

my =
(
ρhΓ2 + B⃗2

)
vy −

(
v⃗, B⃗

)
By,

mz =
(
ρhΓ2 + B⃗2

)
vz −

(
v⃗, B⃗

)
Bz,

where
(
v⃗, B⃗

)
is scalar product of the velocity vector by the magnetic field vector. Due to

invariance the magnetic field vector is a vector of conservative variables. Relativistic total
energy is determined by the equation:

E = ρhΓ2 − p+
B⃗2

2
+

v⃗2B⃗2 −
(
v⃗, B⃗

)2
2

.

As a result, the vector of conservative variables U has the form:

U =



D
mx

my

mz

Bx

By

Bz

E


=



Γρ(
ρhΓ2 + B⃗2

)
vx −

(
v⃗, B⃗

)
Bx(

ρhΓ2 + B⃗2
)
vy −

(
v⃗, B⃗

)
By(

ρhΓ2 + B⃗2
)
vz −

(
v⃗, B⃗

)
Bz

Bx

By

Bz

ρhΓ2 − p+ B⃗2

2 +
v⃗2B⃗2−(v⃗,B⃗)

2

2


.

To form the flow of the vector of conservative variables F = F (U) along the x coordinate, we

introduce a 4-dimensional vector b⃗ = (b0, bx, by, bz) having the form:

b0 = Γ−
(
v⃗, B⃗

)
,

bx = Γ

(
Bx

Γ2
+ vx −

(
v⃗, B⃗

))
,

by = Γ

(
By

Γ2
+ vy −

(
v⃗, B⃗

))
,
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bz = Γ

(
Bz

Γ2
+ vz −

(
v⃗, B⃗

))
.

Also for calculations, we need an expression for the square of the vector b⃗, which can be
determined by the equation:

b⃗2 =
B⃗2

Γ2
+
(
v⃗, B⃗

)2
.

We dwell on the outline of the scheme for the one-dimensional case. The conversion to
multidimensional formulation is done elementarily. The flow of the vector of conservative
variables F = F (U) along the x coordinate is determined by the equation:

F =



Dvx

mxvx −Bx
bx
Γ +

(
p+ b⃗2

2

)
myvx −Bx

by
Γ

mzvx −Bx
bz
Γ

0
Byvx −Bxvy
Bzvx −Bxvz

mx


.

As a result, the equation of special relativistic magnetohydrodynamics in a one-dimensional
formulation can be written as:

∂U

∂t
+

∂F

∂x
= 0.

For the last equation, we can write the Godunov scheme, defining the cells as half-integer
numbers, and the nodes as natural numbers. The scheme for the next time step has the form:

Un+1
i+1/2 − Un

i+1/2

τ
+

Fi+1 − Fi

△x
= 0,

where △x is constant mesh step, τ is time step, which can be obtained quite simply from the
speed of propagation of waves limited by the speed of light. Then the Courant condition for the
time step is written elementarily:

τ = △x× CFL,

where CFL is Courant-Friedrichs-Lewy number. We use a similar approach to modify the
Rusanov scheme, where we take the speed of light as the maximum wave propagation speed.
Then the numerical scheme has a simple form:

Un+1
i+1/2 = Un

i+1/2 −
τ

△x

(
Fn
i+3/2 − Fn

i−1/2

2
+

1

2

(
2Un

i+1/2 − Un
i+3/2 − Un

i−1/2

))
.

Next, we proceed to the procedure for recovering physical variables ρ, p, v⃗ from the vector of
conservative variables U .

In contrast to ideal magnetic hydrodynamics, the restoration of physical variables in the case
of the Lorentz factor is not a trivial task. Moreover, a solution cannot be obtained analytically in
the general case. Therefore, we will solve such a problem numerically. To do this, we introduce
the variable W = ρhΓ2 and consider the energy function written through the variable W , for
which it is necessary to find the zeros of the function:

f(W ) ≡ W − p+

(
1− 1

2Γ2

)
B⃗2 − S2

2W 2
− E = 0,
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where S =
(
m⃗, B⃗

)
, which, after recalculating the next time step, can be calculated using the

vector of conservative variables. To use the Newton method, the first derivative of the function
under consideration is necessary:

df(W )

dW
= 1− dp

dW
+

B⃗2

Γ3

dΓ

dW
+

S2

W 3
,

where
dp

dW
=

Γ
(
1 +D dΓ

dW

)
− 2W dΓ

dW

Γ3 γ
γ−1

,

dΓ

dW
= −Γ3

2S2
(
3W 2 + 3WB⃗2 + B⃗4

)
+ m⃗2W 3

2W 3
(
W + B⃗2

)3 .

Consider the iterative process to obtain physical variables on the n + 1 time layer, provided
that conservative variables on the n+ 1 layer are already known. To denote the number of the
iterative step, we will use the subscript for the variables.

(i) Take the value from the previous time step:

W0 = ρnhn (Γn)2 .

(ii) Calculate the necessary auxiliary variables:

S =
(
m⃗n+1, B⃗n+1

)
, B⃗2 =

(
B⃗n+1, B⃗n+1

)
, m⃗2 =

(
m⃗n+1, m⃗n+1

)
.

(iii) Also from the previous layer we take the speed v⃗0 = v⃗n, pressure p0 = pn and the Lorentz
factor Γ0 =

1√
1−v⃗20

.

(iv) For steps k = 1, 2, . . . we perform the following sequence of calculations:

(v) Calculate the next values of the function fk(W ) and the derivative dfk(W )/dW by the
equations:

fk(W ) = Wk−1 − pk−1 +

(
1− 1

2Γ2
k−1

)
B⃗2 − S2

2W 2
k−1

− En+1,

dfk(W )

dW
= 1− dpk

dW
+

B⃗2

Γ3
k−1

dΓk

dW
+

S2

W 3
k−1

,

dpk
dW

=
Γk−1

(
1 +Dn+1 dΓk

dW

)
− 2Wk−1

dΓk
dW

Γ3
k−1

γ
γ−1

,

dΓk

dW
= −Γ3

k−1

2S2
(
3W 2

k−1 + 3Wk−1B⃗
2 + B⃗4

)
+ m⃗2W 3

k−1

2W 3
k−1

(
Wk−1 + B⃗2

)3 .

(vi) Recalculate the value of Wk according to Newtons method:

Wk = Wk−1 −
fk(W )

dfk(W )/dW
.
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(vii) Through the value of Wk, we recalculate the physical variables:

Γk =

√√√√√√1−
S2
(
2Wk + B⃗2

)
+ m⃗2W 2

k(
Wk + B⃗2

)2
W 2

k

, pk =
Wk −Dn+1Γk

Γ2
k

γ
γ−1

, v⃗k =
m⃗+ SB⃗

Wk

Wk + B⃗2
.

(viii) If |Wk − Wk−1| > ε, then increase k by one and go to the fourth step of the algorithm,
otherwise, go to the next step.

(ix) We get the final values of the physical variables on the n+ 1 time layer by the equations:

pn+1 = pk, v⃗n+1 = v⃗k, Γn+1 = Γk, ρn+1 = Dn+1/Γk.

(x) The iterative process is complete.

At the final stage, we perform the divergence cleaning operation for the magnetic field.
To fulfill the condition ▽ · (B) = 0 we used a scheme based on the Stokes theorem:

∂B

∂t
= ▽× (v ×B)

To do this, by solving the Riemann problem at the Euler stage of the numerical method,
the values of the electric field vector E = v × B in the nodes of the computational grid
Ex,y,z

i±1/2,k±1/2,l±1/2 are determined. Then, the magnetic field values are recalculated from the

previous time step, located in the center of the cells, using the finite-difference scheme of the
equation ∂B

∂t = ▽× E. Thus, we obtain the corresponding values of the magnetic field vector
on the faces of the cells Bx

i±1/2,k,l, B
y
i,k±1/2,l and Bz

i,k,l±1/2, which provide the condition of non

divergence of the magnetic field. To perform transition to the values of the vector B in the cell,
we average the values in each direction of the corresponding components of the magnetic field
from the faces of the cell.

3. The performance analysis
As noted above, the hydrodynamics numerical simulation of SNIa is made on architecture
with shared memory. Therefore, we consider a parallel implementation of the second level
of nested meshes based on domain decomposition [28]. The MPI tools are used to perform a
one-dimensional geometrical decomposition of the calculation domain. In the case of Intel Xeon
Phi processors the OpenMP tools are employed. When using Intel Xeon Phi (KNL) processors
the calculations are vectorized with some low-level tools [29, 30].

The speedup of the code on a mesh of size 5123 has been studied. For this, the total numerical
method time was measured in seconds at various numbers of threads. The speedup P was
calculated as

P =
Total1
TotalK

,

where Total1 is the calculation time using one thread, and TotalK is the calculation time on K
threads. The actual performance has also been estimated. The results of these investigations of
the speedup and performance on the mesh of size 5123 are shown in Fig. 3. A performance of
173 gigaflops and a 48x speedup are obtained on a single Intel Xeon Phi processor.

The scalability of the code on calculation grid size of a 512p × 512 × 512 was studied using
all threads for each of the processors, where p is the number of processors being used. Thus,
a subdomain of size of 5123 was used for each processor. To study the scalability, the total
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Figure 3. Speedup and performance of the code on Intel Xeon Phi
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numerical method time was measured in seconds at various numbers of Intel Xeon Phi (KNL)
processors. The scalability T was calculated as

T =
Total1
Totalp

,

where Total1 is the calculation time with the use of one processor, and Totalp is the calculation
time with the use of p processors. The results of these investigations of the scalability are shown
in Fig. 4. A 97 per cent scalability is reached with 16 processors, which is a rather good result.

4. The numerical simulation
Let us simulate a galactic jet of density ρJ = 10−1 cm−3 and radius RJ = 200 parsec. The
jet moves at relativistic mode with Lorenz factor Γ = 10. The temperature of the galactic
atmosphere TA = 107 K, and the density ρA = 1 cm−3. Axial magnetic field according to
the magnetization parameter β ≡ pmag

p = 1. The adiabatic index γ is taken to be equal to

5/3. The density of dense cloud ρC = 10 cm−3. Figures (5) show the results of a relativistic
magnetohydrodynamics simulation of jet. The simulation results generally correspond to



MHD-PP-2020

Journal of Physics: Conference Series 1640 (2020) 012001

IOP Publishing

doi:10.1088/1742-6596/1640/1/012001

9

-2 -1 0 1 2
-0,8

-0,4

0,0

0,4

0,8

 

0,80

0,84

0,88

0,92

0,96

1,00

Figure 5. The density isolines.

magnetized jets, like a GRS 1758-258 jet – the formation of the North lobe and South lobe.
Also at the base of the jet remains a fairly dense core. Unlike similar jets, in the absence of a
strong magnetic field, the development of instability is suppressed, which makes it possible to
form lobes.

5. Conclusion
The new parallel & distributed hydrodynamical code for numerical simulation of relativistic
magnetohydrodynamics simulation was described in the paper. The code is developed on the
basis of combination of adaptive nested mesh for hydrodynamical simulation and regular mesh
that is a second level of nested mesh for hydrodynamical simulation of sub-grid physics. A
performance of 173 gigaflops and a 48x speedup are obtained on single Intel Xeon Phi processor.
A 97 % scalability is achieved on 16 processors. Results of relativistic magnetohydrodynamics
jet simulation on massive parallel supercomputers are presented.
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