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Abstract. This paper analyzes orthogomal and variotional properties of the set of iterative algo-

rithms in Krylov subspaces for solving the systems of linear algebraic equation (SLAEs) with sparse
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1 Introduction

Iterative solution of very large, sparse, non-symmetric SLAEs can be done by means of three

main approaches in Krylov subspaces, see [1]–[5]. The first one is based on Gauss transform

(left or right) of original SLAE and subsequent using the conjugate direction (conjugate gra-

dient or conjugate residual) algorithms for solving the resulting symmetric algebraic system.

The principal disadvantage here consists in growing of the condition numbers of the obtained

symmetrized matrices AAT or ATA. The second approach implements generalized conjugate di-

rection methods which provide semi-conjugate vectors computed with the help of long recurrent

relations. The examples of such algorithms are popular GMRES [6] in various modifications

and described in [7], [8], [2]-[5] different versions of Krylov iterative processes. These methods

have a significant limitation because for large number of iterations too much volume of memory

to save auxiliary vectors is necessary. In this case, the reduced variants of algorithms are used

with periodical restarts or/and with truncated orthogonalization, but the dimension of Krylov

subspaces and convergence rate are decreased for such simplifications.

The third strategy for solving nonsymmetric SLAEs implies the constructing biorthogonal

sets of residual and correction vectors which can be computed by the short two-terms recurrent
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relations. The biconjugate gradient method (BCG) was developed in [9], [10] and its transpose

free versions, conjugate gradient squared (CGS) and biconjugate gradient stabilized method

(BiCGSTAB), were proposed in [11], [12]. The stability and convergence behaviour of these

algorithms were studied later experimentally by many authors, see [13]–[15] for example.

The aim of the present paper is to extend the set of iterative processes which are based on

the biorthogonalization procedure. In the section 2 we describe the orthogonal and variational

properties of the biconjugate direction methods which include the BCG algorithm and its analog,

the biconjugate residual method (BCR). The section 3 includes the unified description of the

conjugate residual squared (CRS) method and its prototype, the CGS algorithm. In the section

4, we describe, in a similar manner, the biconjugate residual stabilized algorithm (BiCRSTAB),

together with BiCGTAB.

The last section is devoted to discussions of the results of numerical experiments for the

considered iterative processes in application for solving model 3D diffusion-convection PDEs

with different coefficients, which were considered in [16], [17] previously. The preconditioned

Krylov methods are tested at the different grids with parametrized restart procedure.

2 Biconjugate direction methods

We consider the solution of the system

(2.1) Au = f, u, f ∈ RN , A ∈ RN,N ,

where the matrix A is supposed to be positive definite, i.e.

(2.2)
(Au, u) ≥ δ||u||2, δ > 0,

(u, v) = (v, u) =
N∑
i=1

uivi, ||u||2 = (u, u).

Let us consider the following iterative process for solving non-linear SLAE (2.1):

(2.3)

un+1 = un + αnp
n,

rn+1 = rn − αnApn,
r̃n+1 = r̃n − α̃nAT p̃n,
pn+1 = rn+1 + βnp

n,

p̃n+1 = r̃n+1 + β̃np̃
n.

Here αn, βn, α̃n, β̃n are some real coefficients, un is the n-th iterative approximation of the

sought solution u, rn is corresponding residual vector and pn is called the correction vector. We

shall call also r̃n, p̃n as dual residual and dual correction vectors. From the formulas

(2.4)
rn = r0 − α0Ap

0 − . . .− αn−1Ap
n−1,

r̃n = r̃0 − α̃0A
T p̃0 − . . .− α̃n−1A

T p̃n−1,
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we have that rn, r̃n belong to Krylov subspaces

(2.5)
Kn(A, r0) = span{r0, Ar0, ..., An−1r0},
Kn(AT , r̃0) = span{r̃0, AT r̃0, ..., (AT )n−1r̃0}.

The vector u0 in (2.3) is initial guess, and the corresponding initial residual being defined

as r0 = f −Au0. The vectors p0, r̃0, p̃0 can be choosen arbitrarily, in principal, but if we define

r̃0 = f̃ − AT ũ0 for some vectors f̃ and ũ0 then the vector sequence ũn+1 = un + αnp̃
n, if it

converges, have the limit vector ũ which is the solution of dual equation AT ũ = f̃ .

The scalar iterative parameters αn, βn, α̃n, β̃n are computed from the orthogonal vector prop-

erties. We suppose in the following that correction vectors are satisfied to the one of conditions:

(2.6) (Aqpn, AT p̃k) = ρ(q)
n δk,n, ρ(q)

n = (Aqpn, AT p̃n),

where q = 0 or q = 1 and δk,n is Kronecker symbol. If the vectors rn, pn, r̃n, p̃n are subjected to

the conditions

(2.7) (Aqrn, p̃k) = (Aqrn, p̃n)δk,n, (Aqpk, r̃n) = (Aqpn, r̃n)δk,n,

then from (2.4) we have that the parameters αn, α̃n are defined as

(2.8) αn = (Aqr0, p̃n)/ρ(q)
n , α̃n = (r̃0, Aqpn)/ρ(q)

n .

Now, from the relation

(Aq−1rn, r̃n) = (Aq−1r0, r̃0)−

−
n−1∑
k=0

[αk(Aqpk, r̃0) + α̃k(Aqr0, p̃k)− αkα̃kρ(q)
k ],

which is valid under the condition (2.6), it is easy to see that the values (2.8) provide the

variational properties

(2.9) ∂(Aq−1rn, r̃n)
∂αk

=
∂(Aq−1rn, r̃n)

∂α̃k
= 0, k = 0, 1, ..., n− 1.

So, the corresponding equation is true:

(2.10)
(Aq−1rn, r̃n) = (Aq−1r0, r̃0)−

−
n−1∑
k=0

(Aqr0, p̃k)(Aqpk, r̃0)/ρ(q)
k , q = 0, 1.

Let us consider the other inner product:

(2.11)
(Aqrn, r̃k) =

((
Aqpn − βn−1A

qpn−1), (r̃0 −
k−1∑

i=0

α̃iA
T p̃i
))

=

((
Aqr0 −

n−1∑
i=0

αiA
q+1pi), (p̃k − β̃k−1p̃

k−1
))
.
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From here for k = n we obtain the equalities

(Aqrn, r̃n) = (Aqpn, r̃0) = (Aqr0, p̃n)

and new formulas for the iterative parameters:

(2.12) αn = α̃n = σ(q)
n /ρ(q)

n , σ(q)
n = (Aqrn, r̃n).

So, the relation (2.10) can be rewritten in the following form:

(Aq−1rn, r̃n) = (Aq−1r0, r̃0)−
n−1∑

k=0

(Aqrk, r̃k)2/ρ
(q)
k .

From (2.11), for k > n we have also

(Aqrn, r̃n) = (Aqpn, r̃0)− α̃n(Aqpn, AT p̃n)−

−βn−1

[
(Aqpn−1, r0)− α̃n−1(Aqpn−1, AT p̃n−1)

]
= 0,

and for k < n the following equality is true:

(Aqrn, r̃k) = (Aqr0, p̃k)− αk(Aqpk, AT p̃k)−

−β̃k−1

[
(Aqr0, p̃k−1)− α̃k−1(Aqpk−1, AT p̃k−1)

]
= 0.

So, an important orthogonal property is valid:

(2.13) (Aqrn, r̃k) = σ(q)
n δn,k.

It should be remarked that we did not define βn, β̃n yet. To do this, we just exploit the

properties (2.6):
(Aqpn+1, AT p̃n) = (Aqrn+1 + βnA

qpn, AT p̃n) = 0,

(Aqpn, AT p̃n+1) = (Aqpn, AT r̃n+1 + β̃nA
T p̃n) = 0.

So, we have

(2.14) βn = −(Aqrn+1, AT p̃n)/ρ(q)
n , β̃n = −(Aqpn, AT r̃n+1)/ρ(q)

n .

If we use now the relations

AT p̃n =
1
α̃n

(r̃n − r̃n+1), Aqpn =
1
αn
Aq−1(rn − rn+1)

and substitude them into (2.14) then we obtain the resulting formulas for parameters βn, β̃n:

(2.15) βn = β̃n = σ
(q)
n+1/σ

(q)
n .
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Let us consider the variational property of inner product

(Aqpn, AT p̃n) =
((
Aqrn + βn−1A

qpn−1
)
,
(
AT r̃n + β̃n−1A

T p̃n−1
))

=

= (Aqrn, AT r̃n) + βn−1(Aqpn−1, AT r̃n) + β̃n−1(Aqrn, AT p̃n−1) + βn−1β̃n−1ρ
(q)
n−1.

It is easy to show that the coefficients βn, β̃n from (2.14), (2.15) provide the conditions

(2.16)
∂(Aqpn, AT p̃n)

∂βn−1
=
∂(Aqpn, AT p̃n)

∂β̃n−1

= 0,

and corresponding values of ρ(q)
n for q = 0, 1 are

(2.17) (Aqpn, AT p̃n) = (Aqrn, AT r̃n)− (Aqpn−1, AT p̃n−1)
(Aqrn, r̃n)2

(Aqrn−1, r̃n−1)2
.

From relations (2.12), (2.15) we can define the rules for choice of initial vectors r̃0, p0, p̃0 in

each case q = 0 or q = 1:

(2.18) (Aqr0, r̃0) 6= 0, (Aqp0, AT p̃0) 6= 0.

In practice, the conventional guess is

(2.19) p0 = p̃0 = r̃0 = r0.

Obviously, the formulas (2.3) for q = 0 and q = 1 define two different algorithms but we

omit the index q in vectors and iterative parameters for brevity.

It is easy to see that for q = 0 from (2.3) and (2.15) we obtain the biconjugate gradient

method which for symmetric matrix A = AT , under conditions (2.19), provides the conjugate

gradient algorithm.

In the case q = 1 and A = AT the formulas (2.3), (2.15) give the conjugate residual method,

see [3]-[5]. For such reason, we shall call algorithm (2.3), (2.15) for unsymmetric matrix and

q = 1 as biconjugate residual one.

It is known that for symmetric SLAEs conjugate gradient and conjugate residuals meth-

ods provide the minimization of the functionals Φ(q)
n = (Aq−1rn, rn) in the Krylov subspace

Kn(A, r0), and this property give the estimation of iterative convergence rate via Chebyshev

polynomials.

In unsymmetric case the relation (2.10) doesn’t mean an optimization of the functional, and

we can not have the convergence estimate. If algorithms (2.3) for q = 0 or q = 1 don’t fail then

the vectors p0, p1, ..., pn and p̃0, p̃1, ..., p̃n are linear independent respectively and these iterative

processes converge to exact solution of (2.1) in not more N steps, under condition of exact

arithmetics.
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3 Biconjugate direction squared algorithms

The residual and correction vectors in biconjugate direction (BCD) methods (2.3) for q = 0, 1

can be expressed in terms of their initial values:

(3.1)
rn = ϕ(q)

n (A)r0, pn = ψ(q)
n (A)p0,

r̃n = ϕ
(q)
n (AT )r̃0, p̃n = ψqn(AT )p̃0.

Here ϕ(q)
n (t) and ψ

(q)
n (t) are polynomials of order n with scaling of the following forms:

(3.2) ψ(q)
n (0) = n+ 1, ϕ

(q)
0 (t) = ϕ(q)

n (0) = ψ
(q)
0 (t) = 1.

These polynomials are satisfied to the recursions

(3.3)
ϕ

(q)
n+1(t) = ϕ(q)

n (t)− α(q)
n tψ(q)

n (t),

ψ
(q)
n+1(t) = ϕ

(q)
n+1(t) + β

(q)
n ψ

(q)
n (t).

Also, note that the scalars αn, βn in BCD are given by formulaes

(3.4)
α(q)
n =

(Aqϕ(q)
n (A)r0, ϕ

(q)
n (AT )r̃0)

(Aqψ(q)
n (A)p0, ATψ

(q)
n (AT )p̃0)

=
(Aq(ϕ(q)

n )2(A)r0, r̃0)

(Aq(ψ(q)
n )2(A)p0, AT p̃0)

,

β
(q)
n = (Aq(ϕ(q)

n+1)2(A)r0, r̃0)/(Aq(ϕ(q)
n )2(A)r0, r̃0),

which indicate that if it is possible to get the recursions for the vectors

(3.5)
r̄n = Φ(q)

n (A)r0, p̄n = Ψ(q)
n (A)p0,

Φ(q)
n (t) = (ϕ(q)

n )2(t), Ψ(q)
n (t) = (ψ(q)

n )2(t),

then computing α(q)
n and, similarly, β(q)

n causes no problem.

For the new polynomials of order 2n the following recurrences can be derived, in which the

argument t is omitted:

(3.6)

Φ(q)
n+1 = Φ(q)

n − α(q)
n t(Y (q)

n +X
(q)
n+1),

Ψ(q)
n = Y

(q)
n + β

(q)
n (X(q)

n + β
(q)
n Ψ(q)

n−1),

X
(q)
n+1 = Y

(q)
n − α(q)

n tΨ(q)
n ,

Y
(q)
n = Φ(q)

n + β
(q)
n X

(q)
n .

Here an auxiliary polinomial X(q)
n = ψ

(q)
n ϕ

(q)
n−1 is introduced. If we define the vectors

vn = X(q)
n (A)r0, wn = Y (q)

n (A)r0,

and take into account the relations

ρ(q)
n ≡ (AqΦ(q)

n (A)r0, r̃0) = (r̄n, (Aq)T r̃0),

σ
(q)
n ≡ (AqΨ(q)

n (A)p0, AT p̃0) = (Ap̄n, (Aq)T p̃0),
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then the following conjugate direction squared methods for q = 0 and q = 1 can be defined,

under initial guess of type (2.19):

(3.7)

r0 = f −Au0, p0 = p̃0 = r̃0 = w0 = r0, r0
q = (AT )qr0,

ρ
(q)
n = (rn, r0

q), σ
(q)
n = (Apn, r0

q),

α
(q)
n = ρ

(q)
n /σ

(q)
n , vn = wn − α(q)

n Apn,

un+1 = un + α
(q)
n (wn + vn),

rn+1 = rn − α(q)
n A(wn + vn),

β
(q)
n = ρ

(q)
n+1/ρ

(q)
n , wn+1 = rn+1 + β

(q)
n vn,

pn+1 = wn+1 + β
(q)
n (vn + β

(q)
n pn).

In these formulas the index “q” and symbol “bar” for the vectors rn, pn are omitted where

there is no ambiguity. Algorithm (3.7) for q = 0 provides conjugate gradient square (CGS)

method and for q = 1 it will be called as conjugate residual squared (CRS).

Observe that there are no matrix-by-vector products with the transpose of A in CGS. The

single difference between CGS and CRS in the formulas (3.7) consists in definition of r0
q which

must be computed for q = 1 before iterations only. Also, we can change the definitions of the

scalar parameters

ρ(q)
n = (Aqrn, r0), σ(q)

n = (AqApn, r0),

so CGS and CRS both present two transpose free Krylov’s algorithms.

In general, one should expect obtained algorithms for q = 0 and q = 1 to converge twice as

fast as BCG and BCR correspondingly. Really, if max
t∈S
{|ϕ(t)|} = 1− δ, δ � 1, on the spectrum

S of martix A, then max
t∈S
{|Φ(t)|} ≈ 1− 2δ, what should be cause the decreasing the number of

iterations.

4 Biconjugate direction stabilized methods

We consider in unified form two algorithms which for q = 0 present the known biconjugate

gradient stabilized (BiCGSTAB) and for q = 1 provide the new biconjugate residual stabilized

(BiCRSTAB) method.

The motivation of BiCGSTAB by H.A. van der Vorst was to obtain more smoothly converging

variant of BiCG, because of irregular convergence behavior of CGS in some situations.

So, let us find iterative processes in which the residual and correction vectors are defined by

the formulas

(4.1) r̄(q)
n = ηn(A)ϕ(q)

n (A)r0, p̄(q)
n = ηn(A)ψ(q)

n (A)p0,

where ϕ
(q)
n , ψ

(q)
n provide CGS and CRS methods for q = 0 and q = 1 respectively and the
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polynomial ηn(t) is satisfied to the recurrent relation

(4.2) ηn+1(t) = (1− ωnt)ηn(t),

with some scalar parameter ωn which will be refined later.

From the equations (3.3) we have

(4.3)
ηn+1ϕ

(q)
n+1 = (1− ωnt)(ηnϕ(q)

n − αntηnψ(q)
n ),

ηnψ
(q)
n = ηnϕ

(q)
n + β

(q)
n−1(1− ωn−1t)ηn−1ψ

(q)
n−1.

Thus, we can write the following recurrencies for the vectors (4.1):

(4.4)
r̄

(q)
n+1 = (I − ωnA)(r̄(q)

n − α(q)
n Ap̄(q)

n ),

p̄
(q)
n+1 = r̄

(q)
n+1 + β

(q)
n (I − ωnA)p̄(q)

n .

Due to orthogonal properties (2.7) of the residuals and of the correction vectors, the iterative

parameters α(q)
n and β(q)

n can be rewritten in the unified form, see [4], [12] for details in the case

q = 0:

(4.5)
α(q)
n = ρ(q)

n /σ(q)
n , β(q)

n = α(q)
n ρ

(q)
n+1/(ωnρ

(q)
n ),

ρ
(q)
n = (r̄(q)

n , (AT )qr0), σ
(q)
n = (Ap̃(q)

n , (AT )qp0).

Next, an additional free parameter ωn in polinomial ηn+1(t) must be defined. One of the

simplest choices is to select ωn to achieve the steepest step in the residual direction obtained

before multiplying the corresponding vector by (I − ωnA).

The first of the equations (4.4) can be rewritten as

(4.6)
r̄

(q)
n+1 = r̄(q)

n − α(q)
n Ap̄(q)

n − ωnAsn = (I − ωnA)sn,

sn = r̄
(q)
n − α(q)

n Ap̄
(q)
n , r̄

(q)
0 = r0.

Then the minimization condition ∂||r̄(q)
n+1||2/∂ωn = 0 provides the optimal value for ωn as

(4.7) ωn = (Asn, sn)/(Asn, Asn).

Finally, a formula is needed to update the approximate solution u
(q)
n+1 from u

(q)
n . Equation

(4.6) for residual yields

(4.8) u
(q)
n+1 = u(q)

n + α(q)
n p̄(q)

n + ωns
n, r̄(q)

n = f −Au(q)
n .
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After putting the above relations together, we obtain the following unified form of the

BiCGSTAB and BiCRSTAB, for q = 0 and q = 1 respectively:

(4.9)

r0 = f −Au0, r
(q)
0 = p

(q)
0 = r0, n = 0, 1, ... :

α
(q)
n = (rn, (AT )qr0)/(Apn, (AT )qr0), u

(q)
0 = u0,

sn = r
(q)
n − α(q)

n Ap
(q)
n , ωn = (Asn, sn)/(Asn, Asn),

u
(q)
n+1 = u

(q)
n + α

(q)
n p

(q)
n + ωns

n, r
(q)
n+1 = sn − ωnAsn,

β
(q)
n = [α(q)

n (rn+1, (AT )qr0)]/[ωn(rn, (AT )qr0],

p
(q)
n+1 = r

(q)
n+1 + β

(q)
n (p(q)

n − ωnAp(q)
n ).

5 Numerical results

We consider the comparative convergence efficiency of the above six iterative solvers, in appli-

cation to the representative set of SLAEs which is provided by the Dirichlet three-dimensional

boundary value problem (BVP) for diffusion-convection equation

(5.1)
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+ p

∂u

∂x
+ q

∂u

∂y
+ r

∂u

∂z
= f(x, y, z),

(x, y, z) ∈ Ω = [0, 1]3, u|Γ = g(x, y, z).

The approximation of this BVP was made by means of exponential fitting seven-diagonal

finite volume scheme on the cubic grids with the meshsteps h = 1/(N+1), see [13]. The obtained

matrices are monotone for any values of convection coefficients p, q, r, which were taken constant

and variable, positive, negative and of different signs. In total, 10 various combinations of p, q, r

were used, which are presented in the Table 1-6. The dimensions of tested systems are (N −1)3,

for N = 32, 64, 128, 256.

The stopping criteria

(rn, rn) ≤ (f, f)ε2, ε = 10−7,

was used in all experiments. The simplest functions f, g were choosen in (5.1) to provide unit

exact solution u(x, y, z) = 1. The initial guess u0 for iterative processes was

(5.2) u0(x, y, z) = x2 + y2 + z2.

Iterative processes in Krylov subspace were realized with preconditioning matrix

(5.3)
B = (G− L)G−1(G− U), G =

1
ω
D − θS,

Se =
(1− ω

ω
D + LG−1U

)
e,
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where D,L and U are diagonal, low triangular and upper triangular parts of the original matrix,

G and S are diagonal matrices, e is the vector with unit entries, ω and θ are relaxation and

compensation parameters respectively. Here, for θ = 1 we have row sum condition Be = Ae.

In fact, the solvers were applied for preconditioned SLAE

(5.4)
Āū = f̄ = (I − L̄)−1G−1/2f, ū = (I − Ū)G−1/2u,

Ā = (I − L̄)−1 − (I − Ū)−1 − (I − L̄)−1(2I − D̄)(I − Ū)−1,

L̄ = G−1/2LG−1/2, Ū = G−1/2UG−1/2, D̄ = G−1/2DG−1/2.

An implementation of iterations was done by Eisenstat modification, of preconditioning, see

[5], with cheap multiplication of the vector by matrix Ā in the following form which demands

almost the same number of arithmetic operations as the vector multiplication by the original

matrix A = D − L− U :

(5.5) Āv = (I − L̄)−1[v − (2I − D̄)w] + w, w = (I − Ū)−1v.

In the presented results, we use the periodic restarted variants of Krylov’s iterations with

integer parameter m: for each step with number nl = lm, l = 0, 1, 2, ... the residual vector is

computed not by recursion formula but from equation rnl = f − Aunl , and orthogonalization

process starts again.

In each cell of the Tables 1-6 the numbers of iterations are given, from the top to down, for

three values m = 100, 20, 10 respectively. We use for all cases the parameters ω = θ = 1 for

simplicity.

The results for preconditioned BiCG and BiCR methods are presented in the Tables 1, 2.

As we can see here, the numbers of iterations in BiCR are smaller, compare to BiCG methods.

For p = q = r = 0 we have symmetric matrices, and BiCG, BiCR correspond to the “classic”

conjugate gradient and conjugate resigual CG and CR methods.
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Table 1. Preconditioned BiCG method, ω = θ = 1

p -64 -16 -4 0 4 16 64 64 64 1-2x

q -64 -16 -4 0 4 16 64 64 -64 0

r -64 -16 -4 0 4 16 64 -64 -64 0

N

7 13 22 23 20 14 7 31 30 26

32 7 13 20 24 22 14 7 31 28 26

7 14 21 26 23 14 7 31 28 27

10 20 30 35 32 21 11 45 49 38

64 10 20 32 37 29 20 11 45 41 39

10 25 31 42 30 21 10 80 78 44

20 34 42 51 43 35 21 78 75 55

128 20 33 44 55 43 32 20 85 98 59

21 38 42 65 44 31 20 138 177 67

38 52 58 74 58 52 41 108 108 79

256 41 48 64 86 61 49 43 142 148 90

31 47 61 104 70 62 32 244 265 108

Table 2. Preconditioned BiCR method, ω = θ = 1

p -64 -16 -4 0 4 16 64 64 64 1-2x

q -64 -16 -4 0 4 16 64 64 -64 0

r -64 -16 -4 0 4 16 64 -64 -64 0

N

7 13 21 23 20 13 6 30 29 25

32 7 13 20 23 20 13 6 28 28 25

7 14 20 25 27 14 6 32 31 27

10 20 30 33 29 19 11 44 48 35

64 10 20 28 35 29 19 11 42 41 37

10 22 28 39 29 20 10 68 80 42

19 31 41 48 43 32 19 108 78 51

128 19 29 39 53 41 30 19 82 102 56

18 33 40 61 41 34 18 178 233 64

37 50 58 70 58 50 39 109 105 75

256 33 43 60 78 56 46 41 173 185 87

27 41 58 101 66 45 31 189 282 106
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The Tables 3, 4 present the similar results for the preconditioned conjugate direction squared

methods (CGS and CRS). The symbol “∞” means here the divergence of iterations which is

explained by the numerical non-stability of algorithms in some cases.

Table 3. Preconditioned CGS method, ω = θ = 1

p -64 -16 -4 0 4 16 64 64 64 1-2x
q -64 -16 -4 0 4 16 64 64 -64 0
r -64 -16 -4 0 4 16 64 -64 -64 0

N

3 9 13 14 14 8 3 16 14 17
32 3 9 13 14 14 8 3 16 14 17

3 9 14 16 14 8 3 17 15 19

6 14 18 23 18 13 6 24 22 27
64 6 14 18 25 18 13 6 24 24 30

6 16 19 25 19 12 6 52 41 28

16 20 25 ∞ 26 19 16 38 38 43
128 16 22 33 ∞ 28 19 16 41 54 39

21 39 39 38 34 23 16 367 ∞ 54

31 30 37 ∞ 38 29 34 61 70 68
256 37 44 43 ∞ 43 37 38 224 200 72

48 44 94 66 53 55 31 144 ∞ 72

Table 4. Preconditioned CRS method, ω = θ = 1

p -64 -16 -4 0 4 16 64 64 64 1-2x
q -64 -16 -4 0 4 16 64 64 -64 0
r -64 -16 -4 0 4 16 64 -64 -64 0

N

3 9 12 14 11 8 3 15 14 17
32 3 9 12 14 11 8 3 15 14 17

3 9 11 14 18 8 3 19 17 15

6 13 18 21 18 12 6 23 23 24
64 6 13 18 21 18 12 6 22 23 20

6 13 16 22 16 11 6 38 31 25

14 20 25 ∞ 26 19 15 38 37 39
128 14 20 21 28 24 19 15 37 44 30

11 19 30 30 24 18 11 68 58 30

31 30 37 ∞ 30 28 33 58 69 58
256 23 24 33 40 34 24 23 78 87 44

15 24 36 42 40 27 15 92 87 46
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As we can see, CRS method is more stable, and it provides a good convergence for the

moderate values of restart parameter (m ≈ 20).

In the Tables 5, 6 the numbers of iterations are given for the stabilized algorithms. Really,

the preconditioned BiCGSTAB and BiCRSTAB demonstrate a good stability and convergence

rate for all considered values of convection coefficients p, q, r, restart parameter m and meshstep

number N .

Table 5. Preconditioned BiCGSTAB method, ω = θ = 1

p -64 -16 -4 0 4 16 64 64 64 1-2x

q -64 -16 -4 0 4 16 64 64 -64 0

r -64 -16 -4 0 4 16 64 -64 -64 0

N

4 9 12 16 12 8 4 18 16 17

32 4 9 12 16 12 8 4 18 16 17

4 9 13 16 13 8 4 18 17 16

6 12 16 24 18 12 6 28 27 22

64 6 12 16 24 18 12 6 28 28 23

6 13 17 24 20 13 6 35 33 24

11 17 24 38 25 16 9 45 43 33

128 11 17 23 31 24 16 9 51 57 32

11 20 25 33 27 18 9 71 87 35

16 23 34 55 33 25 16 66 74 52

256 16 24 35 46 36 25 16 86 131 52

15 27 35 46 37 25 16 109 139 49
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Table 6. Preconditioned BiCRSTAB method, ω = θ = 1

p -64 -16 -4 0 4 16 64 64 64 1-2x

q -64 -16 -4 0 4 16 64 64 -64 0

r -64 -16 -4 0 4 16 64 -64 -64 0

N

4 9 12 17 12 8 4 18 16 16

32 4 9 12 17 12 8 4 18 16 16

4 9 14 16 14 8 4 18 17 16

6 12 16 26 17 12 6 29 27 25

64 6 12 16 25 17 12 6 28 29 26

6 13 18 22 18 13 6 33 32 24

9 17 25 40 26 17 9 44 43 37

128 9 17 24 32 25 17 9 48 54 32

9 19 29 35 25 19 9 65 66 36

16 24 34 53 36 23 16 69 77 53

256 16 24 32 45 34 25 16 82 110 48

15 25 32 48 49 27 17 118 99 49

Because the convergence rate of the considered algorithms depends on the quality of the

preconditioning matrix B in (5.3) and preconditioned system (5.4), (5.5), we compare the above

results with the new ones which are obtained for empiric definition of the relaxation parameter

ω from the condition (Be, e) = (Ae, e), which provides the value

(5.6) ω =
(e, e)−

√
(e, e)2 − 4(L̄Ūe, e)(e, e)

2(L̄Ūe, e)
.

Into the right hand site of (5.6) the values ω = ω0 = 1 and θ = 0.975 were used. The

corresponding data for BiCR and CRS methods are presented in the Tables 7, 8. Also, for CRS

we used the following trick in this case Namely, at the first iteration of each restart the simple

minimal residual step was realized by the formulas

(5.7)
un+1 = un + αnr

n, rn = f −Aun, n = nl = lm, l = 0, 1, ...,

rn+1 = rn − αnArn, αn = (Arn, rn)/(Arn, Arn).
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Table 7. Preconditioned BiCR method, ω0 = 1, θ = 0.975

p -64 -16 -4 0 4 16 64 64 64 1-2x
q -64 -16 -4 0 4 16 64 64 -64 0
r -64 -16 -4 0 4 16 64 -64 -64 0

N

6 14 21 22 21 14 6 29 30 23
32 6 14 22 22 21 14 6 29 27 24

6 13 21 24 23 13 6 28 27 24

10 22 30 30 28 21 10 44 45 31
64 10 21 26 31 26 21 10 43 41 32

10 21 27 33 30 24 10 64 84 34

22 37 40 40 38 33 19 73 75 42
128 20 30 36 42 36 34 19 74 81 43

20 35 36 45 37 41 22 124 147 46

- 59 54 54 60 59 42 106 109 56
256 - 69 53 58 64 50 44 188 213 60

- 50 56 68 62 52 35 235 236 69

Table 8. Preconditioned CRS method, ω0 = 1, θ = 0.975

p -64 -16 -4 0 4 16 64 64 64 1-2x
q -64 -16 -4 0 4 16 64 64 -64 0
r -64 -16 -4 0 4 16 64 -64 -64 0

N

4 11 12 13 10 15 4 21 15 14
32 4 11 12 13 10 15 4 21 15 14

4 11 12 13 10 15 4 21 15 14

6 19 14 17 17 13 6 54 43 19
64 6 19 14 17 17 13 6 54 43 19

6 19 15 21 17 13 6 54 43 19

10 19 29 22 23 18 11 55 88 27
128 10 19 29 23 23 18 11 55 88 24

10 19 29 25 21 18 11 47 75 25

31 49 62 31 42 54 20 97 149 32
256 31 49 62 32 32 54 20 97 149 33

31 49 62 34 37 54 20 97 141 37
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Table 9. Preconditioned CSR method, ω0 = 1, θ = 0.975

p -64 -16 -4 0 4 16 64 64 64 1-2x
q -64 -16 -4 0 4 16 64 64 -64 0
r -64 -16 -4 0 4 16 64 -64 -64 0

N

6 13 18 22 18 12 5 25 24 23
32 6 13 18 22 18 12 5 29 27 24

6 13 19 24 18 12 5 38 36 24

9 19 26 30 25 19 9 35 35 31
64 9 19 26 31 26 19 9 55 56 32

9 20 26 33 26 19 9 68 79 34

16 29 35 40 36 29 16 53 53 42
128 16 30 35 42 36 31 16 114 132 43

16 31 37 47 38 32 16 118 145 48

Figure 1: jkahgj’ahg
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Figure 2: jkahgj’ahg

Figure 3: jkahgj’ahg
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In conslusion, we make the following remarks on the given numerical results.
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