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Abstract. The actual process of oil and gas field development is associated
with a large amount of numerical modeling. This is due to unreliable data used
in modeling. For example, these are a small amount of reliable measurement
information on a geological structure, reservoir and geomechanical properties of
rocks forming a given field. There is a need to solve a large number of inverse
problems to determine the structure and properties that satisfy the whole set of
reliable measurement results, taking into account the interinfluence of physical
processes occurring in the course of development.
The poroelasticity problem in question is of essential practical interest, when

a value of the pore pressure is affected by the stress-strain state of a reservoir,
depending on the same pressure. The process of solving the inverse problem is
associated with solving a large number of direct problems, while a major
challenge is in reducing the calculation time of each direct problem. A large
amount of computation requires the usage of supercomputer technologies.
This paper discusses the adaptive mesh usage for building hydro-

geomechanical proxy models and solving poroelasticity problems with an
effective strategy for adapting the computational grid for parallelization. Paral-
lelization is performed with the computing cluster of the Siberian Supercom-
puter Center.

Keywords: Proxy model � Poroelasticity � Adaptive mesh � Fluid filtration �
Flow simulation � Geomechanical simulation

1 Introduction

Nowadays the numerical modeling of oil & gas reservoirs takes a big part of the whole
reservoir development process. In particular, models are used by geologists to build a
layered structure, reflecting a real reservoir to a certain amount. Every layer consists of
relatively small cells extending tens of kilometers across the reservoir area. The total
amount of cells may reach several millions. Every cell has certain properties such as
permeability, porosity, saturation, etc. The accuracy of such models strictly depends on
assumptions attracted. In particular, there is no unique technique to distribute properties
among the cells located between the wells. The problem is the lack of measurement
techniques capable of investigating media far beyond the radius of a borehole. In other
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words, one needs to attract the tools of geostatistics such as kriging or variograms. On
the other hand, seismic models are only the tools to take an image of the ground
structure between wells, but the vertical accuracy of a layer location may take up to
50 m, while the thickness of this layer may be about tens of centimeters or even
smaller. Nevertheless, a geological model is the basis for building other models such as
hydrodynamic models or geomechanical models. It is clear that the accuracy of such
models cannot be higher than geological model. Moreover, due to a huge amount of
cells, the time required to calculate a change in the reservoir pressure, across the whole
reservoir or part of it, caused by the production of wells, become huge as well. Taking
into account relatively a small significance of every particular calculation, the engineers
need a tool capable of estimating a change in the reservoir characteristics (pressure,
temperature, stress, strain, etc.) in a matter of minutes or even seconds for each par-
ticular calculation. By combining the results of several runs of slightly different models
(different assumptions) one can estimate required characteristics with certain proba-
bility. This workflow has become a standard in the industries.

The frontier of modeling techniques is now shifting to the so-called proxy models
[1]. These models are based on the reduced amount of cells using the so-called
upscaling of the cells [2]. Nevertheless the accuracy of upscaled models may become
too poor in some regions.

Even the most popular commercial software uses different tricks to overcome the
problem of a low accuracy. In particular, the inflow into a certain well is calculated by
sewing a numerical solution in far field zone (where the error between the numerical
and the exact solutions is small) and the analytical solution near the borehole [3]. Such
technique helps one to use relatively simple finite difference models (FDM) to calculate
the pressure across a reservoir while blocks with the wells are treated separately.

Another problem comes to the foreground when one tries to estimate strains that are
close to geological faults or fractures. In this case, a stress field may change dramat-
ically leading to the risks of a wellbore instability as well as an unpredictable behavior
of hydraulic fractures.

It is important to mention that a change in a stress filed may cause a change in the
pore pressure and vice versa. This effect is known as poroelasticity. In other words,
building separate models for hydrodynamics and geomechanics increases the risks to
get negative impact in the development process or even in people.

A finally, it is worth to mention that there is no universal tool to solve poroelastic
problems of sufficiently a large size. To efficiently solve the problems under consid-
eration, it is necessary to choose such an approach to constructing numerical solutions,
in which a computational grid would have the smallest size (by the number of grid
nodes), and the accuracy of calculations would be maximum possible.

The commercial software tries to solve a problem of an accuracy by increasing the
number of cells in the zones of a rapid change of a certain field (pressure, temperature
etc.). At the same time, the total amount of cells is changed for certain problems, as
well as the number of equations needed for a solution. It is difficult to find an optimum
solution in terms of a number of cores in a supercomputer, as well as a memory volume
required.

Of great practical interest are such algorithms of building a grid for which the total
number of elements would remain constant. A constant number of elements allows one

440 S. Kalinin et al.



uniform loading of computational nodes in the course of parallel computing. The main
difficulty here is to preserve the numbering of grids (nodes and elements): if all the
nodes and grid elements, after a cycle of mesh adaptation retain their numbers, it is
relatively easy to organize a uniform breakdown of a single computational domain into
subdomains, thereby ensuring a uniform loading of cluster computing nodes. It is
obvious that one can save the numbering of the grid only if the reduction in the size of
some elements occurs due to an increase in the size of others. In a finite element
method, such an approach is called r-adaptation technique. Moreover, in the case of the
usage of high order polynomials for the shape functions, the hybrid technique can be
called as rp-adaptaion.

Currently, there are relatively a few publications on the application of the rp-
adaptation technique for solving problems of the oil and gas hydrodynamics, and in
particular, problems of estimating the production of hydrocarbons. One of the main
reasons for a low popularity of the method lies in the well-established methodology for
the distribution of environmental properties in terms of computational volume. Stan-
dard grid algorithms with an increase in the total number of computational elements
(nodes) and an analytical solution in the near-wellbore area mentioned above are
already embedded to commercial simulators. With a simple increase in the number of
elements, the error of the final result will only decrease if we assume that the initial
distribution of properties on a coarse grid is close to a real one.

The idea of this research is to present a technique that is appropriate for solving
large poroelastic problems with the help of a supercomputer with an effective strategy
for adapting computational grid for parallelization.

2 Some Aspects of Using Adaptive Grids

Let us note that at any time step, an adaptive grid can be considered as an adaptive
fixed grid with a non-uniform distribution of nodes. In the theory of the finite element
method, it is proved that reducing the size of elements leads to an increase in the
accuracy of the numerical solution. Based on this fact, we can conclude that the
preservation of nodes of the original grid and the n-fold addition of intermediate nodes
will not worsen the accuracy of a numerical solution.

Figure 1 shows the solution of the problem of a fluid inflow into the well with
different step sizes of the computational grid and at different time instants. In this case,
the one-dimensional problem of the non-stationary filtration of reservoir fluids through
a non-deformable reservoir with specified properties has been solved. The direct
problem has been solved by the finite element method, for which the so-called weak
formulation of the boundary value problem has been obtained under given initial
conditions. Z

V

uqf
K

@p
@t

dp dV þ
Z
V
qf

k
l
rp � rdp dV ¼

Z
Am

mdp dA; ð1Þ

where u is the porosity, qf is the fluid density, K is the compressibility of a reservoir
fluid, k is the reservoir permeability, l is the viscosity of the reservoir fluid, p is the
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desired pressure, m is the mass flow through the part Am of the outer boundary A. From
the analysis of the solution shown in Fig. 1, we can conclude that even with constant
porosity and permeability properties for arbitrary finite element sizes, a computational
error can be sufficiently significant (it is enough to estimate the error using the
Euclidean L2 norm for solutions on a grid with a constant step and on an adaptive grid).

3 The Algorithm of Adaptive Mesh Construction

There are two main methods for constructing an adaptive mesh [4]. The first method is
based on the principle of an equidistributing grid: the step of such a grid is chosen in
such a way that the error in estimating a desired function (for example, pressure or
temperature) is the same for each element, for which the so-called error density
function is chosen (the grid density function). The second method is based on writing
and finding a solution of the grid differential equation. Both methods lead to a system
of related equations both for determining the position of nodes of a moving grid and for
determining a sought for function reflecting the distribution of a certain physical
quantity (for example, pressure). The second method can be used both with keeping
equal-to-error principle, and without keeping this principle. In practice, strict keeping
the principle of an equally distributed error leads to considerable difficulties in con-
structing a stable computational algorithm for solving multidimensional problems. For
this reason, one of the most useful methods of formulating and solving the grid
equation in the multidimensional case is the use of the variational method. In this case,
the Euler-Lagrange equations are written down with a “grid” functional of a special
form.

Fig. 1. The pressure distribution in a near-well zone for uniform and adaptive grids.
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As an example, which is well suited for solving practical problems of hydrody-
namics, we will consider the Euler-Lagrange differential equation used to form an
adaptive grid:

�r � 1
w
rni

� �
¼ 0; i ¼ 1; 2. . .d; ð2Þ

where w ¼ w xð Þ[ 0 is the defined weight function.
Such a principle of forming the «grid» equation is called the «variable diffusion»

method [4, 5]. It should be noted that the first results with the use of adaptive moving
meshes were obtained by Godunov et al. [6], when considering a problem of impact a
certain volume of water against a rigid wall. In essence, formula (2) is a stationary
diffusion equation, in which the spatial-variable diffusion coefficient affects the con-
centration distribution (in this case, the «density» of the mesh lines).

The coefficient in Eq. (2) depends on the so-called «physical» solution and the
variable n depends on unknown coordinates x of nodes of the mesh on which a solution
to the «physical» differential equation is sought. There is no need a direct solution of
Eq. (2). Since in practice, it is required to find the distribution of x ¼ x nð Þ, since it
changes the roles of the independent and dependent variable. If we set w ¼ 1, then in a
two-dimensional case such a role changing in (2) leads to the «grid» equations:

x2g þ y2g
� �

xnn � 2 xnxg þ ynyg
� �

xng þ x2n þ y2n
� �

xgg ¼ 0;

x2g þ y2g
� �

ynn � 2 xnxg þ ynyg
� �

yng þ x2n þ y2n
� �

ygg ¼ 0:

If in formula (2), we accept that w ¼ w xð Þ[ 0, then we can obtain more cum-
bersome expressions given in [5].

In the case of a variation approach, the general form of the Euler-Lagrange equation
can be obtained in the following form:

�r � @F
@ai

� J
@F
@J

ai

� 	
¼ 0; i ¼ 1; 2; 3; ð3Þ

where the corresponding functional is as follows:

I n½ � ¼
Z
X
F a1; a2; a3; J; x
� �

dx: ð4Þ

In Eqs. (3) and (4), it is assumed that J is the Jacobian of the transformation, and
the corresponding vectors ai are the columns of the inverse Jacobi matrix:

J ¼ @x
@n

¼ @ x1; x2; x3ð Þ
@ n1; n2; n3ð Þ ¼ a1; a2; a3½ �: ð5Þ
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For practical purposes, the function F in the integral can be represented as follows:

F a1; a2; a3; J; x
� � ¼ F1 q; bð ÞþF2 q; Jð Þ ð6Þ

F1 q; bð Þ ¼ 1
2

X
i
rnið ÞTM�1rni ¼

1
2
b ð7Þ

F2 q; Jð Þ ¼ 0 ð8Þ

M ¼ w xð ÞI ð9Þ

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rpj j2

q
: ð10Þ

It should be noted that in Eq. (9), w xð Þ is the function that determines the «density»
of grid lines used to solve the physical Eq. (1). In Eq. (10), the explicit form of the grid
density function is shown, depending on the gradient of the unknown function. After
performing rather a cumbersome chain of transformations aimed at changing the roles
of the independent and dependent variables in Eq. (3), we can obtain a compact form of
the «grid» differential equation for determining the function x ¼ x nð Þ.

X
i;j
Ai;j

@2x
@ni@nj

þ
X

i
Bi

@x
@ni

¼ 0: ð11Þ

In this equation:

Aij ¼ ai
� �T

M�1a j
� �

I ð12Þ

Bi ¼ I
X

k
ak
� �T@M�1

@nk
ai

� �
: ð13Þ

When solving Eq. (7) with a finite elements method, it is necessary to obtain a
weak formulation of the boundary value problem

X
i;j

Z
XC

@x
@ni

� @

@nj
Aijv
� �

dnþ
X

i

Z
XC

@x
@ni

Bimð Þdn ¼ 0: ð14Þ

Here it should be noted that as the boundary conditions for Eq. (11), it is often
sufficient to set the immobility of the nodes on the boundary of the region.

4 Using an Adaptive Grid for Geomechanical Problems

Let us consider using the adaptive mesh method (Fig. 2) for a problem of subsurface
fluids filtering. Figure 3 shows the pressure distribution field around a separate pro-
duction well for an adaptive grid with the number of elements N2 ¼ 2500 and for a grid
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with constant mesh spacing ( 3Nð Þ2¼ 22500). It is possible to note a change in the
position of the nodes of the computational grid, as well as a characteristic change in the
size and shape of the elements while preserving the total number of nodes. The cal-
culations are performed with the use of the open-source FreeFem++ software package
[7]. It should be noted that formula (10) depends on the derivative of an unknown
function, which itself is numerically calculated, and, therefore, with a certain error. This
error can be quite substantial. For this reason, the practical application of adaptive grids
requires a suitable choice of function (10), and here the researcher is provided with a
wide field for creativity. In this study we used an ordinary Gaussian function whose
approach to the delta-function while the variance (in the Gaussian function definition)
approach is close to zero. The numerical solution in the near-well zone using the such
function is close to the analytical solution given in [8].

5 The Statement of Poroelasticity Problem

The numerical solution of hydrodynamic problems has been carried out under the
assumption of incompressibility of a rock. In most cases, this assumption was used to
simplify the problem being solved and to reduce the calculation time, since the con-
tribution of the compressibility of rocks to the estimation of the volume of a produced
fluid was often insignificant. However in some cases it is necessary to take into account
the deformability of rocks, since a change in a pore volume affects the pressure field
and may lead to an underestimation of the level of production. In general, there is a
reverse effect of the level of the reservoir pressure on the magnitude of the deforma-
tions, and an incorrect account of these deformations can lead to the collapse of the
walls of a wellbore when performing various technological operations. Using the
method of adaptive grids allows us not to separate the problems of hydrodynamics and
geomechanics, since it suffices to use a single computational grid both for estimating
the pressure fields and estimating the stress and strain fields.

Fig. 2. An adapted grid (left) and a pressure distribution field (right).
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The poroelasticity problem can be formulated by the following system of differ-
ential equations:

�Gr � ruþ ruð ÞT� �� G
2m

1� 2mð Þr r � uð Þþ arp ¼ F in X� 0; Tð Þ; ð15Þ

@

@t
Se pþ ar � uð Þ � r � k

l
rp

� �
¼ Q in X� 0; Tð Þ; ð16Þ

u ¼ 0 on Cc; ð17Þ

G ruþ ruð ÞT� �þG
2m

1� 2m
r � uI

� 	bn � bapbnvtf ¼ 0 onCt; ð18Þ

p ¼ 0 on Cd; ð19Þ

� @

@t
1� bð Þau � bnð Þvþ k

l
rp � bn ¼ h1vtf onCf ; ð20Þ

e pþ ar � u ¼ v0 in X � 0f g; ð21Þ

1� bð Þau � bn ¼ v1 on Ctf � 0f g: ð22Þ

Fig. 3. The 2D pressure distribution for uniform and adaptive grids
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Equation (15) is responsible for determining the displacements u of points of a
poroelastic medium given by the elastic constants G; m as well as the constants of the
poroelasticity a (the Biot constant) and Se (the Skempton constant). The meaning of the
remaining notation is presented in [9]. Equation (16) is responsible for determining
the pressure in the process of the filtration of a fluid through a deformable poroelas-
tic medium, taking into account the contribution of the compressibility of the rock
matrix.

One needs to add (2) or (3) to the system of Eqs. (15, 16) with the corresponding
boundary conditions for obtaining a complete system of equations for solving the
poroelasticity problem using adaptive grids. As usual, it is assumed that a poroelastic
medium is continuous, isotropic and homogeneous. To solve the poroelasticity problem
numerically using the finite element method, it is necessary to write down a weak
formulation of the boundary value problem:

Z
X

G runþ 1 þ runþ 1� �T� �
: rvþG

2m
1� 2m

r � unþ 1� � r � vð Þ
� 	

þ
Z
X
arpnþ 1v

¼
Z
X
Fnþ 1vþ

Z
Ct

G runþ 1 þ runþ 1
� �T� �

� bnvþ Z
Ct

G
2m

1� 2m
r � unþ 1
� �bn � v;

ð23Þ

�
Z
X

aunþ 1 � rqþ
Z
X

Se pnþ 1qþ ks
l
hrpnþ 1 � rq

� �

¼
Z
X

s hQnþ 1 þ 1� hð ÞQn
� �þ ar � un þ Sepn

� �
q�

Z
X

ks
l

1� hð Þrpnrq

�
Z
Cf

aunþ 1 � bnqþ Z
Cf

k
l

hrpnþ 1 þ 1� hð Þrpnþ 1� � � bnq
ð24Þ

X
i;j

Z
XC

@xnþ 1

@ni
� @

@nj
Aijx
� �

dnþ
X

i

Z
XC

@xnþ 1

@ni
Bixð Þdn ¼ 0: ð25Þ

Thus, system (23, 24) is a weak formulation of the boundary value problem of
poroelasticity using adaptive grids. It should be noted that rebuilding the adaptive grid
according to Eq. (25) is determined only by the fluid pressure gradient. In many cases,
such a formulation will be sufficient, since the applied tasks of the oil and gas
geomechanics relate to the effects occurring in the near-well zone, where large gra-
dients of both pressures and displacements are observed in the first place.
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6 The Parallel Implementation of a Finite Element Method

To speed up the computations of the 2D poroelasticity problem and to make possible
large grid calculations, the parallelization of the numerical solution of the equation
system with a finite element method was carried out using the FreeFem++ solver.

Let us note that an extended interface with MPI has been added to FreeFem++. The
Schwarz algorithm [10] with overlapping and a coarse grid preconditioner is used to
decompose the computational domain. The grid of triangles is adapted once before the
calculations in the main time cycle. The Metis graph partitioner [11] is used for
partitioning into an equal (according to the number of elements) subdomain among
computational nodes (cores). At each time step, the problem is first solved on a coarse
grid, and then this solution is used as an initial approximation in each subdomain of the
partitioning. For the numerical solution of the coupled problem of poroelasticity, each
of the equations, rewritten in a matrix form, is solved one after another iteratively in all
subdomains at the same time.

The considered approach of grid adaptation is convenient because it keeps the
number of grid elements unchanged and does not require additional solving the
problem of load balancing between MPI processes during computing. With the initial
selection of a regular grid of triangles, the problem of its optimal decomposition
between computational nodes is solved trivially. With a more complex initial organi-
zation of the grid of triangles, the functions of the Metis package are used to divide it.

A strong scalability study has been conducted on a node of the Siberian Super-
computer Center (SSCC) cluster equipped with two 16-core Intel processors on
Broadwell architecture. The calculations were carried out on a grid consisting of
240000 triangles.

The results (Fig. 4) show that acceleration has been reached about 14 times on 32
cores as compared to a single core.
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Fig. 4. The results of strong scalability research at Intel Broadwell
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The possibility of using a node of SSCC equipped with Intel Memory Drive
Technology (IMDT) called Optane was also investigated. Intel Optane is a new SSD
product based on the novel 3D XPointTM technology, which can be used instead of
DRAM, albeit as a slow memory [12]. It can be still an attractive solution given that
Intel Optane is notably cheaper than the random access memory (RAM) per gigabyte.
The novel Intel Memory Drive Technology (IMDT) allows one to use Intel Optane
drives as a system memory. Various benchmarking results [13] for large dense tasks
show different efficiencies. We have used two memory configurations (Table 1): hybrid
IMDT DDR4/Optane and DDR4 only for systems of different sizes of a grid for the
numerical solution of filtering problem (16) with our parallel implementation.

7 Conclusion

In this paper, the use of adaptive grids for solving geomechanical problems is dis-
cussed. An algorithm for constructing an adaptive grid with the Jacobian coordinate
transformation is presented. The adaptation algorithm changes the grid density, which
depends on the gradient of a desired function. The number of nodes of the adaptive
mesh remains unchanged and is equal to the number of nodes of the initial grid. The
results of the simulation by the finite elements method of the pressure distribution for
the fluid filtration problem in the near-well zone using adaptive mesh are presented.
The calculations were carried out using the freeware and open-source Freefem++
software package. The formulation of the poroelasticity problem in the integral form is
presented. The studies of the parallel implementation for poroelasticity problems show
the acceleration of about 14 times in 32 cores.
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