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Abstract. An approach to mathematical modeling of heat transfer with a permafrost algorithm 

in 3D media based on the idea of localizing the phase transition area is considered. The paper 

presents a problem statement for a non-stationary heat transfer and a description of a numerical 

method based on a predictor-corrector scheme. For a better understanding of the proposed 

splitting method, the accuracy order of approximation considering inhomogeneous right-hand 

side was studied. The phase changes in the numerical implementation of permafrost thawing is 

considered in the temperature range and requires recalculation of coefficients values of the heat 

equation at each iteration step with respect to time. A brief description of the parallel algorithm 

based on a 3D decomposition method and the parallel sweep method is presented. A study of 

the parallel algorithm implementations using a high-performance computing system of the 

Siberian Supercomputer Center of the SB RAS was performed. The results of the permafrost 

algorithm on models with wellbores are also presented. 

1. Introduction 

An approach to the mathematical modeling of the heat transfer in permafrost [1-8] that is based on the 

idea of localizing the phase transition area is considered. In such a case, numerical calculations can be 

carried out based on the through-counting method. This paper presents a problem statement for a non-

stationary heat conduction equation and a description of a numerical method based on a predictor-

corrector scheme. For a better understanding of the splitting method of the predictor-corrector type, 

which well preserves the balance properties, the accuracy order of the method proposed was studied 

considering the inhomogeneous right-hand side. Using different mesh models, the results of estimating 

the approximation order with respect to time and space have been obtained. These results are the basis 

for considering a more complicated 3D problem: a model of the interaction of wellbores having the 

temperature different than that in permafrost area. The phase transition in the numerical 

implementation is considered in the temperature range and requires recalculation of coefficients values 

of the heat equation at each iteration step with respect to time. At the same time, the general 

methodology and approach based on the predictor-corrector scheme are preserved. In this case, three-

point equations appear in the predictor part, which can be easily solved by the matrix sweep method. 

The approaches described for the heat transfer simulation can be adopted to use high-performance 

multicore clusters [9]. In this paper we also present some results obtained for parallel algorithm 

implementations using MPI and OpenMP. 
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2. The problem statement and the method used 

Consider the domain Ω having the linear dimensions Lx, Ly, Lz in 3D Cartesian coordinates. The 

wellbore zone 
w  (that is a part of the simulated area Ω) is described by a parallelepiped with 

corresponding temperature. Consider the nonstationary heat conduction equation (1) in 3D Cartesian 

coordinates: 

( ) ( , , , ). 


=   +


T
с T f x y z t

t
     (1) 

Let 
0( , , ,0) ( , , )T x y z T x y z=  be the initial temperature distribution in Ω. The temperature is the 

function of coordinates and time ( , , , )T x y z t . The main problem is to determine the temperature field 

in the domain   including the wellbore region with the permafrost thawing algorithm and 

corresponding initial and boundary conditions (2): 

0

0

0

( , , ) ( ),

/ / 0,

/ / 0,

/ / 0.



= =

= =

= =

=

  =   =

  =   =

  =   =

ww

x x Lx

y y Ly

z z Lz

T x y z T t

T x T x

T y T y

T z T z

    (2) 

We will discuss the general idea of the predictor-corrector method [10,11] in the case when the 

operator of the right-hand side ( )T =  can be represented as combination x y z =  + + . 

Let the entire time interval 0 t T   be divided into partial intervals 1k kt t t +  .Within each of time 

intervals, the problem is solved in two steps. First, an approximate solution to the problem need to be 

found for the time 1/2 / 2k kt t + = + . This stage is usually called predictor (3)-(5). After that, the 

original equation is written down for the interval 
1( , )k kt t +

, which serves as a corrector (6). In this 

case, when numerical calculations are performed at the predictor stage, implicit schemes arise that can 

be resolved based on the sweep method for a tridiagonal matrix. Consider a rectangular uniform grid 

with with the step h  with respect to space and the step   with respect to time be given in the 

computational domain  . 

The predictor part (3)-(5) will be: 
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And corrector (6) will be: 
1 11

2 2 ,
n n

n n

x y z

T T
с T f



+
+ +−

=  +  =  + +   (6) 

The general form of finite difference approximation of (3)-(4) for the predictor part will be of the 

same type for the operators , ,x y z   . In such a case we will use with PDE with the tridiagonal 

matrix constructed from approximations of the type (7): 
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where 
1T (is 

1

6
n

ijkT
+

 for x ) is the value to be calculated, 
0T ( is 

n

ijkT  for x ) is the value from 

previous (intermediate) time step, the indices , ,i j k  denotes the grid nodes ( * , * , * )i h j h k h . Note, 

we deal only with uniform grids for the computational domain with equal step h  with respect to 

space. To find the solution in (7) for the operator x , we need a right-hand side of the type:  
1
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The corrector will be (9): 
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To solve PDEs with the tridiagonal matrices for the operators , ,x y z   , one can use the sweep 

method. 

3. Phase transition algorithm for permafrost thawing 

We will assume that the water-ice phase transition (solid phase - liquid phase) occurs at a specified 

temperature 
*T . Let us denote by ( )S S t=  the interface between the phases, where such a phase 

transition occurs, where t  is the time variable. This boundary divides the simulation domain   into 

two sub-domains 
−  and 

+ . Let 
−  be a frozen zone and 

+  be a thawed zone. Thus, subdomains 

can be defined as follows: 
* *( ) { , ( , , , ) }, ( ) { , ( , , , ) }t x x T x y z t T t x x T x y z t T+ − =    =   . Let us introduce the 

function 
* *( ) {0, ;1, }T T T T T = =   . In practice, phase transformations occur in the 

temperature range 
* *[ ; ]T T T T− + . Then we consider the piecewise linear approximation 

: 
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The basic equation with permafrost thawing (9) for the whole domain   using presented functions 

(10) and (11) will be: 

'( ( ) ) ( ( ) ( ))l

T
L div grad T

t
       


+ =


 ,  (12) 

where 
* *( ) ( ) , ( ) ( ) , {0, ;1, }c c c T T T T            − − + + − − − + −= + − = + − =   , L is the 

specific heat of the phase transition, ,c + +
 and ,c − −

 are the density and specific heat of the thawed 

and frozen zone [7]. 

In this case, the new coefficients of equation (12) are the functions of temperature requiring the 

recalculation at each time step of the predictor-corrector scheme for the numerical simulation of the 

heat transfer. 

4. Studying accuracy order of the predictor-corrector scheme 

We will find the numerical solution of the nonstationary heat equation (13) in the three-dimensional 

homogeneous 3D domain [0; 1] x [0; 1] x [0; 1] with a uniform rectangular grid: 

 ( ) ( , , , ). 


=   +


T
с T f x y z t

t
 (13) 

We will study the accuracy of the described predictor-corrector approach using the test function g :  

 ( , , , ) sin( )sin( )sin( ), cos( 1.0).   −= = −tg x y z t e x y z a  (14) 

After substituting the test function g into equation (13), we obtain the form of (15) of the right-hand 

side function f : 

 
2( , , , ) ( 3 ) sin( )sin( )sin( ).    −= − + tf x y z t c e x y z  (15) 

The initial condition when 0t =  will be:  

 
0| ( , , ,0) sin( )sin( )sin( ).  = = =tT g x y z x y z  (16) 

All values of the coefficients , ,c   in the heat transfer equation were chosen equal to 1. 

Boundary conditions were taken as 0T = .  

We have performed tests to study the approximation accuracy of the scheme with respect to time 

and space with an inhomogeneous right-hand side (table 1 and table 2). To study the accuracy, we 

used the error value (Error in tables) equal to abs maximum of the difference of numerical and exact 

solution divided by abs value of the numerical solution for grid nodes. It can be seen from the tables 

that the proposed predictor-corrector scheme has 4-th accuracy order. 

Table 1. Results of the predictor-corrector scheme accuracy with respect to space. 

Model Number of  

mesh nodes 

Number of 

iterations by 

time 

 Time  

step 

Mesh 

step 

Error 

1 11x11x11 200  0.01 0.1 0.00675 

2 21x21x21 800  0.0003125 0.05 0.001664 

3 41x41x41 3200  0.000078125 0.025 0.000414 
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Table 2. Results of the predictor-corrector scheme accuracy with respect to time. 

Model Number of  

time iterations  

Time step  Error 

1 100 0.0500  0.001386 

2 200 0.0250  0.00332 

3 400 0.01250  8.20E-05 

4 800 0.00625  2.10E-05 

5 1600 0.003125  5.89E-06 

     

5. A test of the permafrost thawing algorithm 

Consider the solution of equation (13) in the homogeneous domain [0; 1]x[0; 1]x[0; 1] with a uniform 

grid. The grid consists of 101x101x101 nodes with three vertical wellbores. Let the boundary 

conditions be: / 0T x  = , / 0T y  = , / 0T z  = . The initial temperature value in the entire 

medium is T = 271K (-2
0C ) at 0t = . Let the values of the model parameters of the permafrost (s-

solid, l-liquid phase) be: l L = 71957*
310  J/

3m , sc = 2350*
310  J/

3m , 
lc = 3150*

310 J/
3m , s = 

2.73 W/(m*K), l = 2.50 W/(m*K). The temperature in the wellbores is taken to be equal to T =

278K (5
0C ) for all steps with respect to time. The phase transition temperature is taken as 

*T = 273K 

(0
0C ). The value of the phase transition temperature interval is  = 274K (1

0C ). The simulation 

results in the form of a temperature field in the plane Oxz for different time intervals are presented in 

figure 1. 

   

Figure 1. The temperature distribution of the permafrost thawing in Oxz plane at different times (x-

along horizontal, z-along vertical). 
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6. Studying the parallel implementation 

The developed parallel implementation allows the large-scale mathematical modeling to solve the 

problem of heat transfer on high-performance computing systems. This implementation is based on a 

3D decomposition method of the computational domain to subdomains. Each of these subdomains is 

independently calculated at a dedicated computational node of the cluster. In this case, within the 

framework of one node, additional parallelization can be carried out using OpenMP, since a cluster 

node can be represented by several multi-core processors. Thus, a parallel algorithm and a program are 

developed based on a combination of technologies for parallel computations MPI and OpenMP. A 

parallel algorithm can be represented at several stages: - preparation (creation of 3D topology and a 

number of 1D topologies, data initialization), - parallel sweeps along the coordinates X, Y and Z, that 

require data exchanges, - a corrector in parallel mode on all processors.  

First, using MPI, a 3D topology is created that helps to perform the communication between 

computational nodes of the cluster. Thus, the computational domain (the grid model) is divided into 

3D subdomains, with all the data necessary for the calculation is placed in the RAM at the selected 

cluster nodes. We also create an additional set of 1D topologies along the axes Ox, Oy, Oz. They are 

necessary for the parallel implementation of the sweep algorithm [12] along each direction. The 

schematic representation of parallel computations and the interconnection between computational 

subdomains are shown in figures 1 and 2. Each process in the 3D topology knows its nearest neighbors 

along the coordinate axes for data exchange.  

 

Figure 2. The MPI topology for parallel calculations. 

The parallel algorithm can be explained at the following steps: 

1) Creating topologies 

2) Initialization of required input data and buffer arrays 

3) Parallel sweep in X direction 

4) Parallel sweep in Y direction 

5) Parallel sweep in Z direction 

6) Data exchanges 

7) Parallel corrector 

In this case, steps 3) -7) work in a cycle for time variable for a given mesh. The parallel sweep 

algorithm [12] consists of three steps. First, solving three systems of partial differential equations. 

Second, constructing and solving a PDE with values at the points located on the boundaries of two 

neighboring subdomains along directions to obtain solutions. In such a case, we use 1D topologies to 

gather into each 0 process coefficients and then scatter the solution (z) into each corresponding group 

of processes in 1D topologies, figure 3. Then, we calculate the full solution using solutions and values 

from the first and the second steps. 
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Figure 3. A schematic representation of the second step of the parallel sweep algorithm. 

The results of studying of the algorithm for the predictor-corrector scheme were obtained with use 

of the high-performance cluster with computational nodes each with two 6-core Xeon X5670 CPUs 

(cluster of the Siberian Supercomputer Center of the SB RAS). The results presented in table 3 and 

table 4 (in seconds) were obtained in tests for two algorithm implementations: when we use only MPI, 

and when we apply a combination of MPI and OpenMP. We apply OpenMP to perform calculations in 

the parallel mode at each multicore cluster node. One subdomain was calculated with one MPI 

process. The number of OpenMP threads per one MPI process was chosen to be equal to 3. In the 

model tests, the total computational domain consists of 2x2x2, 3x3x3, 4x4x4 subdomains along the 

corresponding coordinate axes Ox, Oy and Oz. Thus, the total number of MPI threads in the tests was 

8, 27 and 64. For example, 27 MPI processes can be treated as 9 nodes with 9 cores each with 3 MPI 

processes and 3 OpenMP threads for MPI&OpenMP program. The results presented show a good 

behavior of the paralleled implementation, table 3 and table 4. The use of OpenMP parallelization 

within a single computational node works about 2.5-2.6 times faster in the scalability test. In the 

speed-up test, the achieved acceleration is about 1.4-1.6 times. 

Table 3. Results of the parallel algorithm work in scalability test. 

Model Number of  

subdomains  

Number of MPI 

processes 

MPI program 

work time 

(sec) 

MPI&OpenMP 

program work 

time (sec) 

1 2x2x2 8 368.89 144.62 

2 3x3x3 27 393.44 146.51 

3 4x4x4 64 378.08 147.38 

Table 4. Results of the parallel algorithm work in the speed-up test. 

Model Number of  

subdomains  

Number of MPI 

processes 

Grid size per  

one MPI process 

MPI program 

work time 

(sec) 

MPI&OpenMP 

program work 

time (sec) 

1 2x2x2 8 181x181x181 29.42 16.05 

2 3x3x3 27 121x121x121 8.05 4.86 

3 4x4x4 64 91x91x91 2.95 2.12 

 

The scaling means that the running time of the parallel algorithm will not significantly change, 

when the scale of a computational model increases proportional to the number of computational 

resources used. Thus, each of the MPI processes calculates the same number of grid nodes. In the tests 
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performed, 1 MPI process calculated 1 subdomain with 361x361x361 grid and the number of time 

iterations equal to 10. 

In the speed-up test, the total size of the computational model, consisting of several subdomains, 

remains the same for all the versions of the partitioning while the number of computational resources 

varies. It is expected that when the number of computing resources increases, the program will run 

faster. In the speed-up test, 10 iterations with respect to time for all models were performed. 

7. Conclusion 

In the paper, an approach to simulate the heat transfer with considering permafrost thawing is 

discussed. We performed the study on the accuracy of described predictor-corrector schem for 

numerical modelling. An approach with the governing equation for the permafrost is presented. We 

apply such an approach to perform simulations of the heat transfer with the permafrost thawing in a 

medium with wellbores. Also, we have discussed the parallel algorithm based on the sweep method 

for calculations on multi-core cluster systems. The results of the parallel algorithm work on different 

tests are presented. 
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