
ISSN 1990-4789, Journal of Applied and Industrial Mathematics, 2018, Vol. 12, No. 2, pp. 1–17. c© Pleiades Publishing, Ltd., 2018.

Original Russian Text c© A.B. Khutoretskii, S.V. Bredikhin, A.A. Zamyatin, 2018, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2018, Vol. XXI, No. 2,

pp. 108–121.

A Lexicographic 0.5-Approximation Algorithm

for the Multiple Knapsack Problem

A. B. Khutoretskii1*, S. V. Bredikhin2**, and A. A. Zamyatin1***

1Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia

2Institute of Computational Mathematics and Mathematical Geophysics,
pr. Akad. Lavrent’eva 6, Novosibirsk, 630090 Russia

Received October 12, 2017

Abstract—We present a 0.5-approximation algorithm for the multiple knapsack problem (MKP).
The algorithm uses an ordering of knapsacks according to the nondecreasing of size, and two
orderings of items: in nonincreasing utility order and in nonincreasing order of the utility/size
ratio. These orderings create two lexicographic orderings on the set A×B (here A is the set of
knapsacks and B is the set of indivisible items). Based on each of these lexicographic orderings, the
algorithm creates an admissible solution to MKP by looking through the pairs (a, b) ∈ A×B in the
corresponding order and placing the item b into the knapsack a if this item is not placed yet and there
is enough free space in the knapsack. The algorithm chooses the best of the two obtained solutions.
This algorithm is 0.5-approximate and has running time O(mn) (without sorting), where m and n

are the sizes of the sets A and B correspondingly.

DOI: 10.1134/S1990478918020011

Keywords: multiple knapsack problem, lexicographic ordering, approximation algorithm,

approximation ratio

INTRODUCTION

The Multiple Knapsack Problem (MKP) consists in the following (for example, see [1, 2]):

There is a set A of knapsacks, |A| = m, and a set B of indivisible items, |B| = n; it is necessary to
place in the knapsacks the items of maximum total utility.

Such a problem arises, for example, when one needs to distribute the computing resource in a multi-

processor system.

The problem is NP-complete [3, Theorem 15.8], and therefore the approximate algorithms for solving

it are of interest. In [4], it is proved that if P 6= NP then there is no fully polynomial time approximation

scheme (FPTAS) for MKP even for m = 2. A polynomial time approximation scheme (PTAS) for MKP

*E-mail: hab@dus.nsc.ru
**E-mail: bred@nsc.ru

***E-mail: stekbox@gmail.com

1

2 KHUTORETSKII et al.

is also constructed there, which allows to construct a (1− ε)-approximate solution with the running

time of O(nO(ln(1/ε)/ε8)) (this estimate of the running time is given in [5]).

Looking through the pairs (a, b) ∈ A×B in some order and placing the item b in the knapsack a if

the item has not yet been placed and there is enough space in the knapsack, it is possible to construct an

admissible solution of MKP. Different orderings of pairs generate a family of greedy algorithms for MKP;

we call them packing. The definition of packing can be easily modified for the problems with divisible

items (for example, the linear relaxation of MKP): for each next pair (a, b) the maximum admissible part

of the item a (taking the previous loading into account) is packed in the knapsack b. The total order

relations ≺A and ≺B on the sets A and B, respectively, determine a lexicographic ordering on A×B

and, hence, some packing. The special case of MKP for m = 1 is the knapsack problem (Knapsack

Problem, KP). For the linear relaxation of KP, assuming that the size of every item is not larger than the

size of the knapsack, the optimal solution (xLP in the notation of [2]) can be obtained by the packing

that uses the ordering of items according to nonincrease of the efficiency (the ratio of utility to size) [6].

If an algorithm A, applied to a problem P from some class P of maximization problems, finds

an admissible solution with the value of the objective function A(P), then its approximation ratio

(worst-case performance ratio [1, p. 9]) for the class of problems P is the largest number ε such that

A(P) ≥ εOpt(P) for all P ∈ P (here Opt(P) is the optimal value of the objective function in the

problem P). An algorithm with the approximation ratio ε is called ε-approximate. The well-known

0.5-approximate algorithm for KP [1] chooses the best of two admissible solutions. The first includes all

items that are entirely included in xLP , the second places in the knapsack only the item of maximum

utility. In [7] an improvement of this algorithm is suggested: the second placement is constructed by

packing with the ordering of items according to non-increase in utility.

Let Q(a) > 0 and q(b) > 0 be the sizes of the knapsack a and the item b, respectively. In [2, p. 299],

the linear relaxation of MKP is considered with an additional condition: it is forbidden to place a nonzero

part of an item b in a knapsack a if Q(a) < q(b). It is also claimed there (without proof) that if we order the

items by nonincreasing the efficiency, while the knapsacks, by nondecreasing the size then the packing

using only the pairs (a, b) for which q(b) ≤ Q(a) gives an optimal solution x∗ of this problem. We will

prove an even more general result (Theorem 1): if the items are ordered according to nonincreasing

efficiency and the set of admissible pairs is consistent with the ordering the knapsacks then the packing

gives an optimal solution to the linear relaxation of MKP. The items entirely included in the placement

x∗ and the items partially included in it form two admissible solutions of MKP: x1 and x2. The algorithm

that chooses the best of these solutions is 0.5-approximate [2, Theorem 10.4.2]. The time complexity of

the algorithm is O(mn) (without sorting).

The purpose of the article is to construct a new algorithm with the same estimates for accuracy

and time complexity. The motivation is that, for a particular problem with many knapsacks, different

algorithms generally yield different solutions from which we can choose the best.

We consider for MKP two packings with the ordering the knapsacks by nondecreasing size. The

first packing orders the objects by nonincreasing the effectiveness, the second, by nonincreasing the

utility. These packings generate the placements x3 and x4 which in the general case differ from the

placements x1 and x2 (for KP, the placements x1 and x3 coincide). Corollary 5 (below) proves that a

combined algorithm choosing the best of the placements x3 and x4 is 0.5-approximate. Thus, a new

0.5-approximate algorithm is proposed for MKP with the time complexity of O(mn) (without sorting)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

A LEXICOGRAPHIC 0.5-APPROXIMATION ALGORITHM 3

which combines the ideas of the studies indicated above and generalizes the algorithm of [7] to the case

m > 1. An algorithm for MKP with better characteristics is unknown to us.

1. FORMALIZATION OF THE PROBLEM

Let the coordinates of the vectors x, y, y0, yk, and z in Rmn be put into correspondence to the pairs

(a, b) ∈ A×B and be denoted by x(a, b), y(a, b), y0(a, b), yk(a, b), and z(a, b) respectively. We consider

MKP in the following form:

V (x) =
∑

b∈B

v(b)
∑

a∈A

x(a, b) → max (1)

∑

b∈B

q(b)x(a, b) ≤ Q(a) for all a, (2)

∑

a∈A

x(a, b) ≤ 1 for all b, (3)

x(a, b) ∈ {0, 1} for all a, b. (4)

Here, v(b) > 0 is the utility of the item b, whereas the variable x(a, b) is a “portion” of the item b placed in

the knapsack a. Let K(P) be the problem (1)–(4) with the set of parameters P = 〈A,B, q(·), v(·), Q(·)〉;
and let X(P) be the set of all admissible solutions of this problem. The vector x ∈ X(P) indicates an

admissible placement: the item b is “placed” in the knapsack a if and only if x(a, b) = 1.

2. LEXICOGRAPHIC ALGORITHMS

For a finite set M 6= ∅ on which some total order relation ≺ is given, we denote by min(≺,M) the

first element of M (in the sense of the relation≺). Let us describe two lexicographic algorithms (GI and

TGI) for MKP.

2.1. Algorithm GI (Greedy Heuristic for Indivisible Items)

Input: a problem K(P), a total order relation≺ on the set A×B;

Output: a vector x ∈ X(P);

Begin {looking through the pairs (a, b) ∈ A×B according to the order≺}

(a) Q′(a):= Q(a) for all a; q′(b):= q(b) for all b; M := ∅; {initialization; Q′(a) is the unused size of

knapsack a; q′(b) is the nonplaced part of item b; and M is the set of pairs (a, b) for which the value

x(a, b) is defined }

(b) while M 6= A×B do {construction of vector x}

find (a0, b0) = min(≺, (A×B) \M); {beginning of the step (a0, b0)}

if q′(b0) = q(b0) and q(b0) ≤ Q′(a0) {item b0 has not yet been placed and can be placed

in knapsack a0}

(c) then x(a0, b0):= 1 {item b0 is placed in knapsack a0} else x(a0, b0):= 0

endif;

Q′(a0):= Q′(a0)− x(a0, b0)q(b0); q′(b0):= q′(b0)− x(a0, b0)q(b0); M := M \ {a0, b0};

{the value x(a0, b0) is determined, the end of the step (a0, b0)}

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

4 KHUTORETSKII et al.

endwhile

End.

It is clear that, at the beginning of the step (a0, b0) of the algorithm, we have

Q′(a0) = Q(a0)−
∑

(a0,b)≺(a0,b0)

q(b)x(a0, b), (5)

q′(b0) = q(b0)
[
1−

∑

(a,b0)≺(a0,b0)

x(a, b0)
]
. (6)

Given a ∈ A, we put B(a) = {b ∈ B | q(b) ≤ Q(a)} to be the set of all items that can be placed in the

knapsack a. Using the idea of [7, p. 629], we formulate a “truncated” version of the GI algorithm allowing

the placement of the item b0 in the knapsack a0 only if all items b ∈ B(a0) such that (a0, b) ≺ (a0, b0)
are placed in the knapsacks a 4 a0.

2.2. Algorithm TGI (Truncated Greedy Heuristic for Indivisible Items)

Input: a problem K(P), a total order relation≺ on the set A×B;

Output: a vector y ∈ X(P);

Begin {looking through the pairs (a, b) ∈ A×B according to the order≺}

(a) Q′(a):= Q(a) for all a; q′(b):= q(b) for all b; A′:= A; M := ∅; {initialization; Q′(a) is the unused size

of knapsack a; q′(b) is the unplaced part of item b; A′ is the set of knapsacks which can be filled up; M is

the set of pairs for which the value y(a, b) is defined }

(b) while M 6= A×B do {construction of vector y}

find (a0, b0) = min(≺, (A×B) \M); {beginning of the step (a0, b0)}

if (a0 /∈ A′ or b0 /∈ B(a0) or q′(b0) = 0)

(c) then y(a0, b0):= 0 else

if q(b0) ≤ Q′(a0) {item b0 can be placed in the knapsack a0}

(d) then y(a0, b0):= 1 {we place item b0 in the knapsack a0}

(e) else begin y(a0, b0):= 0; A′ := A′ \ {a0} end { knapsack a0 will not be filled anymore }

endif

endif

M := M ∪ {(a0, b0)}; {the value y(a0, b0) is determined }

Q′(a0):= Q′(a0)− y(a0, b0)q(b0); q′(b0):= q′(b0)− q(b0)y(a0, b0); {end of the step (a0, b0)}

endwhile

End.

It is clear that, at the beginning of the step (a0, b0) of Algorithm TGI, equalities (5) and (6) for x = y

are fulfilled.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

A LEXICOGRAPHIC 0.5-APPROXIMATION ALGORITHM 5

2.3. Properties of Algorithms GI and TGI

Let GI(P,≺) and TGI(P,≺) be implementations of Algorithms GI and TGI for a problem K(P)
respectively, which use an ordering≺ of the set A×B. Let the admissible solutions of the problem K(P)
constructed by Algorithms GI(P , ≺) and TGI(P , ≺) be denoted by x(P,≺) and y(P,≺), respectively.

For x ∈ X(P) and (a0, b) ∈ A×B, we put

r(x, a0, b) =
∑

(a,b)¹(a0,b)

x(a, b).

It follows from (3) that r(x, a0, b) = 1 if in the placement x item b goes into the knapsack a for which

(a, b) ¹ (a0, b), otherwise r(x, a0, b) = 0.

Lemma 1. Let y = y(P,≺).

(i) a0 /∈ A′ at the step (a0, b0) of Algorithm TGI(P,≺) if and only if there exists an item b1 such

that (a0, b1) ≺ (a0, b0), b1 ∈ B(a0), and r(y, a0, b1) = 0.

(ii) If a0 /∈ A′ at the step (a0, b0) of Algorithm TGI(P,≺) then there exists an item b such that

y(a0, b) = 1.

(iii) V (x(P,≺)) ≥ V (y(P,≺)).

Proof. If at the step (a0, b0) of Algorithm TGI (P,≺) we have a0 /∈ A′ then at some preceding step

(a0, b1) the algorithm executed a line with the label (e), b1 ∈ B(a0) and r(y, a0, b1) = 0. Conversely,

let (a0, b1) ≺ (a0, b0), b1 ∈ B(a0), and r(y, a0, b1) = 0. Then q′(b1) = q(b1) > 0 at the beginning of the

step (a0, b1) and y(a0, b1) = 0. The fixation y(a0, b1) = 0 can take place only at the labels (c) and (e) of

Algorithm TGI, whereas a0 /∈ A′ at the step (a0, b1) in the first case and after this step, in the second

case. In any case, a0 /∈ A′ at the step (a0, b0). The statement (i) is proved.

If a0 /∈ A′ at the step (a0, b0) then at some step (a0, b) ≺ (a0, b0) Algorithm TGI comes to the

label (e). Then q(b) ≤ Q(a0), q′(b) = q(b), and q(b) > Q′(a0); thus Q′(a0) < Q(a0). Now (ii) follows

from (5).

Let x = x(P,≺). Suppose that r(x, a, b) ≥ y(a, b) for all pairs (a, b) ≺ (a0, b0) (inductive hypothe-

sis). This is also true for the pair (a0, b0) for y(a0, b0) = 0. Suppose that y(a0, b0) = 1. Then b0 ∈ B(a0)
and a0 ∈ A′ at the step (a0, b0) of Algorithm TGI(P,≺). Let us demonstrate that r(x, a0, b0) = 1.

Put B′(a0) = {b ∈ B(a0) | (a0, b) ≺ (a0, b0)} and choose b ∈ B′(a0). It follows from statement (i)

that r(y, a0, b) = 1. If y(a0, b) = 0 then there exists a such that (a, b) ≺ (a0, b) and y(a, b) = 1. Then

r(x, a, b) = 1 by the induction hypothesis and x(a0, b) = 0 by (3). Hence, y(a0, b) ≥ x(a0, b) for all

b ∈ B′(a0), thus
∑

(a0,b)≺(a0,b0)

x(a0, b)q(b) ≤
∑

(a0,b)≺(a0,b0)

y(a0, b)q(b) ≤ Q(a0)− q(b0). (7)

The last inequality in (7) follows from y ∈ X(P) and y(a0, b0) = 1. If there is a pair (a, b0) ≺ (a0, b0)
for which x(a, b0) = 1 then r(x, a0, b0) = 1. Let x(a, b0) = 0 for all (a, b0) ≺ (a0, b0). Then at the step

(a0, b0) of Algorithm GI(P,≺) we have q′(b0) = q(b0); and q(b0) ≤ Q′(a0) follows from (5) and (7).

Hence, Algorithm GI at the step (a0, b0) will go to the label (c) and set x(a0, b0) = 1, whence

r(x, a0, b0) = 1 ≥ y(a, b). By induction, r(x, a, b) ≥ y(a, b) for all a and b, from which assertion (iii)

follows.

The proof of Lemma 1 is complete.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

6 KHUTORETSKII et al.

Corollary 1. Let y = y(P,≺). If y(a0, b0) = 1 then r(y, a0, b) = 1 for all b such that

(a0, b) ≺ (a0, b0), b ∈ B(a0).

Proof. Let y(a0, b0) = 1, b ∈ B(a0), (a0, b) ≺ (a0, b0), and r(y, a0, b) = 0. Then, by the statement (i) of

Lemma 1, a0 /∈ A′ at the step (a0, b0) of Algorithm TGI; the algorithm comes to the label (c) and sets

y(a0, b0) = 0; a contradiction.

3. MKP WITH DIVISIBLE ITEMS

We obtain the linear relaxation of problem (1)–(4) by substituting (4) with

x(a, b) ≥ 0 for all a, b. (8)

It follows from (3) that x(a, b) ≤ 1. Condition (8) means that, in knapsack a, the portion x(a, b) of item

b can be placed having the size x(a, b)q(b) and the cost x(a, b)v(b). In the case of one knapsack, the

optimal solution of the problem (1)–(3), and (8) is constructed by a packing that uses the ordering of

items according to efficiency [6].

Suppose that some assignments are forbidden: there is indicated a set C ⊆ A×B such that

x(a, b) = 0 if (a, b) /∈ C. (9)

The set of parameters P and the set C determine the problem (1)–(3), (8), and (9); we denote it by

Problem L(P, C). Let Z(P, C) and Z∗(P, C) be, respectively, the sets of all admissible and all optimal

solutions of Problem L(P,C). Given x ∈ Z(P,C) and (a0, b0) ∈ A×B, put

S(x, a0) =
∑

b

q(b)x(a, b), R(x, b0) =
∑

a

x(a, b).

Lemma 2. If x ∈ Z∗(P, C) and (a0, b0) ∈ C, then either S(x, a0) = Q(a0) or R(x, b0) = 1.

Proof. For (a0, b0) ∈ C and x ∈ Z∗(P, C), we assume the contrary: S(x, a0) = Q(a0)− δ1 and

R(x, b0) = 1− δ2, whereas δ1 > 0 and δ2 > 0. Put δ = min{δ1/q(b0), δ2} > 0. Define y ∈ Rmn as

follows: y(a0, b0) = x(a0, b0) + δ and y(a, b) = x(a, b) for all (a, b) 6= (a0, b0). It is easy to check that

y ∈ Z(P,C), whereas V (y) = V (x) + δv(b0) > V (x), which contradicts the choice of x.

This completes the proof of Lemma 2.

Let us formulate a lexicographic algorithm for Problem L(P, C):

3.1. Algorithm GD (Greedy Heuristic for Divisible Items)

Input: Problem L(P,C), a total order relation≺ on A×B;

Output: a vector z ∈ Z(P,C);

Begin { the algorithm looks through the pairs (a, b) ∈ A×B in accordance with the ordering≺}

(a) Q′(a) := Q(a) for all a; q′(b) := q(b) for all b; M := ∅; {initialization; Q′(a) is the unused size of

knapsack a; q′(b) is the size of the unplaced part of item b; M is the set of pairs (a, b) for which the value

z(a, b) is defined }

(b) while M 6= A×B do {construction of vector z}

find (a0, b0) = min(≺, A×B) \M); {beginning of the step (a0, b0)}

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

A LEXICOGRAPHIC 0.5-APPROXIMATION ALGORITHM 7

if (a0, b0) ∈ C

(c) then z(a0, b0) := min{q′(b0), Q′(a0)}/q(b0); {from the unplaced part

of item b0 we place in the knapsack a0 the maximum that can be still put into it

put into it }

else z(a0, b0) := 0

endif

M := M \ {(a0, b0)}; {the value z(a0, b0) is determined }

Q′(a0) := Q′(a0)− q(b0)z(a0, b0); q′(b0) := q′(b0)− q(b0)z(a0, b0); {the end of the step (a0, b0)}

endwhile

End.

It is clear from the description of Algorithm GD that at the beginning of step (a0, b0) equalities

(5) and (6) are satisfied for x = z. Let GD(P, C,≺) be an implementation of Algorithm GD for

Problem L(P, C) using an ordering ≺ of the set A×B; and let z(P, C,≺) be an admissible solution

of the problem, constructed by Algorithm GD(P, C,≺).

Lemma 3. Let z = z(P,C,≺) and (a0, b0) ∈ A×B. If y ∈ Z(P, C) and z(a, b) = y(a, b) for all
(a, b) ≺ (a0, b0) then z(a0, b0) ≥ y(a0, b0).

Proof. Let z(a, b) = y(a, b) for (a, b) ≺ (a0, b0) and y(a0, b0) > z(a0, b0) ≥ 0. Then (a0, b0) ∈ C. It fol-

lows from (5), (6) and y ∈ Z(P,C) that, at the beginning of the step (a0, b0) of Algorithm GD(P, C,≺),

we have

Q′(a0) = Q(a0)−
∑

(a0,b)≺(a0,b0)

q(b)z(a0, b)

= Q(a0)−
∑

(a0,b)≺(a0,b0)

q(b)y(a0, b) ≥ q(b0)y(a0, b0) > q(b0)z(a0, b0),

q′(b0) = q(b0)
[
1−

∑

(a,b0)≺(a0,b0)

z(a, b0)
]

= q(b0)
[
1−

∑

(a,b0)≺(a0,b0)

y(a, b0)
]
≥ q(b0)y(a0, b0) > q(b0)z(a0, b0).

However, by construction, q(b0)z(a0, b0) = min{q′(b0), Q′(a0)}; a contradiction.

This completes the proof of Lemma 3.

Next we will assume that the sets A and B are ordered by the relations ≺A and ≺B respectively.

Let ≺A,B be a lexicographic ordering of A×B generated by the relations ≺A and ≺B . For b ∈ B, we

put d(b) = v(b)/q(b) (efficiency of item b). The relation ≺B will be called a d-ordering if it orders the

items by nonincreasing efficiency: b1 ≺B b2 implies d(b1) ≥ d(b2) for all b1 and b2. The set C ⊆ A×B

is consistent with the total order relation ≺A on A if, for every a1, a2, and b, it follows from (a1, b) ∈ C

and a1 ≺A a2 that (a2, b) ∈ C.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

8 KHUTORETSKII et al.

Below, in Theorem 1, we give some sufficient conditions for the optimality of the vector z(P, C,≺) in

Problem L(P,C). Given (a0, b0) ∈ A×B and z ∈ Z(P, C), we use the following notation:

N1(z, a0, b0) = |{b ∈ B | z(a0, b) > 0, b0 ≺B b}|,
N2(z, a0, b0) = |{a ∈ A | z(a, b0) > 0, a0 ≺A a}|,

N3(z, a0, b0) = |{a ∈ A | a ¹A a0, S(z, a) < Q(a)}|,
N4(z, a0, b0) = |{b ∈ B | b ¹B b0, R(z, b) < 1}|,

N(z, a0, b0) =
4∑

k=1

Nk(z, a0, b0).

Lemma 4. Suppose that a relation≺B is a d-ordering and the set C is consistent with a relation

≺A. Put x = z(P, C,≺A,B). If y ∈ Z∗(P, C) and x(a, b) = y(a, b) for all (a, b) ≺A,B (a0, b0) then
there is z ∈ Z∗(P, C) such that it follows from (a, b) ≺A,B (a0, b0) that z(a, b) = x(a, b) and either

z(a0, b0) = x(a0, b0) or N(z, a0, b0) < N(y, a0, b0).

Proof. Suppose that the conditions of the lemma are satisfied. If x(a0, b0) = y(a0, b0) then the assertion

of the lemma holds for z = y; therefore, we assume that x(a0, b0) 6= y(a0, b0). Then (a0, b0) ∈ C (since

x(a0, b0) = y(a0, b0) = 0 for (a0, b0) /∈ C) and x(a0, b0) > y(a0, b0) by Lemma 3. Thus, we assume that

y(a0, b0) < x(a0, b0), y(a0, b) = x(a0, b) for b ≺B b0. (10)

Put δ1 = x(a0, b0)− y(a0, b0) > 0. It follows from Lemma 2 that S(y, a0) = Q(a0) or R(y, b0) = 1.

Consider the following cases:

1. S(y, a0) = Q(a0) and R(y, b0) = 1− δ2, where δ2 > 0. Then, by (2), S(x, a0) ≤ S(y, a0), and it

follows from (10) that there is an item b1 satisfying the conditions b0 ≺B b1 and y(a0, b1) > x(a0, b1).

We put δ3 = y(a0, b1)q(b1)/q(b0) > 0 and δ = min{δ1, δ2, δ3} > 0. Define the vector z: z(a, b) = y(a, b)
if (a, b) /∈ {(a0, b0), (a0, b1)}, z(a0, b0) = y(a0, b0) + δ, and z(a0, b1) = y(a0, b1)− δq(b0)/q(b1). It is

not difficult to verify that z ∈ Z(P, C). However, V (z) = V (y) + δ[v(b0)− v(b1)q(b0)/q(b1)] ≥ V (y)
since b0 ≺B b1 yields v(b0)/q(b0) ≥ v(b1)/q(b1); hence, z ∈ Z∗(P, C). In addition, z(a, b) = x(a, b) for

(a, b) ≺A,B (a0, b0), Nk(z, a0, b0) ≤ Nk(y, a0, b0) for k ∈ {1, 4}, and Nk(z, a0, b0) = Nk(y, a0, b0) for

k ∈ {2, 3}. If δ = δ1 then z(a0, b0) = x(a0, b0). If δ = δ2 then N4(z, a0, b0) = N4(y, a0, b0)− 1 since

R(z, b0) = 1. If δ = δ3 then z(a0, b1) = 0 and N1(z, a0, b0) = N1(y, a0, b0)− 1. Therefore, z(a0, b0) =
x(a0, b0) or N(z, a0, b0) < N(y, a0, b0).

2. S(y, a0) = Q(a0)− δ2, where δ2 > 0, and R(y, b0) = 1. By (3), R(x, b0) ≤ R(y, b0) and it fol-

lows from (10) that there exists a1 for which a0 ≺A a1 and y(a1, b0) > x(a1, b0). Let δ = min{δ2/

q(b0), δ1, y(a1, b0)} > 0. Define a vector z: z(a, b) = y(a, b) if (a, b) /∈ {(a0, b0), (a1, b0)}; z(a0, b0) =
y(a0, b0) + δ, and z(a1, b0) = y(a1, b0)− δ. It is easy to check that z ∈ Z(P,C) and V (z) = V (y),

whence z ∈ Z∗(P, C). Moreover, z(a, b) = x(a, b) for (a, b) ≺A,B (a0, b0), Nk(z, a0, b0) = Nk(y, a0, b0)
for k ∈ {1, 4}, and Nk(z, a0, b0) ≤ Nk(y, a0, b0) for k ∈ {2, 3}. In the case of δ = δ2/q(b0), we have

S(z, a0) = Q(a0) from which N3(z, a0, b0) = N3(y, a0, b0)− 1. If δ = δ1 then z(a0, b0) = x(a0, b0). On

the other hand, if δ = y(a1, b0) then z(a1, b0) = 0, whence N2(z, a0, b0) = N2(y, a0, b0)− 1. Therefore,

z(a0, b0) = x(a0, b0) or N(z, a0, b0) < N(y, a0, b0).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

A LEXICOGRAPHIC 0.5-APPROXIMATION ALGORITHM 9

3. S(y, a0) = Q(a0) and R(y, b0) = 1. In this case, S(y, a0) ≥ S(x, a0) and R(y, b0) ≥ R(x, b0).

By (10), there are a1 and b1 such that a0 ≺A a1, b0 ≺B b1, y(a0, b1) > x(a0, b1) ≥ 0, and y(a1, b0) >

x(a1, b0) ≥ 0. Note that (a1, b1) ∈ C since the set C is consistent with the relation ≺A, a0 ≺A a1 and

(a0, b1) ∈ C (because y(a0, b1) > 0). We choose δ = min{δ1, y(a1, b0), y(a0, b1)} > 0 and define the

vector z: z(a0, b0) = y(a0, b0) + δ, z(a1, b0) = y(a1, b0)− δ, z(a0, b1) = y(a0, b1)− δ, and z(a1, b1) =
y(a1, b1) + δ; if (a, b) /∈ {(a0, b0), (a1, b0), (a0, b1), (a1, b1)} then z(a, b) = y(a, b). It is easy to see

that z ∈ Z(P, C) and V (z) = V (y), whence z ∈ Z∗(P, C). Moreover, z(a, b) = x(a, b) for (a, b) ≺A,B

(a0, b0), Nk(z, a0, b0) = Nk(y, a0, b0) for k ∈ {3, 4}, and Nk(z, a0, b0) ≤ Nk(y, a0, b0) for k ∈ {1, 2}. If

δ = x(a0, b0)− y(a0, b0) then z(a0, b0) = x(a0, b0). If δ = y(a1, b0) then z(a1, b0) = 0 from which we

have N2(z, a0, b0) < N2(y, a0, b0). If δ = y(a0, b1) then z(a0, b1) = 0 and N1(z, a0, b0) < N1(y, a0, b0).

And in this case z(a0, b0) = x(a0, b0) or N(z, a0, b0) < N(y, a0, b0).

The proof of Lemma 4 is complete.

Theorem 1. If a set C is compatible with the relation ≺A and a d-ordering ≺B is given on B

then Algorithm GD (P,C,≺A,B) constructs an optimal solution of Problem L(P,C).

Proof. Put x = z(P, C,≺A,B). If y ∈ Z∗(P,C), y 6= x, and (a0, b0) is the first pair (a, b) (in the ordering

≺A,B) for which x(a, b) 6= y(a, b) then we denote by ϕ(x, y) the vector z the existence of which is stated

by Lemma 4. We arbitrarily choose y1 ∈ Z∗(P, C) and construct a sequence Y = (y1, y2, . . .) of vectors

from Z∗(P, C) as follows: if the vector yk is determined and yk = x then the construction is completed;

otherwise, yk+1 = ϕ(x, yk).

Suppose that the sequence Y is infinite. Then yk 6= x for all k ≥ 1. Let (ak, bk) be the first pair

(a, b) in the ordering ≺A,B such that yk(a, b) 6= x(a, b). By Lemma 4, either (ak+1, bk+1) = (ak, bk)
and N(yk+1, ak+1, bk+1) < N(yk, ak, bk), or yk(a, b) = x(a, b) for all (a, b) ¹A,B (ak, bk) and, hence,

(ak, bk) ≺A,B (ak+1, bk+1). It is impossible since N(yk, ak, bk) are natural numbers and A×B is finite.

Hence, the sequence Y is finite.

It is clear that its last element coincides with x; therefore, x = z(P, C,≺A,B) ∈ Z∗(P, C). The proof

of Theorem 1 is complete.

A total order relation≺A on A is called a Q-ordering if a1 ≺A a2 implies Q(a1) ≤ Q(a2).

Corollary 2. If on A there is given some Q-ordering ≺A, while on B, some d-ordering ≺B , and

C = {(a, b) | q(b) ≤ Q(a)} then Algorithm GD(P, C,≺A,B) solves Problem L(P, C).

Proof. It is obvious that the set C is compatible with the relation ≺A. It remains to apply Theorem 1.

The proof is over.

4. COMBINED ALGORITHMS

Let us formulate combined algorithms max GI and max TGI which, as will be shown, are 0.5-

approximate for MKP. The total order relation ≺B on B is called a v-ordering, if b1 ≺B b2 implies

v(b1) ≥ v(b2).

Algorithm max GI

Input: a problem K(P); a Q-ordering≺A on A; a d-ordering≺d on B; a v-ordering≺v on B;

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

10 KHUTORETSKII et al.

Output: an admissible solution x of a problem K(P);

Begin

(a)≺B:=≺d; execute Algorithm GI(P,≺A,B); x1 := x(P,≺A,B);

≺B:=≺v; execute Algorithm GI(P,≺A,B); x2 := x(P,≺A,B);

if V (x1) ≥ V (x2) then x := x1 else x := x2

End.

It is known [1, p. 28; 7, Theorem 5] that, for one knapsack, Algorithm maxGI has an estimate 0.5
for the approximation ratio. The idea of this algorithm was used in [1, p. 166–167] when constructing a

1/(m + 1)-approximate algorithm for MKP.

Algorithm maxTGI is obtained from Algorithm maxGI by substituting the line with the label (a) by

the following line:

≺B:=≺d; execute Algorithm TGI(P,≺A,B); x1 := y(P,≺A,B).

4.1. Scheme of the Proof of the Main Result

Statement (iii) of Lemma 1 shows that, from the 0.5-approximation degree of Algorithm maxTGI

there follows 0.5-approximation degree of Algorithm maxGI. Let ≺A be a Q-ordering, and let ≺B be

some d-ordering. To prove 0.5-approximation degree of Algorithm maxTGI for the problem K(P), we,

using the vector y = y(P,≺A,B), construct a set B′ of “additional” items. Then we will form an expanded

set of items B1 = B ∪B′, extend the functions q(·) and v(·) to the set B1, and extend the relation≺B to

a d-ordering≺B1 of B1.

Let P1 = 〈A, B1, q(·), v(·), Q(·)〉. We will construct a set C ⊆ A×B1 consistent with the relation

≺A and including all pairs (a, b) from A×B such that q(b) ≤ Q(a). By Theorem 1, vector z constructed

by Algorithm GD (P1, C,≺A,B1) is the optimal solution of Problem L(P1, C). Let V ∗
1 and V ∗ be the

optimal values of objective functions in Problems L(P1, C) and K(P) respectively; and let the vector x

be constructed by Algorithm GI(P,≺A,B) using the v-ordering of the set B as≺B . We will show that

y = (z(a, b) | (a, b) ∈ A×B), V (x) ≥
∑

b∈B′
v(b), V (x) + V (y) ≥ V ∗

1 ≥ V ∗.

Hence, max{V (x), V (y)} ≥ 0.5V ∗.

4.2. Construction of Problem L(P1, C)

We choose a Q-ordering≺A on A and a d-ordering≺B on B. For x ∈ X(P) and a ∈ A put

B+(x, a) = {b | x(a, b) = 1}, B−(x, a) = {b ∈ B(a) | r(x, a, b) = 0}.
If B−(x, a) 6= ∅, we put β(a) = min(≺B, B−(x, a)).

Lemma 5. Let y = y(P,≺A,B). Then

(i) if B−(y, a) 6= ∅ then q(β(a)) > Q(a)− S(y, a);

(ii) if B−(y, a1) 6= ∅, a1 ≺A a, and r(y, a, β(a1)) = 0 then B+(y, a) 6= ∅ and B+(y, a)∩B(a1) =
∅.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

A LEXICOGRAPHIC 0.5-APPROXIMATION ALGORITHM 11

Proof. (i) Let B−(y, a) 6= ∅. By definition β(a) ∈ B(a), r(y, a, β(a)) = 0 and r(y, a, b) = 1 for all

b ≺B β(a) such that b ∈ B(a). Moreover, y(a, b) = 0 for all b such that β(a) ≺B b (by Corollary 1).

Then at the step (a, β(a)) of Algorithm TGI we have a ∈ A′ (according to the statement (i) of Lemma 1)

and Q′(a) = Q(a)− S(y, a). If q(β(a)) ≤ Q(a)− S(y, a) then Algorithm TGI sets y(a, β(a)) = 1 at the

label (d), which contradicts r(y, a, β(a)) = 0.

(ii) Suppose that B−(y, a1) 6= ∅, a1 ≺A a, and r(y, a, β(a1)) = 0. It follows from r(y, a, β(a1)) = 0
that y(a, β(a1)) = 0. Algorithm TGI will set y(a, β(a1)) = 0 only if at the step (a, β(a1)) one of the

following conditions is fulfilled:

(a) a /∈ A′, (b) q(β(a1)) > Q′(a), (c) β(a1) /∈ B(a), (d) q′(β(a1)) = 0.

Conditions (c) and (d) are not satisfied since β(a1) ∈ B(a1) ⊆ B(a) by definition and r(y, a, β(a1)) = 0
by assumption.

B+(y, a) 6= ∅ follows from condition (a) by the statement (ii) of Lemma 1 and from condition (b),

by (5). Suppose b ∈ B+(y, a). Then r(y, a, b) = 1, b 6= β(a1) (since r(y, a, β(a1)) = 0 by the hypothesis)

and r(y, a1, b) = 0 by (3). Taking into consideration the definition of β(a1), we have either b /∈ B(a1)
or β(a1) ≺B b. But β(a1) ≺B b would imply r(x, a, β(a1)) = 1 by Corollary 1, which contradicts the

assumption. Hence, b /∈ B(a1).

The proof of Lemma 5 is complete.

Let y = y(P,≺A,B). For all a such that B−(y, a) 6= ∅, we define the items δ(a) as follows: Suppose

that the items δ(a) have been already chosen for all a ≺A a0 such that B−(y, a) 6= ∅. If β(a0) /∈ {δ(a) |
a ≺A a0} then we put δ(a0) = β(a0). If β(a0) = δ(a1) for some a1 ≺A a0 then we find a knapsack a

such that

a1 ≺A a ¹A a0, B+(y, a) ∩ {δ(a′) | a1 ≺A a′ ≺A a0} = ∅,

and select δ(a0) from B+(y, a).

Let us proof the correctness of the preceding definition.

Lemma 6. If y = y(P,≺A,B) and B−(y, a) 6= ∅ then δ(a) is defined and either δ(a) = β(a) or

r(y, a, δ(a)) = 1.

Proof. Let y = y(P,≺A,B) and B−(y, a0) 6= ∅. Suppose (the induction hypothesis) that the values

δ(a) are defined for all a ≺A a0 such that B−(y, a) 6= ∅, and either δ(a) = β(a) or r(y, a, δ(a)) = 1.

If β(a0) /∈ {δ(a) | a ≺A a0} then δ(a0) = β(a0). If β(a0) = δ(a1) for some a1 ≺A a0 then

r(y, a1, δ(a1)) ≤ r(y, a0, β(a0)) = 0,

and, taking the induction assumption into account, δ(a1) = β(a1). Let

M1 = {a | a1 ≺A a ¹A a0}, M2 = {δ(a) | a1 ≺A a ≺A a0}.
It is clear that |M1| > |M2|. The sets B+(y, a) are pairwise disjoint; therefore, there is a knapsack a ∈
M1 for which B+(y, a) ∩M2 = ∅, whereas B+(y, a) 6= ∅ by the statement (ii) of Lemma 5. Thus, we

can choose δ(a0) ∈ B+(y, a) according to the definition. It follows from a ¹A a0 that r(y, a0, δ(a0)) = 1.

Lemma 6 is proved.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

12 KHUTORETSKII et al.

The following describes the properties of the set of items δ(a) used in further reasoning:

Lemma 7. If y = y(P,≺A,B) and B−(y, a) 6= ∅ then

(i) δ(a) ∈ B(a);

(ii) the items δ(a) are pairwise different;

(iii) δ(a) ¹B β(a);

(iv) q(δ(a)) > Q(a)− S(y, a).

Proof. (i) by Lemma 6, either δ(a) = β(a) or r(y, a, δ(a)) = 1. In any case, δ(a) ∈ B(a).

(ii) Let B−(y, a0) 6= ∅. Let us show that δ(a0) /∈ {δ(a′) | a′ ≺A a0}.

By the definition of δ(a0), it is true if δ(a0) = β(a0). On the other hand, if δ(a0) 6= β(a0) then there

are a1 and a2 such that

δ(a0) /∈ {δ(a) | a1 ≺A a ≺A a0}, (11)

a1 ≺A a2 ¹A a0, β(a0) = δ(a1), δ(a0) ∈ B+(y, a2). (12)

Therefore, r(y, a1, δ(a1)) ≤ r(y, a2, δ(a1)) ≤ r(y, a0, β(a0)) = 0 and δ(a1) = β(a1) by Lemma 6.

Hence, r(y, a, β(a1)) ≤ r(y, a0, β(a1)) = r(y, a0, β(a0)) = 0 and, by the statement (ii) of Lemma 5,

B+(y, a2) ∩B(a1) = ∅; therefore δ(a0) /∈ B(a1). Owing to statement (i), δ(a) ∈ B(a) ⊆ B(a1) for

a ¹A a1; therefore, δ(a0) /∈ {δ(a) | a ¹A a1}. Taking (11) into account, this yields the statement (ii).

(iii) Suppose that δ(a) 6= β(a). Then, by the definition of δ(a), there exist a1 and a2 satisfying the

conditions (11) and (12) for a0 = a. By the statement (i), it follows from β(a) = δ(a1) that β(a) ∈
B(a1) ⊆ B(a2), whereas r(y, a2, β(a)) ≤ r(y, a, β(a)) = 0. Applying Corollary 1 (while substituting a0,

b0, and b with a2, δ(a), and β(a) respectively), we obtain δ(a) ≺B β(a).

(iv) If δ(a) = β(a) then statement (iv) is equivalent to statement (i) of Lemma 5. On the other

hand, if δ(a) 6= β(a) then there exist a1 and a2 satisfying conditions (11) and (12) for a0 = a. Then

it follows from r(y, a, β(a)) = 0 that r(y, a1, δ(a1)) = r(y, a2, β(a)) = 0; and β(a) = δ(a1) = β(a1) by

Lemma 6. Hence, r(y, a2, β(a1)) ≤ r(y, a, β(a) = 0. Then B+(y, a2) ∩B(a1) = ∅ by the statement (ii)

of Lemma 5; and it follows from δ(a) ∈ B+(y, a2) that δ(a) /∈ B(a1). Therefore, using the statement (i)

of Lemma 5, from β(a) = δ(a1) ∈ B(a1) we have

q(δ(a)) > Q(a1) ≥ q(β(a)) > Q(a)− S(y, a).

The proof of Lemma 7 is complete.

Let y = y(P,≺A,B) and A1 = {a ∈ A | B−(y, a) 6= ∅}. Given a ∈ A1, we introduce a new item γ(a)
with the parameters q(γ(a)) = Q(a)− S(y, a) and v(γ(a)) = q(γ(a)) · d(δ(a)). The definition of v(γ(a))
is correct since for a ∈ A1 the item δ(a) exists (by Lemma 6).

Put B′ = {γ(a) | a ∈ A1} and B1 = B ∪B′. The functions q(·) and v(·) are now defined on B1.

Define the relation ≺B1 on B1 as follows: on B the relation ≺B1 coincides with ≺B , and the item γ(a)
immediately precedes δ(a).

If A1 = ∅ then the vector y is the optimal solution of Problem K(P) because all items are placed.

Taking this into account, we assume that A1 6= ∅. It is obvious that the relation ≺B1 totally orders the

set B1. We will show that this is some d-ordering.

Lemma 8. The relation≺B1 orders B1 according to nonincreasing item efficiency.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

A LEXICOGRAPHIC 0.5-APPROXIMATION ALGORITHM 13

Proof. Let d(b) = v(b)/q(b) for b ∈ B1. Let us show that

b1 ≺B1 b2 → d(b1) ≥ d(b2) for all b1 and b2 from B1. (13)

It is obvious that condition (13) is fulfilled for b1 and b2 from B. If b = γ(a) then

d(b) = v(γ(a))/q(γ(a)) = d(δ(a));

therefore, the placement γ(a) immediately before δ(a) preserves (13). The proof is over.

So, we have a Q-ordering≺A on A, an extended set of items B1 with a d-ordering≺B1, and functions

q(·) and v(·) defined on B1. Put

C = {(a, b) ∈ A×B | q(b) ≤ Q(a)} ∪ {(a, γ(a′)) | a′ ¹A a}, P1 = 〈A,B1, q(·), v(·), Q(·)〉.
Problem L(P1, C) is now defined.

4.3. Properties of the Optimal Solution of Problem L(P1, C)

Given Problem L(P1, C), let Z(P1, C) and V1(·) be the set of admissible solution and the objective

function respectively. Let V ∗ and V ∗
1 be optimal values of objective functions in Problems K(P)

and L(P1, C) respectively.

Put u0 = z(P1, C,≺A,B1) = (u0(a, b) | (a, b) ∈ A×B1).

Lemma 9. The relations V ∗ ≤ V ∗
1 = V1(u0) are fulfilled.

Proof. Let x ∈ X(P) and u(x) = (u(a, b) | (a, b) ∈ A×B1), where u(a, b) = x(a, b) for b ∈ B and

u(a, b) = 0 for b ∈ B′. Obviously, u(x) ∈ Z(P1, C) and V1(u(x)) = V (x); and so, V ∗ ≤ V ∗
1 .

Let (a, b) ∈ C and a ≺A a1. If b ∈ B then q(b) ≤ Q(a) ≤ Q(a1); therefore, (a1, b) ∈ C. On the other

hand, if b = γ(a′) then, by definition of C, it follows from (a, b) ∈ C that a′ ¹A a. Then a′ ≺A a1 and

(a1, b) ∈ C by definition. Hence, C is consistent with the relation ≺A. Taking Lemma 8 into account,

it follows from Theorem 1 that u0 is an optimal solution of Problem L(P1, C).

This completes the proof of Lemma 9.

Given x ∈ X(P), u = (u(a, b) | (a, b) ∈ A×B1) and a0 ∈ A, we introduce

s(x, a0, b0) =
∑

{b∈B|b≺Bb0}
q(b)x(a0, b), s1(u, a0, b0) =

∑

{b∈B1|b≺B1b0}
q(b)u(a0, b)

and put y0 = y(P,≺A,B).

Theorem 2. (i) For all (a, b) ∈ A×B, the equality u0(a, b) = y0(a, b) holds;

(ii) For all a ∈ A1 the equality u0(a, γ(a)) = 1 is fulfilled.

Proof. At step (a0, b0) of Algorithm GD(P1, C,≺A,B1), the values u0(a, b) are already defined for all

pairs (a, b) ≺A,B1 (a0, b0).

Let us assume (the induction hypothesis) that for all these pairs the following conditions are satisfied:

if b ∈ B then u0(a, b) = y0(a, b), while if a ∈ A1 and b = γ(a) then u0(a, b) = 1. Under this assumption,

u0(a0, γ(a)) = 0 if γ(a) ¹B1 b0, a 6= a0. (14)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

14 KHUTORETSKII et al.

Indeed, let γ(a) ¹B1 b0, a 6= a0. If a0 ≺A a then (a0, γ(a)) /∈ C and u0(a0, γ(a)) = 0 in accordance with

Algorithm GD. If a ≺A a0 then (a, γ(a)) ≺A,B1 (a0, b0), u0(a, γ(a)) = 1 by the induction hypothesis

and u0(a0, γ(a)) = 0 by (3).

(i) Let b0 ∈ B. If b ≺B1 b0 and b ∈ B then (a0, b) ≺A,B1 (a0, b0) and, by the induction assumption,

u0(a0, b) = y0(a0, b). Above we defined the items γ(a) only for a ∈ A1. Further it is convenient to assume

that for each a ∈ A \A1 an item γ(a) is also defined so that q(γ(a)) = 0. Then, taking (14) into account,

we can write

s1(u0, a0, b0) = q(γ(a0)) · u0(a0, γ(a0)) + s(y0, a0, b0). (15)

From this, s1(u0, a0, b0) ≤ q(γ(a0))+ s(y0, a0, b0). By definition, q(γ(a0)) = 0 if a0 /∈ A1, and q(γ(a0)) =
Q(a0)− S(y0, a0) if a0 ∈ A1. Moreover, Q(a0) ≥ S(y0, a0) by (2). Then for every a ∈ A we have

Q(a0)− s1(u0, a0, b0) ≥ S(y0, a0)− s(y0, a0, b0). (16)

If b0 /∈ B(a0) then u0(a0, b0) = y0(a0, b0) = 0 by construction. If y0(a, b0) = 1 for some a ≺A a0 then

u(a, b0) = 1 by the induction assumption and, by condition (3), u0(a0, b0) = y0(a0, b0) = 0. Consider the

case b0 ∈ B(a0) and y0(a, b0) = 0 for all a ≺A a0. Then, taking the induction assumption into account,
∑

a≺Aa0

y0(a, b0) =
∑

a≺Aa0

u0(a, b0) = 0. (17)

Suppose that y0(a0, b0) = 1. Then b0 ∈ B(a0), (a0, b0) ∈ C and S(y0, a0) ≥ s(y0, a0, b0) + q(b0).

By (16), Q(a0)− s1(u0, a0, b0) ≥ q(b0).

In combination with (17), this guarantees that Algorithm GD will set u0(a0, b0) = 1 = y0(a0, b0) at

step (a0, b0).

We assume now that y0(a0, b0) = 0. Then r(y0, a0, b0) = 0, and it follows from b0 ∈ B(a0) that

b0 ∈ B−(y0, a0); so a0 ∈ A1 and the items β(a0), δ(a0) are defined. From the definition of≺B1, assertion

(iii) of Lemma 7, and the definition of β(a), we infer

γ(a0) ≺B1 δ(a0) ¹B β(a0) ¹B b0.

Then (a0, γ(a0)) ≺A,B1 (a0, b0) and u0(a0, γ(a0)) = 1 by the induction assumption. It follows from (15)

that s1(u0, a0, b0) = q(γ(a0)) + s(y0, a0, b0); then Q(a0)− s1(u0, a0, b0) = S(y0, a0)− s(y0, a0, b0).

However, y0(a0, b0) = 0 implies S(y0, a0) = s(y0, a0, b0) (Corollary 1); therefore Q(a0) = s1(u0, a0, b0).

The line labeled (c) in Algorithm GD will give u0(a0, b0) = 0 at step (a0, b0).

(ii) Assume that a0 ∈ A1 and b0 = γ(a0). If a ≺A a0 then (a, b0) /∈ C and u0(a, b0) = 0. By (14) and

the induction hypothesis, we have

s1(u0, a0, b0) =
∑

{b∈B|b≺Bb0}
q(b)u(a0, b) = s(y0, a0, b0) ≤ S(y0, a0).

By definition, q(γ(a0)) = Q(a0)− S(y0, a0) ≤ Q(a0)− s1(u0, a0, b0). Then the line labeled (c) of Algo-

rithm GD gives u0(a0, b0) = 1 at step (a0, b0).

The proof of Theorem 2 is complete.

Corollary 3. V ∗
1 ≤ V (y0) +

∑
a∈A1

v(δ(a)).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

A LEXICOGRAPHIC 0.5-APPROXIMATION ALGORITHM 15

Proof. Given a ∈ A1, we have by definition

v(γ(a)) = q(γ(a)) · d(δ(a)) =
Q(a)− S(y, a)

q(δ(a))
v(δ(a)).

Therefore, it follows from (iv) of Lemma 7 that v(γ(a)) < v(δ(a)). Using Lemma 9, Theorem 2, and the

assertion (iv) of Lemma 7, we infer

V ∗
1 = V1(u0) =

∑

b∈B

v(b)
∑

a∈A

u0(a, b) +
∑

b∈B′
v(b)

∑

a∈A

u0(a, b))

=
∑

b∈B

v(b)
∑

a∈A

y0(a, b) +
∑

a∈A1

v(γ(a)) ≤ V (y0) +
∑

a∈A1

v(δ(a)).

The proof is complete.

4.4. The Main Result

Let some Q-ordering≺A be given on A, and let a v-ordering≺B be given on B. For each a ∈ A1 we

construct an item ϕ(a) as follows: If the items ϕ(a′) ∈ B(a′) are defined for all a′ ∈ A1 such that a′ ≺A a

then we put

Φ(a) = {ϕ(a′) | a′ ∈ A1, a
′ ≺A a}, ϕ(a) = min(≺B, B(a) \ Φ(a)),

D(a) = {δ(a′) | a′ ∈ A1, a
′ ≺A a}.

The following proves the correctness of the definition of ϕ(a):

Lemma 10. If a ∈ A1 then the value of ϕ(a) is defined.

Proof. It is clear that |Φ(a)| ≤ |{a′ ∈ A1 | a′ ≺A a}|. It follows from the statement (ii) of Lemma 7 that

|D(a)| = |{a′ ∈ A1 | a′ ≺A a}|, δ(a) /∈ D(a).

The statement (i) of Lemma 7 and the definition of Q-ordering yield D(a) ∪ {δ(a)} ⊆ B(a). Then

|Φ(a)| ≤ |D(a)| < |B(a)|, B(a) \ Φ(a) 6= ∅.

Lemma 10 is proved.

Lemma 11. Let Φ = {ϕ(a) | a ∈ A1} and D = {δ(a) | a ∈ A1}. There exists an isomorphism

π : D 7→ Φ such that v(π(b)) ≥ v(b) for all b ∈ D.

Proof. Let there be defined an isomorphism π : D(a0) 7→ Φ(a0) satisfying the condition v(π(b)) ≥ v(b)
for all b ∈ D(a0) (the induction hypothesis). Put

Φ1(a0) = {ϕ(a) | a ≺A a0, ϕ(a) ≺B ϕ(a0)}
and prove that Φ1(a0) = {b ∈ B(a0) | b ≺B ϕ(a0)}. Indeed, if b ∈ B(a0) and b ≺B ϕ(a0) then b = ϕ(a)
for some a ≺A a0 by the definition of ϕ(a0); whence b ∈ Φ1(a0). Conversely, if b ∈ Φ1(a0) then there is

a ≺A a0 for which b = ϕ(a) ≺B ϕ(a0), whereas b ∈ B(a) ⊆ B(a0). Consequently,

Φ1(a0) = {b ∈ B(a0) | b ≺B ϕ(a0)}.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

16 KHUTORETSKII et al.

Denote D1(a0) = π−1(Φ1(a0)), D+
1 = D1(a0) ∪ {δ(a0)} and Φ+

1 = Φ1(a0) ∪ {ϕ(a0)}. The sets

Φ1(a0) and D1(a0) are of equal cardinality, and so we put k = |Φ1(a0)| = |D1(a0)|. Let us enumerate

D+
1 and Φ+

1 in accordance with the ordering≺B :

D+
1 =

{
b1
1, . . . , b

1
k+1

}
, Φ+

1 =
{
b2
1, . . . , b

2
k+1

}
.

The items δ(a) are pairwise different by the assertion (ii) of Lemma 7; therefore, D+
1 includes k + 1

element from B(a0). The items ϕ(a) are pairwise distinct by construction, so Φ+
1 includes k + 1 first

elements from B(a0) (in the ordering≺B). Then v
(
b1
i

) ≤ v
(
b2
i

)
for all i ∈ {1, . . . , k + 1}.

Without changing π(b) for b ∈ D(a0) \D1(a0), we redefine the correspondence π on D1(a0) and

extend it to δ(a0): π
(
b1
i

)
= b2

i . Now π maps the set D(a0) ∪ {δ(a0)} onto Φ(a0) ∪ {ϕ(a0)}. One-to-

oneness of the mapping is preserved.

Lemma 11 is proved.

Corollary 4. The following inequality holds:
∑

a∈A1

v(δ(a)) ≤
∑

a∈A1

v(ϕ(a)).

Proof. Let π : D 7→ Φ be the map constructed in Lemma 11. Then
∑

a∈A1

v(δ(a)) =
∑

b∈D

v(b) ≤
∑

b∈D

v(ϕ(b)) =
∑

b∈Φ

v(b).

Corollary 4 is proved.

We show that all items ϕ(a) are included in the placement x(P,≺A,B):

Lemma 12. Given x = x(P,≺A,B), we have r(x, a, ϕ(a)) = 1 for all a ∈ A1.

Proof. Let r(x, a, ϕ(a)) = 1 for all a from A1 be such that a ≺A a0 (the induction hypothesis). Denote

Φ−(a0) = B(a0) \ Φ(a0), M(a0) = {b ∈ B(a0) |
∑
a≺a0

x(a, b) = 0}, b0 = min(≺B,M(a0)).

Suppose that r(x, a0, ϕ(a0)) = 0. Then ϕ(a0) ∈ M(a0). It follows from the induction hypothesis that

b0 ∈ Φ−(a0). But ϕ(a0) = min(≺B,Φ−(a0)); therefore, ϕ(a0) = b0. Hence x(a, ϕ(a0)) = 0 for all a ≺A

a0 and x(a0, b) = 0 for all b ≺B b0 from B(a0) (since
∑

a≺a0
x(a, b) = 1 for such b).

Then it follows from (5) and (6) that at step (a0, ϕ(a0)) of Algorithm GI(P,≺A,B) we will have

q′(ϕ(a0)) = 0 and Q′(a0) = Q(a0); in result of this the algorithm will come to the line labeled by (c)

and put x(a0, ϕ(a0)) = 1; which contradicts the assumption r(x, a0, ϕ(a0)) = 0.

Theorem 3. Algorithm maxTGI constructs a 0.5-approximate solution of the multiple knap-

sack problem.

Proof. Successively applying Lemma 9, Corollary 3, Corollary 4, and Lemma 12, we arrive at

V ∗ ≤ V ∗
1 ≤ V (y0) +

∑

a∈A1

v(δ(a)) ≤ V (y0) +
∑

a∈A1

v(ϕ(a)) ≤ V (y0) + V (x0).

Here, V ∗ is the optimal value of the objective function for MKP (1)–(4), whereas V (y0) and V (x0) are

the values of this function at the vectors constructed by Algorithm TGI with a d-ordering on B and

by Algorithm GI with some v-ordering on B, under a Q-ordering of the set A in both cases. Theorem 3

is proved.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

A LEXICOGRAPHIC 0.5-APPROXIMATION ALGORITHM 17

Finally, by the statement (iii) of Lemma 1, the 0.5-approximation degree of Algorithm maxTGI

implies the 0.5-approximation degree of Algorithm maxGI.

Corollary 5. Algorithm maxGI constructs a 0.5-approximate solution of the multiple knapsack
problem.

CONCLUSION

A new 0.5-approximate algorithm is constructed for the multiple knapsack problem, which can be

used, for example, when distributing the computing resource in a multiprocessor system. The algorithm

has time complexity of O(mn) (without sorting) and generalizes the algorithm from [7] to the case

m > 1. The algorithm, described in [2, p. 299], have similar estimates of approximation ratio and time

complexity.

In general, these algorithms can generate different distributions; therefore, in applications it is

expedient to apply both algorithms and choose the best of the obtained results.

ACKNOWLEDGMENTS

The authors are grateful to the participants of the seminar “Discrete Extremal Problems” at Sobolev

Institute of Mathematics (Novosibirsk) for useful remarks and recommendations.

REFERENCES

1. S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations (John Wiley &
Sons, Chichester, N. Y., 1990).

2. H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems (Springer, Berlin, 2004).
3. C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Prentice

Hall, Englewood Cliffs, 1982).
4. C. Chekuri and S. Khanna, “A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem,”

SIAM J. Computing 5 (3), 713–728 (2003).
5. K. Jansen, “Parameterized Approximation Scheme for the Multiple Knapsack Problem,” SIAM J. Computing

39 (4), 1392–1412 (2009).
6. G. D. Dantzig, “Discrete Variable Extremum Problems,” Oper. Res. 5 (2), 266–277 (1957).
7. A. Mualem and N. Nisan, “Truthful Approximation Mechanisms for Restricted Combinatorial Auctions,”

Games and Economic Behavior 64 (2), 612–631 (2008).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018

