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A Scalable Parallel Algorithm and Software for 3D Seismic
Simulation on Clusters with Intel Xeon Phi Coprocessors

Dmitry Karavaev, Boris Glinsky, and Valery Kovalevsky

Institute of Computational Mathematics and Mathematical Geophysics 3B RAS,
Prospect Akademika Lavrentieva 6, 630000 Novosibirsk, Hussia
kdaflopg. sscc.m, ghmlopg . s5cc ., kovalevsky@sscc.
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Abstract. In this paper, we present the results of the research in to the development of a scalable
parallel algorithm for solving large problems of the forward modeling in geophysics. The problem to
be solved is the system of equations of elastic theory representing the wave propagation in elastic
3D media. We have developed a scalable parallel algorythm and a program for the 3D seismic
wave simulation on modern multi-core clusters with a hybrid architecture based on Intel Xeon Phi
coprocessor. We presont this parallel algorythm for solving the above-mentioned problem and the
results of the parallel algorithm behavior on the Xeon Phi based cluster for different tests of the
parallel program code. In addition, we compare implementation of the proposed parallel algorithm
on different computing devices.

Keywords: parallel algorithm, seismic simulation, scalability, Xeon Phi, hybrid cluster.

Introduction

Omne of the methods for solving inverse geophysical problems is solving the forward problem for
a various number of models, which are different in geometry structure and elastic parameters
values [1]. Thus, carryving out the simulation, varying elastic parameters and establishing the
correspondence with natural geophysical data, one can find a more appropriate geometrical
structure and elastic parameters values of a geophysical object under investigation. In addition,
one of the useful and well-known methods for solving a 3D seismic simulation problem is a
difference method based on 3D grids [2]. The most useful difference methods can be a second or
a fourth order of appraximation [4,4,6] and have application in modeling elastic or viscoelastic
media [7]. The more difficult are geophysical models the more difficult is to calculate them.
Becanse of using the difference method one should handle with large 3D amrays and a great
volume of data. Only a 3D grid model of 3D isotropic geophysical media is described with the
three parameters: density and two velocities of elastic waves. In this paper, we deal only with
isotropic 3D elastic media. The problem of 3D elastic wave propagation is presented in terms
of velocity and stress. Therefore, we need to caleulate nine 3D values that are 3D arrays. When
using the 3D explicit difference scheme with the iterative technique one should use the values at
two time steps of iteration. To carry out calculation for 3D models with a detailed representation
is a difficult task because of dealing with large 3D arrays that are to be placed in the operation
memory of a computer. In such a case, researchers use powerful multi-core caleulation systems.
Such systems can have different architectures. Modern cluster systems that are in the first places
in TOP 500 rating have a hybrid architecture. This means that these systemns have special
computing devices that are presented by Nvidia GPU or Intel Xeon Phi cluster. Some examples
of such clusters are NKS-30T+GPU cluster of the Siberian Supercomputer Center and MVS-10P
cluster of the Joint Supercomputer Center. With the use of such computing systems, one can
solve large 30 models in parallel. So each of the computing device solved its part of 3D data,
all together covering the whole 3D area under study. Therefore, we need to develop a scalable
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parallel algorithm and a program code for using such a device in calculations. It is not only a
programmable problem but also a researchern®™s problem. When developing a scalable parallel
algorithm we should make special tests of a program code on one computing device to tune it
for the 3D elastic wave simulation using difference method to watch the behavior of a program
on different mumber of computing devices and models with different volume of data. There are
many program codes realzing difference methods for the seismic wave propagation modeling on
clusters with GPUs [8,11]. Using the Intel Xeon Phi coprocessors in simulation is a new and
modern approach for parallel computation. Such systems can allow researchers using OpenMP
parallel tools make developing programs for large-scale simulation easier. Our main purpose is
to describe how the difference method for numerical simulation of seismic wave propagation
is implemented on supercomputers with Intel Xeon Phi coprocessors. Section 2 gives a brief
description of the problem statement and numerical method. In Section 3 we describe parallel
implementation in detail. Section 4 presents computational experiments for different test of a
parallel code. We discuss the implementation of the simulation code for the single coprocessor
case to tune the script parameters. Second we discuss the multi-device case in order to study
parallel algorithm behavior for large-scale problems. Section 5 concludes the main results.

Problem Statement

We solve the forward geophysical problem of the 3D elastic wave propagation and deal with
isotropic and elastic material [9]. Before carrving out the calculation we have to construct the
3D grid model of a geophysical medium under study. Such an object is described by parameters
of density, shear wave velocity and longitudinal wave velocity. Thus, we need three material
parameters (LamBee coefficients and density) in a difference scheme. All the geometries of clastic
media have plane free surfaces. Such a medium can have a difficult geometrical structure and
different values of elastic parameters at each point of 3D grid. A problem of the 3D elastic wave
propagation is described in terms of components of velocities of displacements u = (7, V, W]T
and components of a stress tensor @ = (Toz., Ty, Oz, Fay, Tz, GI'F:IT. The problem is to be solved
with appropriate initial conditions and boundary values. We apply a free-surface condition at
the top boundary. We use the Cartesian coordinate system. To numerically solve the simulation
problem, we use the difference method [4]. This method is based on using staggered grids. This
means that different values are placed at different points of a grid cell. The difference scheme is
of second order of appraximation with respect to time and space. The government equations of
difference scheme will be in the form of (1).

du aa
= [Alr + Fit, =, v, EJ'E = |B|u; (1)
MrwE AL L
L0082 g
a=logzodozle=| % Ay 2w
00 a [fa' i H Haz 0
= = ¥ 0 o
Moz ; F%
o Haz Hag

Our medification for the elastic wave propagation simulation is that we use the calculated
coefficients in the developed program. This means that coefficients from the problem statement
differ from those we use in the difference scheme, including all the summations and
multiplications, and are placed in special 3D arrays.
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Parallel Implementation

We consider hybrid parallel implementation, using both CPUs and Intel Xeon Phi coprocessors
for computation. We have developed a scalable parallel algorithm based on the difference
method with 3D grids and the program code for a cluster with a hybrid architecture and
Intel Xeon Phi coprocessors. The developed parallel scheme includes use of technologies for
parallel computing such as Message Passing Interface (MPI) and a software for Intel Xeon Phi
coprocessor programming. We use MPI and OpenMP, respectively, for parallel computations. Our
parallel realization has a data distributed character. We divide a large 3D model into smaller
3D subdomains, Fig. 1. Each of them is caleulated independently and in the parallel manmer.
For the computations, we use the multi-core computing system with Intel Xeon Phi coprocessor.
Several CPUs and several Xeon Phi coprocessors (devices) are placed at the computing nodes of
such a system. Each Xeon Phi coprocessor can be treated as SMP (Symmetric Multiprocessing)
machine. Such a device has 8GB DDRS memory, 60 computing cores based on x86 architecture,
AHW threads/ core, [P addressable, have Linux OS5, We can employ up to 240 parallel threads
with such a device. The cluster consists of 207 computing nodes with 2 Xeon ES-2650 processors
and 2 Intel Xeon Phi 7110X coprocessors, www.jsccru. For running the program code on it,
one should recompile a program code. We take the 3D model data on the CPUs and initialize
necessary 3D arrays on the computing devices. After that, we copy the model data into the
computing devices. Then we can carrying out computations using a paralle]l algorithm. All the
calculations for 30 subdomains are conducted only on devices. The CPU iz used only for device
manipulation and for making exchanges between data placed in the deviees. The Xeon Phi
coprocessors are used in the offload mode. Thuos, direct communication betwesn coprocessors is
not available. The data must be sent from coprocessor to the host CPU in order that the data be
exchanged with the other coprocessors. In our parallel realzation, to make the next time step we
should make data exchange among neighbor devices that can be either at one computing node or
at different computing nodes of the cluster. We use non-blocking MPI Send/Receive procedures
that take place for the data exchange among the computing devices, Fig. 1. Since we use the 3D
domain decomposition, we first compute for the points on the sides of subdomains. Second, we
start the data copying from Xeon PhinH™s to CPU cores and run exchange procedures with use
of special designed buffers and MPI functions. Then we do the computation for the remaining
internal grid points of 3D subdomains and the communication procedures simultaneously. After
that, we verify whether all the exchanges have been done and make a data copy from buffers
placed at CPUs into buffers at Xeon Phi coprocessors and then into 3D arrays. After Then we
proceed to the next time step. Therefore, we overlap the communication and computation by
using the non-blocking MPI functions for data transfer. We do the data transfer between the
CPUs at nodes concurrent with the computations at Xeon Phi coprocessors.
All the program code was written using C++ language.

Studying the Work of Parallel Algorithm on Xeon Phi Cluster

In this section, we present the results of the parallel algorithm behavior for a hybrid cluster
architecture with Intel Xeon Phi coprocessor. We have carried out experiments on one computing
device to choose appropriate options for large 3D models. We made a comparison of programs
running on different computing devices for caleulations that is using only CPUs or only Xeon
Phi coprocessors. All the program codes were developed by the authors with the use of the
proposed parallel algorithm and the designed parallel scheme. In addition, we present the results
for different tests for the parallel program code. The first one is a scalability test that reveals
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# s

Fig. 1. A parallel computing scheme.

that the caleulation time should not vary strongly if we do caleulations taking into consideration
the fact that the mumber of points in a 3D grid model grows proportional to the mumber of
devices. This means that each computing device will do ealeculations for the same number of
points. Another test iz speed-up one. In this case, the number of points in a 3D model is fixed
and we show the program behavior running on a different number of computing devices. All the
results were carried out using the NKS-30T+GPU cluster of the Siberian Supercomputer Center
(85CC 5B RAS), www2ssceru, and the MVS-10P cluster of the Joint Supercomputer Center
of RAS, www_jscc.r On one cluster node and on one device, we have carried out experiments
with different options of affinity and a different number of threads per core. The 3D model under
study has parameters 308x308x308 and 11 iterations. The affinity option has been taken in two
versions: Banot declaredBs or BebalancedBs. The results of such a research is presented at
Fig. 2. The most appropriate is the BebalancedBs option and using 60 cores with a 3 threads
PET COTE.

= Waffinity. balanced
= 50 .
aFfinty not declared
o
&0 10 180 240
Mumber of OpenbP threads

Fig. 2. A test with affinity option and the mumber of paralle]l threads on one device.

The performance of developed multi-coprocessor code is shown in Fig. 3 and Fig. 4 The
results of scalability tests presented at figure show the well done program behavior. When we
scale a 3D model as great as 2-fold along each spatial coordinate and the number of devices as
great as 8-fold, the program shows a good behavior. In these tests, we use a 3D subdomain size
with 308x308x308 grid points and 11 iterations for one device. Maximum eight subdomains were
used. In this case we have used 2 x 2 x 2 grid of computing devices. From Fig. 3 we can see that
the program was effectively parallelized and the ratio of CPU/Xeon Phi is about x5.7.

The results of the speed-up tests presented in the Figo 4 show the program behavior with
308x308x308 grid points and 11 iterations for all devices. Figure 4 reveals that the ration of
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CPU/Xeon Phi is about x5.7 on one device and x3.6 other eight devices. The ratio of 1 to 8
devices for Xeon Phi is about x7.7 on eight devices.

Speedup tests

200
63,36 25,95 B 17
o —

Mumber of devices

‘Work in sec

ECPU mXEQOMPHI

Fig. 4. A speedup test.

Based on the above-mentioned results, we conclude that carrying out computations on Intel
Xeon Phi coprocessors for the large-scale seismic field simulation is a promising approach.

Conclusion

We presented the results of the research into developing a scalable parallel algorithm and
program software. We proposed a new software for simulation of the elastic wave propagation in
3D isotropic elastic medium using hybrid supercomputers with Intel Xenon Phi coprocessors.
We described the parallel implementation of the difference method based on 3D domain
decomposition and using computing devices in offioad mode. In the fizures presented, the
efficiency of a using such computing device for similar difference methods is shown. We have
carried out computing experiments and investigated the behavior of the program on one Xeon
Phi coprocessor to tune the script parameters to running the program for a greater number
of computing devices placed at cluster nodes. It is shown that the 3D difference method with
staggered grids can be well parallelized with Intel MIC architecture. We can use the discussed
computing devices to simulate big size models. The results of the research done are important
and can be of practical use in the field of developing scalable parallel algorithms for exzaflops
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supercomputers [3] of the future and modeling its behavior on a greater number of computing
cores in simulation systems.
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