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In this paper we present the generalized block version of Induced Dimension Reduction
(IDR) methods, in compare with Multi�Preconditioned Semi-Conjugate Direction (MPSCD)
algorithms in the Krylov subspaces, with de�ation and low rank matrix approximation approaches.
The common and individual orthogonal and variational properties of these two methodologies are
analysed. It is demonstrated, in particular, that for any set of Krylov subspaces with dimension
extension exists the set of corresponding shrinking subspaces with dimension reduction. The
main conclusion consists in the statement that IDR procedures, proposed by P.Sonneveld and
other authors, do not present the alternative but the further development of the general principles
of the iterative processes in the Krylov subspaces.

1. INTRODUCTION

In 1980, a new iterative method [1] for solving nonsymmetric systems of linear algebraic equations
(SLAEs) was published in the Proceedings of a symposium on the numerical solution of Navier�
Stokes problems. This Induced Dimension Reduction (IDR) method received hardly any attention,
and it was devoted to search the solution in the embedded subspaces of decreasing dimension.
The author, P.Sonneveld published, almost 30 years later, the joint with van Gijzen paper [2]
on the set of algorithms which follows from his old idea. In the following, many papers were
published on this topic, see [3]�[9] for example. Some researches proposed the name �methods in
Sonneveld subspaces�, and these algorithms considered as alternative to the methods in Krylov
subspaces.

Let us remark, that P.Sonneveld proposed the conjugate gradient square method CGS for
solving nonsymmetric SLAEs. It was transposed free version of bi-conjugate gradient algorithm
BiCG [10], [11]. This approah initiated the appearance of the stabilized bi-conjugate gradient
method BiCGStab [10], after which the new generalizations revealed, BiCGStab(l), [11] in
particular. In contrast to widspead used generalized minimal residual method GMRES [10],
the proposed algorithms (with di�erent types of preconditioning including) are based on the
using the short recursions for computing residuals and other vectors, which became possible
due to their bi-orthogonalization. Let us remark also, that in [12], [13], the similar set of
algorithms with various preconditioners are constructed, under changing the bi-orthogonalization
to A-biorthogonalization of the vectors. The corresponding methods A-BiCG (or BiCR, from
Biconjugate Residual), A-CGS and A-BiCGStab,or CGR and BiCRStab respectivaly, describe
in experiments a good and even better stability, in compare with their prototypes with classical
bi-orthogonalization.

In the consequent papers ([14]�[17] and many others), the di�erent authors investigated
the versions of IDR(s) methods. Their connections with BiCGStab(l) were established, and
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the generalization IDRStab(s,l) was proposed as well as various versions in particular cases.
These algorithms became use not only for solving SLAEs, but for computing the eigenvalues
and corresponding eigenvectors. Formally, the parameter “s” in the last algorithm means the
dimension of �shadow residual� space S, to which the Sonneveld subspaces are orthogonalized,
and the second parameter “l′ de�nes the order of auxiliar matrix polinomials, or the corresponding
subspaces, by which the residual norm is minimized at each iterative step.

The goal of this paper consists, at �rst, in block representation of the IDRStab(s,l) methods,
and to give di�erent known variants, in compare with the modern modi�cations of the clasical
iterative processes in the Krylov subspaces. Secondly, we want to remove mis-understanding with
opposition of the algorithms in Krylov and Sonneveld subspaces, on the example of the proposed
Multi-Preconditioned Semi-Conjugate Direction (MPSCD, see [18], [19]) methods, which use
three following approaches. The �rst one consists in the possibility of A-biorthogonalization
of the vectors as well as classical biorthogonalization, and the second � in employing the
multipreconditioned algorithms of semi-conjugate direction (in particular � Semi-Conjugate
Residual, SCR) methods, which present the further development of considered in [20], [21]
methods for realization of the matrix polynomials, which minimize the residual norm. Another
principial moment of the considered MPSCD method consists in the orthogonalization of the
residual vectors, at each iteration, to originaly predescribed �de�ation� subspace, which in fact
presents the analogy to �shadow residual� subspace S in IDR methods. The idea of de�ation in
Krylov subspaces was proposed in 1987 by R.Nicoloides in the paper [22], and was developed later
in di�erent directions (quite independetly of the induction dimension reduction methods), under
the names aggregation, augmentation, coarse grid correction and low rank matrix approximation,
see reviews in [23] � [27].

The third aspect of the considered algorithms consists in the application at every iteration
of the several preconditioned matrices. It was proposed �rstly by R.Bridson and C.Greif in
[28] for conjugate direction method. Let us remark, that in our consideration, the de�ation, or
aggregation, procedure is interpretated as using the additional prconditioner of special type.

This paper is organized as follows. In Section 2 we give generalized block presentation
and short review of IDR methods, with consideration of them as special algorithms in Krylov
subspaces. In Section 3, we describe the MPSCD methods which possess some properties in the
shrink Sonneveld subspaces, but on the base of classical modi�ed Krylov subspaces. In conclusion
we discuss the obtained results.

2. BLOCK PRESENTATION OF IDRStab(s,l) METHODS

Let we have to solve by some iterative method the real nonsingular SLAEs

Au = f, A ∈ RN,N , u, f ∈ RN , (1)

under some initial guess u0 and residual vector r0 = f −Au0. In this Section we make accent on
the property of induced dimension reduction methods only, without stopping on the possibility
of the di�erent type preconditioning the algebraic system. In particular, the matrix A in (1) can
be considered as preconditioned already.

Let we have two subspaces G0 and S, which have no the common nontrivial invariant
subspaces of matrix A, and are de�ned by the following way:

G0 = KN (A, g1) = Span (g1, Ag1, ..., A
N−1g1), g1 ∈ RN , g1 6= 0,

S = N (R̃T ), R̃ = (r̃1 r̃2...r̃s) ∈ RN,s, r̃k ∈ RN , k = 1, ..., s.
(2)
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Here g1 is some nonzero vector, KN � full Krylov subspace, S is the left null-subspace of the
given rectangular matrix R̃ of full rank, and s � N columns r̃k of which present the basis of
S and called as initial shadow residual vectors, and idex “T” means the transposition. In other
words, if some vector g belongs to S, then it is orthogonalized to all r̃k (g⊥r̃k, or (g, r̃k) =
0, k = 1, ..., s), which can be written also, as S = R̃⊥).

The assumtion, made on the subspace from (2), means for example that no eigenvector of
matrix A can belong simultaneously to G0 and S, i.e. any egeinvector from G0 is orthoganal to
all columns of matrix R̃.

Now, we consider the matrix polynomials

Pln(A) =

ln∏
k=1

(µkI −A), ln � N, (3)

where I is identity matrix, ln are the orders of the corresponding polynomials, and µk � some
real values, or shift parameters of the matrix A, which will discussed later. We construct the
sequence of subspaces, named as Sonneveld ones:

Gn = Pln(A)(Gn−1
⋂
S), (4)

which dimensions will be denoted by αn. The properties of these embedded subspaces are placed
in the based of the considered in the following iterative methods, and they follows from the so
called IDR-theorem, which is proved for ln = 1 in [2], and for �xed `n = ` > 1 � in the paper
[6].

Theorem 1. Let A ∈ RN,N and R̃ ∈ RN,s be non-singular matrix and full rank matrix,

G0 and S be de�ned in (2) subspaces, which do not include the eigenvalues of matrix A, and
Pln(A) be the polynomial of order ln < s from (3). The Sonneveld subspaces (4) are satis�ed

to embedding condition Gn ⊆ Gn−1, if Gn−1 6= {0}, and their dimensions are satis�ed to the

condition of monotone non-icreasing the di�erences dn − dn−1:

0 ≤ dn − dn+1 ≤ dn+1 − dn+2 ≤ s. (5)

Remark 1. The sequence of subspaces are embedded and �nite, e.i. Gn ⊂ Gn−1 and dn <
dn−1, if Gn = Gn−1 6= {0}. If for 0 < n < N the relation Gn = Gn−1 6= {0} is valid, then Gn−1∩S
contains the eigenvector of matrix A. In fact, istead G0 from (2) the any linear subspace, invariant
to multiplication of the matrix A (AG0 ⊂ G0), can be taken.

Remark 2. The Sonneveld subspaces Gn (it is shown in [4]) can be presented by means of
special block Krylov subspaces, which are naturally extended with the grows of n:

Kn(AT , R̃) = {
n−1∑
k=0

(AT )kR̃c̄k| c̄k ∈ Rs}, (6)

where ck are coe�cient vectors, which form the linear combinations of the columns of matrix R̃,
are de�ned in the following by the orthogonalization conditions. Really, in accordsnce to (2)�(4)
for n = 1 we have

Gn = {Pln(A)g| Pln(A)g ⊥ R̃ ∈ Kn(AT , R̃)}. (7)

But the orthogonality condition Pln(A)g ⊥ R̃ can be satis�ed, if and only if Akg ⊥ R̃ for all
k ≤ ln. This is equivalent to relation g ⊥ (AT )kR̃, from which we have by induction

Gn = {Pln(A)g| g ⊥ Kn(AT , R̃)}. (8)
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The last means that for each extending sequence of block Krylov subspaces it is possible to
associate the sequence of compressible Sonneveld subspaces.

The considered preliminary geometric representations about Sonneveld subspaces help to
construct the general scheme of iterative process, in which the residual vectors rn = f − Aun
will belong to Gn. If the vectors un−1 and rn−1 ∈ Gn−1 are known, then one iteration of the
IDRStab(s,l) method can be presented in two stages, at which we de�ne the vectors

rn−1/2 ∈ Gn−1 ∩ S, rn = Pln(A)rn−1/2. (9)

Here, the �rst stage includes the orthogonalization of residual rn−1 to the shadow residual
vectors r̃k, and the second is responsible for the minimization of rn. Let us remark that the
convential algorithm BiCGStab is corresponded to the case s = ` = 1. The orthoganalization step
can be done by means of modi�ed Gram�Smidt method. In accordance with (9), for computing
the vector rn−1/2 ∈ Gn−1 ∩ S we de�ne �rstly s + 1 vectors g−s, ..., g0 ∈ G0 = KN (A, g1) for
n = 0. When this is done, we use the presentation

r−1/2 = g0 −
−1∑
k=−s

gkck,

where unknown coe�cients ck are de�ned from orthogonalization condition

R̃T r−1/2 = 0, R̃ ∈ RN,s, (10)

which gives the system of ` linear equations

Cc = RTGc = RT g0, G = (g−1 · · · g−s) ∈ RN,s, c = {ck} ∈ Rs. (11)

It has unique solution, if the matrix C = RTG ∈ Rs,s is non-singular.
Remark 3. In fact, the computation of vector c from (10) presents the solving least

square problem [29]. It's normal solution (with minimal norm) can be computing directly from
overdetermined system Gc = g0 with rectangular matrix G. If the matrices G or C are singular,
then it is reasonable to use generalized inverse matrices or, for example, the singular value
decomposition SVD.

To solve SLAEs (11), it is necessary preliminary to �nd vectors gk ∈ KN (A, g1). It can be
implemented by some convential algorithm in Krylov subspaces. One of the way here consists
in choosing g0 = r0 and computing the next gk by Arnoldi orthogonalization process for the
vectors Akg0.

The following stage of algorithm includes computing the vector r1 = Pl1(A)r−1/2 ∈ G1.
Multiplication by the matrix polynomial of A is realized after de�ning the shift parameters µk
in (3), and it will be discussed later. After completing the �rst step, the second stage begin
with the realization of the orthogonalization condition (11). Further, the computational process
continues in a similar way. In fact, two level iterative process is ful�lled here. The high level
corresponds to the sequence of Sonneveld subspaces, which are numbered by n, and the low level
presents the implementation of internal iterations in Krylov subspaces.

In total, for each n = 1, 2, ... two kind of presented in (9) operations are implemented:

a. Multimplication of the residual vector rn−1 from the previous Sonneveld subspace by the
polynomial Pln(A):

r̂n = Pln(A)rn−1, rn−1 ∈ Gn−1 ∩ S.
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b. Solving the SLAEs for the coe�cients ck, which provide the orthogonalization:

RT rn = 0, rn = r̂n −
−1∑
k=−s

gkck = r̂ −Gc.

It is possible to take the number of basis vectors gk ∈ Gn not equal to s, and consider it as
the least square problem, but we will not stay on these details. Let us remark, that we use here
and in the following the block representation of the iterative process, when the orthogonalization
of residual vector to all columns of matrix R̃ is included in one iteration.

The other interesting questions on the IDR methods concern to de�nition of the matrix R̃,
initialization of the iterative process, and choosing the space G0 and vector r0 ∈ G0, as well as the
algorithm of computing the consequent residual vectors rn ∈ Gn. In all considered algorithms,
we suppose that stopping criteria for iterations is

||rn(ε)|| ≤ ε||f ||, ε� 1, ||f ||2 = (f, f). (12)

Remark 4. As it was mentioned in [6], the IDR(s,l) methods relate to Petrov�Galerkin
algorithms in the following sense. Let the vectors un−u0 and rn belong to the Krylov subspaces
Kn and Kn+1(A, r

0) respectively (if the order of minimal polynomial Pn(A) = 0 equals to
n = N , we have KN = RN ). Then Petrov�Galerkin method with respect to the set of embedded
subspaces {Lm} is de�ned by orthogonalization of residual vector rn to subspace Lm of order
m, i.e. rn ⊥ L⊥m, or rn ∈ L⊥m. In particular, if Lm = AKn, then this scheme includes GMRES.
BecauseRN = Kn+1⊕K⊥n+1, the dimensions ofKn+1 andK⊥n+1 increase and decrease simultaneously,
with growing n, then orthogonal comlement K⊥n+1 to Krylov subspace play a role of Sonneveld
subspace, in some sense. The papers from the Reference and citied therein works contain the
wide reviews and existing interpretations of the various IDR methods, which witness about
notstable methodology of these iterative processes yet.

3. MULTI-PRECONDITIONED SEMI-CONJUGATE DIRECTION
METHODS

In this Section, we consider the application of some of any block semi-conjugate direction
methods [18], [19] which are the development of generalized conjugate residual algorithm [20].
If we put in (2) g1 = r0, the proposed set of methods MPSCD in Krylov subspaces Km(A, r0)
can be written as

um+1 = um + Pmᾱm, r
m+1 = rm −APmᾱm, m = 0, 1, ..., (13)

where Pm = (pm1 ...p
m
Mm

) ∈ RN,Mm is the matrix consisted of direction vectors pmk , and ᾱm =

(αm,1...αm,Mm)T is the iterative parameter vector, which are de�ned by orthogonal properties

(Apmk , A
γpm

′
k′ ) = ρ

(γ)
m,kδ

k,k′

m,m′ , ρ
(γ)
m,k = (Apmk , A

γpmk ),

γ = 0, 1, ;m′ = 0, 1, ...,m− 1; k, k′ = 1, 2, ...,Mm.
(14)

Here δk,k
′

m,m′ is Kronecker symbol which equals to unit for m = m′, k = k′ and zero in other
cases, and the values γ = 0, 1 de�ne semi-conjugate gradient or semi-conjugate residual method
respectivaly. In contrast to convential semi-conjugate direction algorithms, in formulas (13) at
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every m-th iteration we have not one but Mn direction vector, and its can change, in general,
at di�erent iterations.

The coe�cient vectors ᾱm = {α(γ)
m,l} in (13), (14) for γ = 0, 1, under extremum condition

∂Φ(γ)
m /∂αm,l = 0, Φ(γ)

m (rm+1) ≡ (rm+1, Aγ−1rm+1), (15)

are de�ned by formulae

α
(γ)
m,l = (AγB−1m,lr

m, rm)/ρ
(γ)
m,l. (16)

The direction vectors pm` are de�ned by (14) for γ = 0, 1 in the following block form:

P0 = {p0l = B−10,l r
0}, Pm+1 = Pm+1,0 −

m∑
k=0

Pkβ̄
(γ)
m,k = {pm+1

l = B−1m+1,lr
m+1 −

m∑
k=o

Mk∑
l=1

β
(γ)
m,k,lp

k
l },

m = 0, 1, ...; Bm,l ∈ RN,N , l = 1, ...,Mm, γ = 0, 1.
(17)

Here β̄
(γ)
m,k = {β(γ)m,k,l} = (β

(γ)
m,k,1...β

(γ)
m,k,Mm

)T ∈ RMm are coe�cient vectors, and Bm,l ∈
RN,N are preconditioning matrices, which are choosen by the reasons of non-singularity, easy
invertability, and e�cient acceleration of the constructed iterative process. The considered
preconditioners Bm,` are dynamic one, or �exible, as in FGMRES [10], and they depend on
the iteration number m, for any `.

After substituting (17) in orthogonality condition (14), we obtain the formulae for coe�cients:

β
(γ)
m,k,l = (Aγpkl , AB

−1
m+1,lr

m+1)/ρ
(γ)
m,l = (Aγpkl , Ap

m,k
l )/ρ

(γ)
m,l, m = 0, 1, ...;

k = 0, ...,m; l = 1, ...,Mm,
(18)

in which the coe�cients pm,k` are de�ned by the relations

pm,kl = pm,k−1l − β(γ)m,k−1,lp
k−1
l = B−1m+1,lr

m+1 −
k−1∑
i=0

β
(γ)
m,i,lp

m
l , l = 1, ...,Mm,

k = 0, 1, ...,m+ 1; pm,0l = B−1m+1,lr
m+1, pm,m+1

l = pm+1
l ,

(19)

on the base of modi�ed Gram�Smidt method.
The following statement is true (see proof in (19)).
Theorem 2. For the iterative process MPSCD, which is de�ned by the relations (13), (16)�

(19) for γ = 0, 1 and non-singular matrices A,Bm,`, the following assertions are valid:

• direction vectors pmk are satis�ed to orthogonality conditions (14);

• residual vectors rm are generalized semi-conjugate, i.e.

(AγB−1k,l r
m, rk) =

{
0, k < m,

σ
(γ)
m = (AγB−1m,lr

m, rm), k = m,
(20)

• the functionals Φ
(γ)
m (rm+1) satisfy to extremality conditions (15) and for any q = 0, 1, ...,m

the following relations are valid:

Φ(γ)
m (rm+1) = Φ(γ)

q (rq)−
m∑
k=q

Mm∑
l=1

(AγB−1q,l r
q, rq)2/ρ

(γ)
k,l . (21)

6



Remark 5. If γ = 1 or if matrix A is symmetric, the method MPSCD provides minimizing
norm ||rm+1|| = (rm+1, rm+1)1/2 in �multi-preconditioned� Krylov subspace

K∑
m+1

(r0, A) = Span{B−10,1r
0, ..., B−10,M0

r0,

AB−11,1r
1, ..., AB−11,M1

r1, ..., AmB−1m,1r
m, ..., AmB−1m,Mm

rm},
(22)

which dimension equals
∑

m+1 = M0 + ... + Mm. In semi-conjugate gradient methods, i.e. for

γ = 0, the functional Φ
(0)
m (rm+1) = (A−1rm+1, rm+1) does not reach its minimum, if A is

non-symmetric matrix.
In the considered block semi-conjugate direction methods, we have so called �long� recursion,

i.e., it is necessary to save all direction vectors which were computed at the previous iterations,
or direction matrices P1, ..., Pm. In order to avoid strong requirements to memory, we will use
the known restart procedure: after some number of iterations the residual vector is de�ned not
from usual recursion (13), but from original equation, and Krylov process is formed anew, from
the current iterative value of unknown vector.

In order to accelerate the obtained iterative process, at each restart with number n, we
will realize the orthogonalization of the residual vector to subspace, which is similar to S in
(2). However, this procedure is ful�lled not by conventional for IDR methods approach but
by help of de�ation, or aggregation hint, see [24] and papers, citied therein. In this case, in
fact, some additional preconditioning matrix is formed on the base of some rectangular matrix
R̃n = (r̃1...r̃sn)T ∈ RN,sn , sn � N :

B−1n,0 = R̃n(Ân)−1R̃Tn , Ân = R̃TnAR̃n ∈ Rsn,sn . (23)

Here, B−1n,0 is low rank approximation of the matrix A−1, inversed to original one. It is
non-singular, if A is the same, and if de�ation matrix has full rank sn. We suppose here, that
the subspaces Sn and their dimensions sn depend on the number of restart n. Denoting by
mn the number of iteration (m0 = 0) of MPSCD method (13), implementation of restart and
orthogonalization including, we can write the obtained algorithm in the following way:

u0 = u−1 +B−10,0r
−1, r−1 = f −Au−1,

r0 = f −Au0, p0l = (I −B−10,0A)B−10,l r
0, l = 1, ...,M0.

(24)

In this case, u−1 denotes arbitrary initial guess, and u0 is the �corrected� original value of
the solution to be sought. It is easy to check, that formulas (24) provide the conditions

R̃T0 r
0 = 0, R̃T0AP0 = 0. (25)

where matrix P0 consists of M0 columns p0` , which are de�ned in (24).
The realization of formulas (24) is simple enough, because multiplication by B−10,0 ∈ RN,N

includes the solution of auxiliary SLAEs with low order dimension Â0 = R̃T0AR̃0 ∈ Rs0,s0 . We
save especialy the notations for R̃n in formulas (23), in order emphasize the analogy with the
methods in Sonneveld supspaces from Section 2.

For de�nition of linear independent columns r̃k, k = 1, ..., sn, of matrix R̃n, it is possible to
use the simplest piece-wise constant basis vectors: divide the set of indeces Ω : i = 1, ..., N into

equal approximately non-overlapping subsets Ω
(n)
k (these decompositions can be di�erent at the

di�erent iterations) and put r̃k(i) = 1 for i ∈ Ω
(n)
k , and r̃k(i) = 0 for i 6∈ Ω

(n)
k , k = i, ..., sn.

Let us remark, that basis functions can be de�ned and more smooth, as it was done in [26]. In
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some papers, the columns of matrix R̃n are choosen in random manner, or by means solving
auxiliary eigenproblem. In total, the problem of choosing the most informative basis is the topic
for special research.

If the iterative value umn−1 is known at each restart, then formulas (24), (25) are changed
evidently:

umn = umn−1 +B−1mn,0
rmn−1, rmn−1 = f −Aumn−1,

rmn = f −Aumn , pmn
l = (I −B−1mn,0

A)B−1mn,l
rmn .

(26)

In this case, the preconditioners Bmn,l are de�ned by (23), under changing n to mn, and
orthogonalization conditions are changed to the following:

R̃Tmn
rmn = 0, R̃Tmn

APmn = 0. (27)

Remark 6. It is easy to check the equalities

(C
(n)
1 )2 ≡ (B−1mn,0

A)2 = C
(n)
1 , (C

(n)
2 )2 ≡ (I −B−1mn,0

A)2 = C
(n)
2 ,

which mean that the matrices C
(n)
1 and C

(n)
2 are projectors.

To provide orthogonalization conditions (27) not only in restart points, but at the every
iteration, the formulas (17) for direction vectors in MPSCD for m 6= mn should be changed to
the following:

pm+1
l = B̃−1m+1,lr

m+1 −
m∑
k=0

Mk∑
l=1

β
(γ)
m,k,lp

k
l , B̃

−1
m+1,l = (I −B−1m+1,0A)B−1m+1,l,

l = 1, ...,Mm, m = mn−1, mn−1 + 1, ...,mn − 1.

(28)

It is easy to check by induction, that the following relations are valid in this case:

R̃Tmr
m = 0, R̃TmAPm = 0, m = 0, 1, ... (29)

But here it is necessary to have in mind, that relations (28), which di�er from (17) just in the
form of preconditioning matrices (B̃−1m+1,l instead of B−1m+1,l), demand to change orthogonality

conditions for recurrent coe�cients β
(γ)
m,k,l: the matrices B−1m+1,l in (18)�(19) should be changed

to B̃−1m+1,l.
It is known from the theoretical estimations and from numerical expirements, that the

restarts brought the reducing Krylov subspaces, and as consequence, the decreasing convergence
rate of iterative processes. But it is inevitable cost for the memory saving for all algorithms with
short recursions.

In the considered MPSCD methods with de�ation restarts, it is natural to take the
corresponding iteration numbers mn through uniform intervals, i.e. mn = mn−1 +æ, with some
apriori integer æ. At the other hand, it is possible to stay the question about optimal control of
the values mn, using some aposteriori information.

Remark 7. As it is mentioned in Remark 4, for each sequence of Krylov subspaces Kn+1,
which dimensions increase with growing n, the set of shrinking subspaces is corresponding,
and they present the orthogonal complement K⊥n+1 in full space RN . It is easy to see, that
modi�cations of the Krylov subspaces, which conclude in additional orthogonalization of the
computed vectors to the �test� subspace S, do not change the duality relations. The orthogonality
conditions (25), (27), and (29) allow to de�ne for MPSCD the subspaces with reducing dimensions,
which are similar to Gn in IDR methods.
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In total, the active discussions on the various approaches of the optimizing the iterative
processes con�rm the perspectivity of the developing methods in Krylov subspaces.

The alternative way to save memory and to shorten recursions is the approach with bounded
orthogonality, in the sense, that in constructing iterations for the solving non-symmetric SLAEs,
only several last direction vectors in Krylov subspaces are saved and used in recursions. If the
number of such vectors is constant and equals q + 1, then formulas (28) should be changed to
following:

pm+1
l = B̃−1m+1,lr

m+1 −
m∑

k=m−q

Mk∑
l=1

β
(γ)
m,k,lp

k
l ,

m = 0, 1, ...

(30)

If the vectors p0l are computed by formulas (24) in this case, then orthogonality properties
(29) are valid also. The realization of additional orthogonality in this approach can be done by
de�ation or aggregation method.

4. CONCLUSION

The goal of this paper consists, in some sense, in dethroning the myth about exclusivity of
induced dimension reduction methods, which are opposed by misunderstanding to classical
iterative processes in Krylov subspaces. On the example of proposed multi-preconditioned
semi-conjugate residual methods, it is shown that modi�ed Krylov type algorithms with using
additional orthogonalization (de�ation, aggregation, etc.) can be associated with the subspaces
under decreasing dimensions, which are called by some authors as Sonneveld subspaces. The
subspaces of �shadow residuals� in IDR methods and de�ation subspaces in �classical� Krylov
methods have the close analogy, which did not mention by any authors of various researches.
Moreover, it is suprisingly, that publications on these two considered approaches do not include
the cross references, although we have the closed areas of computational algebra.

The paper is supported by the Russian Scienti�c Foundation grant N 15-11-10024, and by
RFBR grant N 16-29-15122.
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