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ITERATIVE PROCESSES IN
THE KRYLOV–SONNEVELD SUBSPACES

V. P. Il’in∗ UDC 519.6

The paper presents a generalized block version of the Induced Dimension Reduction (IDR) meth-
ods in comparison with the Multi–Preconditioned Semi-Conjugate Direction (MPSCD) algorithms
in Krylov subspaces with deflation and low-rank matrix approximation. General and individual
orthogonality and variational properties of these two methodologies are analyzed. It is demon-
strated, in particular, that for any sequence of Krylov subspaces with increasing dimensions there
exists a sequence of the corresponding shrinking subspaces with decreasing dimensions. The main
conclusion is that the IDR procedures, proposed by P. Sonneveld and other authors, are not an
alternative to but a further development of the general principles of iterative processes in Krylov
subspaces. Bibliography: 29 titles.

1. Introduction

In 1980, a new iterative method [1] for solving nonsymmetric systems of linear algebraic
equations (SLAEs) was published in the proceedings of a symposium on numerical solution of
Navier–Stokes problems. This Induced Dimension Reduction (IDR) method hardly received
any attention. It was based on looking for approximate solutions in embedded subspaces of
decreasing dimensions. Almost 30 years later, the author, P. Sonneveld, published (jointly
with van Gijzen) the paper [2] devoted to a family of algorithms, which follow from his old
idea. Later, a number of papers on this topic were published, see, for example, [3–9]. Some
researchers proposed to call them “methods in Sonneveld subspaces,” and these algorithms
were considered an alternative to methods in Krylov subspaces.

It should be indicated that in 1989 P. Sonneveld proposed the conjugate gradient squared
method, CGS, for solving nonsymmetric SLAEs, which was a transpose-free version of the bi-
conjugate gradient algorithm BiCG, see [10, 11] and the references therein. This approach has
provided for the appearance of a similar stabilized bi-conjugate gradient method BiCGStab
[10], which was followed by new generalizations, in particular, BiCGStab(l) [12]. In contrast to
the widely used generalized minimal residual method GMRES [10], the algorithms proposed
(with different types of preconditioning) are based on using short recursions for computing
residuals and other vectors, which is possible owing to biorthogonalization. Note also that in
[13] a similar family of algorithms with various preconditioners is constructed. This family
is obtained by changing biorthogonalization of vectors for their A-biorthogonalization. The
corresponding methods, referred to as the A-BiCG (or BiCR, from Biconjugate Residual),
A-CGS and A-BiCGStab, or CGR and BiCRStab, respectively, demonstrate a good stabil-
ity on model problems, which is even superior to that of their prototypes with the classical
biorthogonalization.

In the subsequent papers (see, e.g., [14–17] and many others), different authors have investi-
gated various versions of the IDR(s) methods. Their connections with BiCGStab(l) have been
established, and their generalization IDRStab(s,l), which reduces to known algorithms in some
particular cases, has been proposed. These algorithms have been used not only for solving
SLAEs, but also for computing eigenvalues and the corresponding eigenvectors. Formally, the
parameter s in the latter algorithm means the dimension of the space S of “shadow residuals,”
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to which the Sonneveld subspaces are orthogonal. The second parameter l defines the order of
auxiliary matrix polynomials, or the corresponding subspaces, which are used in minimizing
the residual norm at every iteration.

The goal of this paper is, first, to provide a block representation of the IDRStab(s,l) methods
and, based on it, give some known variants and compare them with the modern modifications
of the classical iterative processes in Krylov subspaces. Second, we want to eliminate a mis-
understanding related to contraposition of algorithms in Krylov and Sonneveld subspaces.
This is done on the example of the proposed family of Multi-Preconditioned Semi-Conjugate
Direction (MPSCD, see [18, 19]) methods, which use the following three approaches. The
first one consists in the possibility of applying the A-biorthogonalization of vectors along with
the classical biorthogonalization. The second one consists in using the multipreconditioned
semi-conjugate direction algorithms (in particular, the Semi-Conjugate Residual, SCR), which
extend the methods for realization of matrix polynomials minimizing the norm of the residual
considered in [20, 21].

Another principal aspect of the considered MPSCD methods consists in orthogonalizing, at
each iteration, the residual vectors to an a priori fixed “deflation” subspace, which actually
is an analog of the “shadow residual” subspace S in the IDR methods. The idea of deflation
in Krylov subspaces was first proposed in 1987 by R. Nicolaides [22]; later, it has been devel-
oped in different directions (quite independently of the induced dimension reduction methods)
under the names of aggregation, augmentation, coarse grid correction, and low-rank matrix
approximation, see [23–27].

The third aspect of the algorithms considered consists in applying, at every iteration, several
preconditioning matrices. In application to the conjugate gradient method, this was originally
suggested by R. Bridson and C. Greif in [28]. Note that in our treatment, deflation (or
aggregation) is interpreted as an additional preconditioning of a special type.

The paper is organized as follows. In Sec. 2, we present a generalized block representation
and a short review of the IDR methods, with an emphasis on their natural interpretation
as specific algorithms in Krylov subspaces. Section 3 describes the MPSCD methods, which
possess some properties in the shrink Sonneveld subspaces. They are considered in the context
of classical modified deflated iterations in Krylov subspaces. In conclusion, we discuss the
results obtained.

2. A block representation of the IDRStab(s,l) methods

Let a real nonsingular system of linear algebraic equations

Au = f, A ∈ RN,N , u, f ∈ RN , (1)

must be solved by an iterative method, given an initial guess u0 and the corresponding residual
vector r0 = f−Au0. In this section, we restrict ourselves to properties of the induced dimension
reduction methods only, not dwelling on the possibility of applying various preconditionings.
In particular, the coefficient matrix A in (1) may be viewed as an already preconditioned one.

Assume that two subspaces G0 and S, which contain no nontrivial common invariant sub-
spaces of the matrix A, are defined by the relations

G0 = KN (A, g1) = Span (g1, Ag1, . . . , A
N−1g1), g1 ∈ RN , g1 �= 0,

S = N ( ˜RT ), ˜R = (r̃1 r̃2 . . . r̃s) ∈ RN,s, r̃k ∈ RN , k = 1, . . . , s.
(2)

Here, g1 is a nonzero vector, KN is the full Krylov subspace, S is the left null space of a given
rectangular matrix ˜R of full rank, s � N , whose columns r̃k form a basis of S and are referred
to as the initial shadow residual vectors; the superscript T means transposition. In other
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words, if a certain vector g belongs to S, then it is orthogonal to all r̃k (g⊥r̃k, or (g, r̃k) =
0, k = 1, . . . , s), which can also be written as S = ˜R⊥.

The assumption made on the subspace in (2) means, in particular, that no eigenvector of
the matrix A belongs to G0 and S simultaneously, i.e., any egeinvector from G0 is orthogonal
to all the columns of the matrix ˜R.

Now consider matrix polynomials of the form

Pln(A) =
ln
∏

k=1

(μkI − A), ln � N, (3)

where I is the identity matrix, ln are the degrees of the corresponding polynomials, and μk

are some real values, or shift parameters of the matrix A, whose choice will be discussed later.
We construct a sequence of the following subspaces, called the Sonneveld subspaces:

Gn = Pln(A)(Gn−1 ∩ S); (4)

their dimensions will be denoted by dn. Properties of these embedded subspaces provide a
foundation for the iterative methods considered below, and they are based on the so-called
IDR theorem, which is proved in [2] for ln = 1 and in [6] for a fixed �n = � > 1.

Theorem 1. Let A ∈ RN,N and ˜R ∈ RN,s be a nonsingular matrix and a matrix of full rank,
respectively, and let G0 and S be the subspaces defined in (2) that contain no eigenvalues of
the matrix A; let Pln(A) be a polynomial of order ln < s of the form (3). Then the Sonneveld
subspaces (4) satisfy the condition of embedding Gn ⊆ Gn−1 if Gn−1 �= {0}, and the sequence of
differences dn − dn−1 of their dimensions is monotone nonicreasing, i.e.,

0 ≤ dn − dn+1 ≤ dn+1 − dn+2 ≤ s. (5)

Remark 1. The Sonneveld subspaces are shrinking, and their dimensions decrease, i.e.,
Gn ⊂ Gn−1 and dn < dn−1 unless Gn−1 = {0}. If for 0 < n < N we have Gn = Gn−1 �= {0},
then Gn−1 ∩ S contains an eigenvector of the matrix A. Actually, instead of G0 of the form
(2) one can take an arbitrary linear subspace invariant with respect to multiplication by the
matrix A (AG0 ⊂ G0).
Remark 2. The Sonneveld subspaces Gn (as is shown in [4]) can be represented using the
following special block Krylov subspaces, expanding as n grows:

Kn(AT , ˜R) =
{

n−1
∑

k=0

(AT )k ˜Rc̄k| c̄k ∈ Rs

}

; (6)

here, ck are the coefficient vectors, which form linear combinations of the columns of the matrix
˜R and are determined below from the orthogonality conditions. In accordance with (2)–(4),
for n = 1 we have

Gn = {Pln(A)g| Pln(A)g ⊥ ˜R ∈ Kn(AT , ˜R)}. (7)

However, the orthogonality condition Pln(A)g ⊥ ˜R is satisfied if and only if Akg ⊥ ˜R for all
k ≤ ln, which amounts to the relation g ⊥ (AT )k ˜R, from which we derive, by induction,

Gn = {Pln(A)g| g ⊥ Kn(AT , ˜R)}. (8)

The latter relation means that with every sequence of expanding block Krylov subspaces
one can associate a sequence of shrinking Sonneveld subspaces.

The above preliminary geometric considerations about the Sonneveld subspaces allow one to
construct a general scheme of an iterative process, in which the residual vectors rn = f −Aun
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belong to Gn. If the vectors un−1 and rn−1 ∈ Gn−1 are known, then an iteration of the
IDRStab(s,l) method can be split into two stages, at which the vectors

rn−1/2 ∈ Gn−1 ∩ S, rn = Pln(A)rn−1/2 (9)

are defined. Here, the first stage includes orthogonalization of the residual rn−1 to the shadow
residual vectors r̃k, whereas the second one is responsible for the minimization of rn. Observe
that the conventional BiCGStab algorithm corresponds to the case s = � = 1. The orthogo-
nalization stage can be performed by applying the numerically stable modified Gram–Schmidt
method. To this end, in accordance with (9), in order to compute the vector rn−1/2 ∈ Gn−1∩S,
we first define s + 1 vectors g−s, . . . , g0 ∈ G0 = KN (A, g1) for n = 0. Assuming that this is
already done, we use the representation

r−1/2 = g0 −
−1
∑

k=−s

gkck,

where the unknown coefficients ck are determined from the orthogonality condition

˜RT r−1/2 = 0, ˜R ∈ RN,s. (10)

This yields a system of � linear equations

Cc = RT Gc = RT g0, G = (g−1 · · · g−s) ∈ RN,s, c = {ck} ∈ Rs, (11)

which has a unique solution, provided that the matrix C = RT G ∈ Rs,s is nonsingular.

Remark 3. The computation of the vector c from the orthogonality condition (10) reduces
to solving a least squares problem [29]. Its normal solution (with the minimal norm) can be
computed from the overdetermined system Gc = g0 with the rectangular matrix G. If one of
the matrices G and C is singular, then it is reasonable to use the generalized inverse matrices
or, for example, the singular value decomposition (SVD).

In order to solve system (11), one must preliminarily find s vectors gk ∈ KN (A, g1). To
this end, any conventional algorithm in Krylov subspaces can be used. One of the common
ways consists in choosing g0 = r0 and computing the subsequent gk by applying the Arnoldi
orthogonalization to the vectors Akg0.

The next stage of the algorithm is the computation of the vector r1 = Pl1(A)r−1/2 ∈ G1.
Multiplication by a matrix polynomial in A is carried out after determining the shift param-
eters μk in (3), which will be discussed later. When the first step is completed, the second
stage begins with ensuring the fulfillment of the orthogonalization condition (11). Then the
computational process proceeds in a similar way. In fact, this is a two-level iterative process.
The upper level corresponds to the sequence of Sonneveld subspaces, indexed by n, and the
lower level corresponds to inner iterations in Krylov subspaces.

Thus, for n = 1, 2, . . . , the following two kinds of operations, occurring in (9), are performed:

(a) Multiplication of the residual vector rn−1 from the previous Sonneveld subspace by the
polynomial Pln(A),

r̂n = Pln(A)rn−1, rn−1 ∈ Gn−1 ∩ S.

(b) Solution of the SLAE for the coefficients ck, for which the following orthogonality
condition is fulfilled:

RT rn = 0, rn = r̂n −
−1
∑

k=−s

gkck = r̂ − Gc.
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The number of the basis vectors gk ∈ Gn is not necessarily equal to s. In such a case, one
should consider the generalized (least squares) solution of the equations obtained, but we do
not dwell on this.

Note that here and below we use a block representation of the iterative process, different
from the conventional one, in which the entire process of orthogonalizing the residual vector
to all the columns of the matrix ˜R is performed in one iteration.

Other interesting issues related to the IDR methods concern the choice of the matrix ˜R,
initialization of the iterative process (i.e., the choice of the subspace G0 and computation of
the vector r0 ∈ G0), and also the choice of an algorithm for computing the subsequent residual
vectors rn ∈ Gn. In all the algorithms considered below, we use the following natural stopping
criterion:

||rn(ε)|| ≤ ε||f ||, ε � 1, ||f ||2 = (f, f). (12)

Remark 4. As was mentioned in [6], the IDR(s, l) methods are related to the Petrov–Galerkin
algorithms in the following sense. Let the vectors un−u0 and rn belong to the Krylov subspaces
Kn(A, r0) and Kn+1(A, r0), respectively (if the degree of the minimal polynomial Pn(A) equals
n = N , then KN = RN ). Under these assumptions, the Petrov–Galerkin method with respect
to the set of embedded subspaces {Lm} is defined by the condition of orthogonality of the
residual vector rn to the subspace Lm of dimension m, i.e., rn ⊥ Lm, or rn ∈ L⊥

m. In particular,
if Lm = AKn, then this scheme includes the GMRES algorithm. Since RN = Kn+1 ⊕ K⊥

n+1

and since the dimensions of Kn+1 and K⊥
n+1 increase and decrease, respectively, as n grows,

the orthogonal complement K⊥
n+1 to the Krylov subspace plays, in a sense, the role of the

Sonneveld subspace.
In the papers presented in the reference list and the references therein, one can find extensive

surveys and known interpretations of various IDR methods, which show that the methodology
of these iterative processes is not so far completely developed.

3. Multi-preconditioned semi-conjugate direction methods

In this section, we consider application of a block semi-conjugate direction method [18, 19],
which is an extension of the generalized conjugate residual (GCR) algorithm [20].

If in (2) we set g1 = r0, then the suggested family of methods MPSCD in the Krylov
subspaces Km(A, r0) can be written as follows:

um+1 = um + Pmᾱm, rm+1 = rm − APmᾱm, m = 0, 1, . . . ; (13)

here, Pm = (pm
1 . . . pm

Mm
) ∈ RN,Mm is the matrix composed of the direction vectors pm

k , and
ᾱm = (αm,1 . . . αm,Mm)T is the vector of parameters, which are determined from the orthogo-
nality conditions

(Apm
k , Aγpm′

k′ ) = ρ
(γ)
m,kδ

k,k′
m,m′ , ρ

(γ)
m,k = (Apm

k , Aγpm
k ), γ = 0, 1, ;

m′ = 0, 1, . . . ,m − 1; k, k′ = 1, 2, . . . ,Mm;
(14)

here, δk,k′
m,m′ is the Kronecker symbol, which is equal to unity if m = m′ and k = k′, and to zero

otherwise; the values γ = 0, 1 specify the semi-conjugate gradient and semi-conjugate residual
methods, respectively. Note that in contrast to the conventional semi-conjugate direction
algorithms, formulas (13) involve, at every mth iteration, Mn direction vectors rather than
one, and, in general, their number may vary from iteration to iteration.

Under assumptions (14), the coefficient vectors ᾱm = {α(γ)
m,l} in (13) for γ = 0, 1 are deter-

mined from the extremum condition

∂Φ(γ)
m /∂αm,l = 0, Φ(γ)

m (rm+1) ≡ (rm+1, Aγ−1rm+1), (15)
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and are given by
α
(γ)
m,l = (AγB−1

m,lr
m, rm)/ρ(γ)m,l. (16)

For γ = 0, 1, the direction vectors pm
� are determined from (14) in the following block form:

P0 = {p0l = B−1
0,l r0},

Pm+1 = Pm+1,0 −
m
∑

k=0

Pkβ̄
(γ)
m,k =

{

pm+1
l = B−1

m+1,lr
m+1 −

m
∑

k=o

Mk
∑

l=1

β
(γ)
m,k,lp

k
l

}

, m = 0, 1, . . . ;

Bm,l ∈ RN,N , l = 1, . . . ,Mm, γ = 0, 1;
(17)

here, β̄
(γ)
m,k = {β(γ)

m,k,l} = (β(γ)
m,k,1 . . . β

(γ)
m,k,Mm

)T ∈ RMm are the coefficient vectors, and Bm,l ∈
RN,N are the preconditioning matrices, which should be nonsingular, easily invertible, and
provide for an efficient acceleration of the resulting iterative process. Note that the precondi-
tioners Bm,� are dynamic, or flexible (as in FGMRES [10]) because, for any �, they depend on
the iteration number m.

On substituting (17) into the orthogonality conditions (14), we obtain the following formulas
for the coefficients:

β
(γ)
m,k,l = (Aγpk

l , AB−1
m+1,lr

m+1)/ρ(γ)m,l = (Aγpk
l , Apm,k

l )/ρ(γ)m,l,

m = 0, 1, . . . ; k = 0, . . . ,m; l = 1, . . . ,Mm.
(18)

In (18), the vectors pm,k
� are determined from the relations

pm,k
l = pm,k−1

l − β
(γ)
m,k−1,lp

k−1
l = B−1

m+1,lr
m+1 −

k−1
∑

i=0
β
(γ)
m,i,lp

m
l ,

l = 1, . . . ,Mm, k = 0, 1, . . . ,m + 1;
pm,0

l = B−1
m+1,lr

m+1, pm,m+1
l = pm+1

l ,

(19)

by the modified Gram–Schmidt method.
The following assertion is valid (for the proof, see [19]).

Theorem 2. For the iterative MPSCD process defined by relations (13) and (16)–(19), where
γ = 0, 1 and the matrices A and Bm,� are nonsingular, the following assertions hold:

• the direction vectors pm
k satisfy the orthogonality conditions (14);

• the residual vectors rm are generalized semi-conjugate, i.e.,

(AγB−1
k,l r

m, rk) =

{

0, k < m,

σ
(γ)
m = (AγB−1

m,lr
m, rm), k = m;

(20)

• the functionals Φ(γ)
m (rm+1) satisfy the extremum conditions (15), and for q = 0, 1, . . . ,m

the following relations are valid:

Φ(γ)
m (rm+1) = Φ(γ)

q (rq) −
m
∑

k=q

Mm
∑

l=1

(AγB−1
q,l rq, rq)2/ρ(γ)k,l . (21)

Remark 5. If γ = 1 or the matrix A is symmetric, then the method MPSCD ensures
minimization of the norm ||rm+1|| = (rm+1, rm+1)1/2 in the “multi-preconditioned” Krylov
subspace

K∑

m+1
(r0, A) = Span

{

B−1
0,1r

0, . . . , B−1
0,M0

r0,

AB−1
1,1r

1, . . . , AB−1
1,M1

r1, . . . , AmB−1
m,1r

m, . . . , AmB−1
m,Mm

rm
}

, (22)
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whose dimension equals
∑

m+1 = M0+ · · ·+Mm. In semi-conjugate gradient methods, i.e., for

γ = 0, the functional Φ(0)
m (rm+1) = (A−1rm+1, rm+1) does not, in general, attains its minimum

unless A is a symmetric matrix.
The block semi-conjugate direction methods considered above use the so-called “long” re-

cursions, i.e., all the direction vectors computed at the previous iterations, or the direction
matrices P1, . . . , Pm must be stored. In order to decrease the memory requirements, we will
use the known restart procedure: upon performing a certain number of iterations, the residual
vector is computed from the original equation rather than from (13), and the Krylov process
is started anew with the current approximation as the initial guess.

In order to accelerate the resulting iterative process, at each restart with number n we
orthogonalize the residual vector to the subspace similar to S in (2). However, this procedure
is carried out not by the way conventional for the IDR approach but by applying deflation
or aggregation, see [24] and the references therein. In this case, given a rectangular matrix
˜Rn = (r̃1 . . . r̃sn)T ∈ RN,sn , sn � N , an additional preconditioning matrix is computed,

B−1
n,0 = ˜Rn( ̂An)−1

˜RT
n , ̂An = ˜RT

n A ˜Rn ∈ Rsn,sn. (23)

Here, B−1
n,0 is a low-rank approximation of the matrix A−1, inverse to the original one. It is

nonsingular if A is nonsingular, and the deflation matrix ˜Rn has full rank sn. Here, for the
sake of generality, we allow the subspaces Sn and their dimensions sn to depend on the restart
number n. If the iteration number of the MPSCD method (13) is denoted by mn (m0 = 0),
where each iteration includes a restart and orthogonalization, then the resulting algorithm for
n = 0 can be written as follows:

u0 = u−1 + B−1
0,0r

−1, r−1 = f − Au−1,

r0 = f − Au0, p0l = (I − B−1
0,0A)B−1

0,l r0, l = 1, . . . ,M0.
(24)

In this case, u−1 denotes an arbitrary initial guess, and u0 is the “corrected” approximation
of the solution to be sought. As is readily verified, from (24) it follows that

˜RT
0 r0 = 0, ˜RT

0 AP0 = 0, (25)

where the matrix P0 consists of the M0 columns p0� , defined in (24).
Realization of formulas (24) is sufficiently simple because multiplication by B−1

0,0 ∈ RN,N

requires solution of an auxiliary SLAE with the matrix ̂A0 = ˜RT
0 A ˜R0 ∈ Rs0,s0 of small dimen-

sion. Note that in order to emphasize the similarity with the methods in Sonneveld subspaces
considered in Sec. 2, in (23) we preserve the notation for ˜Rn.

In order to find the linearly independent columns r̃k, k = 1, . . . , sn, of the matrix ˜Rn, the
simplest piecewise-constant basis vectors can be used. To this end, the set of indices Ω =
{i = 1, . . . , N} is partitioned into approximately equal disjoint subsets Ω(n)

k (these partitions
can be different at different iterations), and we set r̃k(i) = 1 for i ∈ Ω(n)

k and r̃k(i) = 0 for
i �∈ Ω(n)

k , k = i, . . . , sn. Observe that the basis vectors r̃k can be chosen smoother, as is done
in [26]. In some papers, the columns of the matrix ˜Rn are chosen randomly or by solving an
auxiliary eigenproblem. The problem of selecting the most informative basis is the subject of
a separate research.

If at each restart the approximate solution umn−1 is known, then formulas (24)–(25) obvi-
ously take the following form:

umn = umn−1 + B−1
mn,0r

mn−1, rmn−1 = f − Aumn−1,

rmn = f − Aumn , pmn
l = (I − B−1

mn,0A)B−1
mn,lr

mn .
(26)
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In this case, the preconditioners Bmn,l are defined by (23), where n is changed for mn, and
the orthogonality conditions are replaced by

˜RT
mn

rmn = 0, ˜RT
mn

APmn = 0. (27)

Remark 6. It can be straightforwardly verified that

(C(n)
1 )2 ≡ (B−1

mn,0A)2 = C
(n)
1 , (C(n)

2 )2 ≡ (I − B−1
mn,0A)2 = C

(n)
2 ,

which means that the matrices C
(n)
1 and C

(n)
2 are projectors.

For the orthogonality conditions (27) to be fulfilled not only at points of restarts but at every
iteration, formulas (17) for the direction vectors in MPSCD for m �= mn must be changed for
the following ones:

pm+1
l = ˜B−1

m+1,lr
m+1 −

m
∑

k=0

Mk
∑

l=1

β
(γ)
m,k,lp

k
l ,

˜B−1
m+1,l = (I − B−1

m+1,0A)B−1
m+1,l,

l = 1, . . . ,Mm, m = mn−1, mn−1 + 1, . . . ,mn − 1.
(28)

In this case, as is readily verified by induction, the following relations are valid:

˜RT
mrm = 0, ˜RT

mAPm = 0, m = 0, 1, . . . . (29)

However, here one should bear in mind that relations (28), which formally differ from
(17) in the preconditioning matrices only ( ˜B−1

m+1,l instead of B−1
m+1,l), require that in order to

preserve the orthogonality of the direction vectors (14), the formulas for the coefficients β
(γ)
m,k.l

in relations (18)–(19) be modified. Namely, the matrices B−1
m+1,l must be changed for ˜B−1

m+1,l.
As is known from theoretical estimation and numerical results, restarts lead to reducing the

dimensions of the Krylov subspaces and, as a consequence, to slowing down the convergence
of an iterative process. This is an inevitable price for saving memory in all algorithms with
short recursions.

In the above-considered MPSCD methods with deflational restarts, it is natural to choose
equidistant iteration numbers mn, where mn = mn−1 + κ, the integer κ being fixed a priori.
On the other hand, it is possible to consider the problem of optimally choosing the values mn

based on some a posteriori data.
Remark 7. As has been mentioned in Remark 4, to every sequence Kn+1 of Krylov subspaces,
whose dimensions increase as n grows, a sequence of shrinking subspaces correspond, and the
latter are the orthogonal complements K⊥

n+1 in the space RN . It is readily seen that modifica-
tions of the Krylov subspaces, which consist in additional orthogonalization of the computed
vectors to the “trial” subspace S, do not influence the duality relations. The orthogonality
conditions (25), (27), and (29) naturally allow one to define, for MPSCD, subspaces with
decreasing dimensions similar to the subspaces Gn in the IDR methods.

An alternative way to save memory and to shorten recursions is the approach with limited
orthogonality in the sense that in constructing iterations for solving nonsymmetric SLAEs,
only a few last direction vectors in Krylov subspaces are stored and used in recursions. If the
number of such vectors is constant and equals q + 1, then formulas (28) take the following
form:

pm+1
l = ˜B−1

m+1,lr
m+1 −

m
∑

k=m−q

Mk
∑

l=1
β
(γ)
m,k,lp

k
l , m = 0, 1, . . . . (30)

If, in this case, the vectors p0l are computed by formulas (24), then the orthogonality prop-
erties (29) remain valid. In this approach, further orthogonalization can be carried out using
deflation or aggregation.
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4. Conclusion

The aim of this paper is to dethrone, in a sense, the myth about the exclusivity of induced
dimension reduction methods, which are opposed, by misunderstanding, to the classical iter-
ative processes in Krylov subspaces. On the example of multi-preconditioned semi-conjugate
residual methods proposed, it is shown that modified Krylov type algorithms using additional
orthogonalization (deflation, aggregation, etc.) can naturally be associated with shrinking
subspaces of decreasing dimensions, which are referred to by some authors as the Sonneveld
subspaces. In addition, between the subspaces of “shadow residuals” in the IDR methods and
the deflation subspaces in the “classical” Krylov methods there is a close analogy, which is
not mentioned by the authors of various publications. Moreover, publications on these two
approaches surprisingly include no cross references, although these areas of computational
algebra are intimately related.

In general, active discussions on various approaches to optimization of iterative processes
confirm good prospects of developing iterative methods in Krylov subspaces.

This work was supported by the Russian Science Foundation (grant No. 14-11-00485) and
the RFBR (grant No. 16-29-15122).

Translated by V. P. Il’in.
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