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Abstract. The article considers the challenges and problems of machine learning that arise in supercomputer 
mathematical modeling of real-world processes and phenomena. Currently, such modeling has become the 
main tool for obtaining fundamental and applied knowledge, as well as a condition for a significant increase 
in labor productivity and gross domestic product. The principles of modern predictive modeling based on 
high-performance computing, artificial intelligence and big data processing are described. The trends in 
the development of high-tech mathematical and software within the framework of integrated computing 
environments are analyzed; the latter imply a flexible expansion of the composition of the studied models and 
applied algorithms, the effective use of external products, adaptation to the evolution of computer platforms 
focused on a long-life cycle. The methodology of machine learning based on the technological cycle is 
presented, which includes the formation and modification of models, the implementation of a computational 
experiment with the solution of direct and inverse problems, analysis of the results and decision-making on 
optimizing activities to achieve the goals.

Keywords: machine learning, mathematical modeling, high-performance computing, artificial intelligence, 
big data, science-intensive software, integrated computing environments

DOI: 10.31857/S08695873250302e6

The tasks of advanced scientific and technological 
development in priority areas in the era of exaflops 
supercomputers must inevitably rely on the mass 
digitalization of all spheres of human society, provided 
that artificial intelligence, huge volumes of data, neural 
networks and machine learning methodologies are 
actively used. A special role belongs to the means of 
obtaining new fundamental and applied knowledge 

based on science-intensive mathematical modeling 
of complex processes and phenomena. These studies 
typically include solving interdisciplinary direct and 
inverse problems and involve extreme volumes of 
computational resources with scalable parallelization 
of algorithms on multiprocessor computing systems 
(MCS). It is fundamental that in the conditions of 
continuously developing sciences, modeling problems 
are inevitably associated with dynamic development, 
maintenance and implementation of mathematical 
support and software (MSW), the high cost of which 
requires an economical approach to its professional 
operation. On the other hand, MSW users must master 
supercomputer technologies for obtaining knowledge 
and make decisions based on their analysis.

An important element of such an approach  — 
building digital twins, or virtual realities, the study and 
optimization of which allow increasing labor efficiency; 
in fact, it is about a new productive force that ensures the 
growth of gross domestic product. Equally significant 
is the penetration of intelligent computational and 
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informational innovations into social and humanitarian 
spheres, not to mention national security. Figuratively 
speaking, computer sciences and tools play the role 
of a circulatory system that ensures the vital activity 
of human society as a single organism. This situation 
requires a new look at the interrelation of high-
performance computing with artificial intelligence and 
transformations of big data  — the interrelation of the 
three pillars of the 4th industrial revolution.

Over the past decades, outstanding achievements 
have been made in all these areas, requiring 
philosophical and methodological comprehension, 
bearing in mind the harmonious development of the 
complex of sciences about knowledge acquisition [1–7]. 
It should be kept in mind that, for example, emerging 
possibilities of achieving positive practical results based 
on cognitive analysis of big data through their simple 
statistical processing sometimes result in the conclusion 
about the emergence of some “post-science”, like Data 
Science, which supposedly does not require traditional 
in-depth research. To not mislead with such dubious 
claims, it is necessary to show that for creating artificial 
intelligence and neural networks, it is necessary to invest 
enormous effort of professionals with a high level of 
natural intelligence. Over the past decades, knowledge-
intensive mathematical modeling has formed into a 
multifaceted creative process, and rapid advances in 
the field of artificial intelligence actively influence the 
technological stages of machine experimentation, which 
promises significant synergistic effects.

This paper is devoted to a systematic analysis 
of the indicated problems from the perspective of a 
mathematician, programmer, and specialist user in a 
specific applied field. The following will be considered: 
basic characteristics and trends of mathematical 
modeling as a scientific discipline and as a technology 
for solving practical problems; functional and systemic 
content of software; methodological principles of 
computational experiment-based machine learning.

MATHEMATICAL MODELING: 
SUPERCOMPUTING, 

INTELLECTUALIZATION, BIG DATA

The philosophical saying “being determines 
consciousness” directly relates to our topic in the 
sense that the achievable level of artificial intelligence 
is determined by the power of computer resources, 
including processing speed and memory capacity. We 
will discuss only traditional cluster-type architectures, 
including computing nodes with distributed memory 
and multi-core processors (CPUs with several dozen 
cores over shared memory and, possibly, GPGPU 
graphics accelerators).

Although both in our country and abroad, active 
development of new generations of computers is 
underway, including quantum and reconfigurable 
ones, in the next 5–10 years they will apparently 
not yet become mass-produced and competitive. 

This means that during this period, we can consider 
configurations with a total performance of about a 
petaflop and RAM of several dozen or hundreds of 
terabytes. The history of computer evolution shows that 
their performance parameters and memory volumes 
grow approximately proportionally. At the same time, 
“large tasks” (in N.N. Yanenko’s terminology [8, 9], 
meaning those that take quite a long time to solve — 
hours or tens of hours, days or several days) can now 
be considered as those whose formulation involves 
solving interdisciplinary multidimensional direct and 
inverse problems with a number of unknown functions 
around ten and which require the use of unstructured 
adaptive grids with the number of spatial nodes of 
the order of 10003, as well as time steps up to 103–105 

or more. For such computational parameters, the 
computational process even on a supercomputer is a 
large-scale experiment with extreme volumes of data 
and arithmetic operations.

According to the established methodology of 
mathematical modeling [8–13] its technological 
chain, with all its diversity, includes relatively small 
number of stages, qualitative content of which, 
however, significantly changes with the development of 
supercomputer generations, computational algorithms 
and tools. We will consider a universal computer, or 
network of machines, with software that is integrated in 
the sense that it allows solving the widest possible range 
of problems.

The study of any object begins with the formation 
of its model, which can be represented by a set of 
differential and/or integral, as well as discrete equations 
and relationships, with additional constraints and 
optimization conditions, with large volumes of actually 
measured data. The latter can be approximate and even 
contradictory, not falling under strict mathematical 
concepts of existence, uniqueness, and correctness of 
the solution. Such complex systems have to be analyzed 
by hydrometeorological services when forecasting 
weather, climate changes, or warning of natural 
disasters, using data from the worldwide network of 
ground and space observations. Another illustration is 
multiphase processes in the oil and gas industry using 
chemical, electrophysical and other modern extraction 
technologies. One of the extreme problems is the 
consequences of a thermonuclear explosion, where there 
is an overlay of processes of fluid dynamics, physics of 
solid matter, plasma, etc.

Naturally, that strategy and tactics of modeling 
must provide maximum effect with minimization of 
computational resources, which are by no means cheap. 
All sciences are developing rapidly, and with them, 
various models grow quantitatively and qualitatively, 
all kinds of models, their hierarchies emerge  — 
from simple and economical to more complex and 
accurate ones. Human interaction with computers 
requires comfortable interfaces with input languages, 
determining the level of communication with users of 
various different specialties. This stage is intended for 
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formulating the task for the computer of that model (or 
their sequences from a possible set), which is necessary 
in accordance with the given task. Obviously, that such 
a level of functionality of the software subsystem and 
its user can be achieved only as a result of machine 
learning through accumulating operational experience 
and analyzing the results obtained. It should be noted 
that “smart” implementations of this stage may include 
qualitative analysis of the mathematical properties of 
models, which undoubtedly increases the value of such 
a product.

After specification of the mathematical problem 
at the continuous level, its discretization is required, 
that is, construction of a grid. This stage is very 
important from the perspective of modeling efficiency 
and represents a labor-intensive algorithmic problem 
in multidimensional tasks with real data, including 
complex geometric configurations of computational 
domains with piecewise-smooth non-simply-connected 
multi-scale boundaries (including moving ones) and 
contrasting material properties of media. In such cases, 
often it is necessary to consider singularities of solutions 
and construct adaptive unstructured grids, the question 
of optimization of which still remains open.

It should be noted that the most effective numerical 
methods for solving large problems are associated 
with domain decomposition, which is the main tool 
for algorithm parallelization, as well as with the use 
of multigrid approaches that provide asymptotic 
optimality in order of solutions (for characteristic grid 
steps h → 0 the total number of arithmetic operations 
is proportional to the number of unknowns [14]). This 
presents to “grid generators” new interesting problems 
related to constructing complex data structures and 
intelligent operations on graphs [15].

There are many approaches to constructing grid 
approximations of various orders of accuracy: methods 
of finite differences, finite volumes, finite elements, 
discontinuous Galerkin algorithms and so on. Creating 
multifunctional software for this purpose with this 
goal for various types of grids and types of operators 
is an urgent and in-demand task (the project of the 
corresponding CHEBYSHEV subsystem is described 
in [16]). It should be noted that, although the problem 
of automating the construction of algorithms for grid 
approximations is quite old [17], widespread adoption 
of this approach has not yet been achieved.

Most practical problems are nonlinear and non-
stationary, but after applying quasilinearization and 
implicit time approximations to them, it is inevitable 
to solve systems of linear algebraic equations (SLAEs), 
typically with large sparse matrices, both symmetric 
and non-symmetric. The main approach here is 
iterative preconditioned methods in Krylov spaces [18] 
(the corresponding subsystem is called the KRYLOV 
library).

Optimization methods for solving inverse problems 
play a key role in machine learning, as they allow finding 
and investigating the best scenarios of processes and 

phenomena [19]. The typical methodology consists 
of planning a series of computational experiments in 
which a minimized target functional is described based 
on previous experience, and after analyzing the obtained 
results, the next machine learning session is formed. 
Such interaction between humans and computers seems 
to be without alternative in many multi-criteria practical 
search problems, when a deterministic algorithm for 
their solution is fundamentally impossible to formalize. 
Let us note an important point: the parameters varied 
in this process may relate not only to the model being 
studied but also to the computational process itself, 
since in stalemate situations it may either not converge 
at all, or take unacceptably long.

Thus, the entire iterative cycle involves all the 
modeling stages considered. Methods and technologies 
for post-processing, visualization, and analysis of 
calculation results should be added to them, on the basis 
of which decision-making tools function [20].

MATHEMATICAL AND SOFTWARE SUPPORT 
AS AN ECOSYSTEM

Application software, like system software, has been 
rapidly developing simultaneously with computing 
technology for which, to everyone’s surprise, Moore’s 
law still continues to apply with certain reservations 
(increase in performance by 1000 times in 11 years). 
However, it must be acknowledged that in recent 
decades, the growth rate of programmer productivity 
has begun to significantly lag behind the pace of 
computer performance, that is, in a certain sense one 
can speak about a crisis in programming. To correct 
this imbalance, artificial intelligence is beginning to be 
actively used.

By now, an enormous amount of publicly available 
(Open Source) and commercial software has been 
accumulated worldwide in the form of libraries, special 
tools and problem-oriented application software 
packages (ASP) [10], which represent high intellectual 
value. Here we can mention such highly professional 
developments as PETSc, HYPRE, PARDISO libraries, 
FENIX, DEAL II software packages, specialized 
systems PARVIEW, MAPLE and many others. A 
separate global market consists of computer-aided 
design (CAD) systems [21], and in recent years there 
has been a convergence of these systems with classical 
ASPs. At the same time, there has been a shift from 
specialized to integrated software environments. 
Examples of major projects in this area are DUNE, 
OPEN FOAM, INMOST, as well as the Basic Modeling 
System (BMS) [12, 22–24]; all of them are primarily 
method oriented.

Functional content of BSM is a set of autonomous 
subsystems, each of which is responsible for the 
corresponding technological stage of modeling and 
is connected with others through coordinated data 
structures. Thanks to the model formation subsystem, 
functional and geometric data structures (FDS and 
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GDS) are created which serve as the initial ones for the 
stage of grid generation. Based on the resulting grid data 
structure (GDS) as a result of executing the stage of 
approximation, algebraic information arrays are built in 
globally accepted formats (ADS), which provide high-
performance solutions for a wide class of systems of 
linear algebraic equations.

This architecture allows independent groups of 
professional developers to implement and develop 
various subsystems. This approach easily achieves 
flexible expandability of the module and algorithm 
composition for each computational stage, including 
those with the efficient reuse of external software 
products and adaptation to new computer platforms. 
The resulting integrated computational environment 
(ICE) represents a self-sustaining ecosystem with a 
long-life cycle, oriented toward successful use by a wide 
range of users. The provided redundant set of models 
and algorithms is designed to support methodologies of 
machine learning for both the ecosystem itself and its 
users.

Ensuring rich functionality and efficient use of the 
integrated computational environment requires the 
creation of diverse system content. From a mathematical 
point of view, this primarily means developing tools for 
automating the construction of algorithms, including 
tools for multi-version configurations of computational 
modules. Regarding programming languages, it is 
worth noting the popularity of combining styles of 
object-oriented approaches of C++ and rich expressive 
capabilities of the interpreted language Python, which 
includes such important intellectual components as 
computerization of complex analytical calculations. 
This opens the way to the active use of high-precision 
approximation methods, which are promising from a 
theoretical perspective due to significant reduction in 
required memory and energy-intensive communication 
costs, but are still not widely used due to labor-intensive 
programming.

The world is also developing specialized natural 
languages for computational mathematicians (there is 
even a slogan “programming without programming”). 
Although such enticing projects on “language factories” 
as SIDL (Scientific Interface Definition Language) and 
DSL (Domain Specific Languages) [25] are mentioned 
in Internet publications, where the urgent problem is 
interpreted as a transition from “paleoinformatics to 
neoinformatics”, no breakthrough prospects are visible 
in the near future, and the technologies for forming 
algorithmic libraries have remained unchanged for 
several decades. In general, language content is one of 
the key aspects for the level of machine learning, and the 
current situation can be assessed as a soft exit from the 
programming crisis.

Undoubtedly, one of the main qualities of an 
application is its performance, primarily determined by 
the quality of algorithm parallelization. Here, FPGAs 
(Field-Programmable Gate Arrays) offer enormous 
possibilities, which allow to design and build specialized 

computers with maximum performance for a given 
algorithm. However, such computers have one major 
disadvantage  — commercial non-competitiveness in 
comparison with standard super computers of cluster 
type, whose computational nodes are connected by 
buses and exchange data using a very simple MPI library, 
while calculations on each of them are performed by 
multi-core processors with hierarchical shared memory 
(its different levels have varying volumes and exchange 
speeds) managed by a software system like OpenMP. 
There are also fast graphics accelerators (GPGPU), but 
their connection with shared memory is slow, which 
significantly reduces their efficiency.

The situation with computation parallelization 
can be considered paradoxical due to the absence of 
appropriate mass, or standard, systems for programming 
automation, with the exception of several uncommon 
languages or subsystems (for example, SHAPEL 
and DVM  — Distributed Virtual Machine [26]). In 
fact, parallelization of algorithms on multiprocessor 
computing systems is a purely manual work with 
experimentally selected methods of acceleration 
of calculations, which are measured by two simple 
parameters:

	 S T T E S pp p p p= =1 / , / 	

— coefficients of speedup and efficiency, where Tp is the 
time to solve the problem on p processors. Research on 
optimization of parallelization based on the concept of 
D-determinant can be considered promising [27]. From 
the perspective of machine learning, we can formulate 
the problem of searching for the best parallelization 
method by the supercomputer itself based on a series of 
calculations for a specific class of problems.

The speed of such inevitable routine procedures 
as debugging, testing, verification, and validation 
of the implemented code is of great importance for 
improving programmer productivity. The problems 
arising here are inevitably exacerbated when creating 
large software systems, which are precisely what are 
implied in the concept of integrated computational 
environment; this is primarily due to the dramatic 
complication of information connections, as well as 
internal intermodular and user interfaces. In large 
professional teams of developers of operating systems 
and compilers, these problems have long been solved 
using well-known component technologies COM/
DCOM and CCA (Common Component Architecture) 
[28], but in applied programming they are still waiting 
for the transition to industrial thinking.

One of the main ICE components is a repository 
(storage), which ensures the integrity of the 
development and its connections with the outside 
world, supports the properties of multilingualism and 
cross-platform, as well as interaction with developers 
and users. GITHUB, a system of this type with a wide 
variety of services, has become widely used in the 
computer community.
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ABOUT SOME PRINCIPLES OF MACHINE 
LEARNING AND DECISION-MAKING

All learning consists in acquiring knowledge 
and skills for some sphere of activity, including for 
making decisions based on the analysis of meaningful 
information. Regarding mathematical modeling, we 
can identify three categories of participants: inanimate 
object —computer, consisting of hardware and software, 
and two types of subjects  — developers of modeling 
tools and end users–specialists in specific subject 
areas who implement supercomputer innovations. It  is 
clear that personnel can be represented by people of 
different qualifications, between whom teacher–student 
relationships emerge.

Knowledge is active if it leads to some actions and 
results [29]. Its accumulation and systematization for 
a particular subject area involves the development 
of an appropriate base of active knowledge (AKB) 
containing all kinds of information about objects, their 
specifications, interrelationships and about possible 
actions on them. With the expansion and deepening 
of acquired information, the emergence of AKB is 
inevitable, as the volume of information becomes 
unmanageable for human assimilation. The structure of 
AKBs has not yet been finalized, an example of a project 
for such development for computational algebra tasks is 
given in [30]. A prototype of such development can be 
considered the ALGOWIKI system [31], created under 
the guidance of J. Dongarra and V.V. Voevodin.

Knowledge bases should contain all necessary 
information on the relevant topic. If we are talking about 
mathematical modeling for a specific class of problems, 
this includes descriptions of models, computational 
methods and technologies, examples of problems and 
their solutions (for which special archives should be 
created), recommendations for various applications, as 
well as literary sources and available software materials 
with documentation. In other words, an ontology should 
be developed that allows for text parsing, statistical data 
analysis and other intellectual activities. The knowledge 
base implies a system for collecting and assimilating 
huge volumes of information, for example, space, 
meteorological, etc., which must be integrated with 
operational calculations.

The most meaningful problems here are those 
related to optimization methods for solving inverse 
problems, allowing to achieve the greatest practical 
effect, for example, when identifying parameters of the 
model based on results of field measurements (oil and 
gas field, for instance) or optimization of operational 
modes of technical equipment (aircraft, ship, factory 
shop and so on) [19]. At the same time the problem 
formulation is defined as finding the minimum of some 
objective functional

	 Φ Φ0 0

     



u x t p min u x t popt
p

, , , ,( )( ) = ( )( )	  
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for solving a certain direct initial-boundary value 
problem, which is subject to additional linear and/or 
nonlinear constraints:
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Here p is an m-dimensional vector of optimized 
parameters, and t, x are time and spatial coordinates. 
The original direct problem, or the state equation of the 
optimized complex system, can be formally represented 
in the following form:

	 Lu f x t x
� � � �
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where L is in the general case an operator of matrix type 
(in differential and/or integral form), l is an operator of 
boundary conditions, Ω × [0, T] is the computational 
domain, which often consists of Ω 

k subdomains with 
different contrasting material properties, as well as with 
internal and external boundaries Γe, Γi , including those 
with multi-scale details and piecewise-smooth multiply 
connected surface segments. In the general case, we are 
dealing with interdisciplinary non-classical formulations, 
where even questions of existence, uniqueness and well-
posedness remain open. As for the problem of constrained 
minimization of the functional, it can be of local or global 
type. In the latter case, it is required to find all existing 
minima.

Here is a typical example of machine learning. Let 
us assume that during an extended period (a year or 
more) we need to conduct operational optimal control 
of a complex system dependent on 10 parameters by 
solving inverse and forward problems, where each of 
them requires lengthy calculations (hours or tens of 
hours). Note that if for each parameter we consider 10 
possible values, the total number of variants will be 1010 

(the curse of dimensionality)! In this case, machine 
learning can be implemented as follows. First, for 
several weeks, using classical optimization methods, 
hundreds of problems are solved, the results of which 
are stored and statistically processed (for example, 
using a popular type of generalized linear regression — 
kriging), forming appropriate approximations in the 
grid parameter space. Then, based on the accumulated 
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data, operational work of the machine-software 
complex begins, which quickly finds an approximation 
to the desired state of the system, and then with human 
participation, the necessary refinement of parameters 
occurs sequentially.

In artificial intelligence research, the concept of 
“Foundation Models” (or LxM  — Large x Model) 
has emerged, defined as deep learning tools trained 
on a huge number of test examples and problems [32] 
and extensive literature, mainly unpublished, placed 
on publicly available internet resources like arXiv. 
Additionally, the term “surrogate optimization” has 
come into use, which implies that the search for the best 
solution is performed not for the real object or process, 
but for its model, possibly crude. Overall, the solution 
of complex inverse problems with multi-ravine behavior 
of minimized functionals requires the application of a 
hierarchy of models, the selection of which requires high 
artistry. In fact, in such cases, meta-algorithms operate 
for computer interaction with users who have extensive 
experience in solving specific classes of problems.

The development of machine learning in 
computational mathematics is primarily associated 
with the choice of the optimal or “good” algorithm 
for each stage of the technological chain of modeling: 
grid generation, approximation and discretization of 
the original problem, solving the resulting systems of 
linear and nonlinear equations and so on. As a result, 
the search for the best general computational process 
reduces to multi-level repetitive cycles with multiple 
numerical experiments, analysis of intermediate 
results and development of the final strategy for 
practical calculations. Often, it is necessary to make a 
compromise of the “perfect is the enemy of good” type, 
since optimization itself may be more expensive than 
an already known sufficiently effective approach. The 
penetration of machine learning into computational 
mathematics is quite active, and here we can note works 
on finite element methods and on iterative algorithms 
[33, 34] and literature cited therein. Regarding 
the solution of various applied problems, a special 
neuromethodology called PINN (Physics Informed 
Neural Networks) has emerged, focused on solving 
differential equations describing conservation laws, 
including at the continuous level, without transitioning 
to grid discretizations [35].

Neural network approaches evolve very rapidly. In 
2017, in the paper [36] a neural network architecture 
called Transformer was proposed, based on the attention 
mechanism. Its essence resides in determining global 
dependencies between input and output data through 
pre-training by examples. Software implementations 
built on these principles have already significantly 
enhanced the toolkit for image processing, text analysis, 
machine translation, and more. As a convincing example 
of the effective use of machine learning to solve truly 
very complex physical-mathematical problems, let’s 
consider the task of determining interatomic potentials 
that approximate models of quantum-mechanical 

interactions, originally described by the extremely 
resource-intensive Kohn–Sham theory. A sufficiently 
general approach to solving this problem is based on 
neural network potentials, the modern version of which 
is presented using eMTP  — electron moment tensor 
potential, which underlies the foundation of a class of 
machine-learned models of interatomic interactions 
with the required high accuracy [37].

Another research direction is neural operators (NO) 
[38], which are an evolution of “physics-informed” 
neural networks like PINN. Unlike the latter, NO 
are focused on approximating inverse operators that 
characterize connections between functional spaces, 
which allows transitioning to solving entire classes of 
problems. It should be noted that new neural network 
and neural operator technologies are, in a certain sense, 
well-forgotten old approaches of classical methods 
of mathematical physics from the middle of the last 
century, which are based on continuous basis functions, 
effectively applied for small orders, but becoming 
dramatically more complex when increasing calculation 
accuracy.

Similar methodologies are applicable in other 
sciences (chemistry, biology, etc.) or in industries: 
model, computer experiment, results analysis, new 
knowledge, decision-making. However, this is not 
an end in itself; it should be followed by decisions 
on optimizing human activities and innovations  — 
increasing labor productivity, quantity and quality of 
products, achieving social and/or humanitarian effects, 
etc. In fact, we are talking about a fundamental change 
in the ways of activity and the emergence of new mass 
professions. Undoubtedly, machine learning should 
significantly change pedagogical approaches and the 
education system itself  — from preschool to higher 
education, and these relevant issues require their own 
research.

* * *

In modern conditions, machine learning has become 
an integral attribute of obtaining new knowledge. One 
of the problems in the field of artificial intelligence use 
is decision-making by humans based on the analysis of 
received data. Optimization of this type of activity is an 
urgent, but by no means new problem. As an illustration, 
one can cite the many years of work by G.S. Altshuller 
and his followers [39] on creating TRIZ  — Theory of 
Inventive Problem Solving. Modern approaches within 
this direction are based on building ontologies of various 
subject areas, which allow creating cognitive tools for 
decision-making [40].

A vivid example of such a modern project is 
contained in the report [41] of the Center for Research 
on Foundation Models (CRFM, Stanford University), 
which describes the concept of an ecosystem focused on 
effective intellectual innovations in the broadest applied 
spheres: healthcare and biomedicine, jurisprudence and 
education, economics and environment, etc. In a certain 
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sense, this approach correlates with the methodology 
of an integrated computational environment with a 
basic modeling system, which represents a knowledge-
intensive functional content for high-performance 
solving of interdisciplinary direct and inverse problems 
of mathematical modeling, various aspects of which are 
presented in works [12, 13, 18–20, 42].

The universal nature of machine learning and 
the optimization of human activity planning based 
on it determine its global expansion, which, together 
with robotization, inevitably leads to philosophical 
understanding of the features and challenges of the 
digital transformation of society. It is no coincidence 
that publications on the moral aspects of artificial 
intelligence implementation are appearing [43]. 
Obviously, innovations directly affect both ensuring 
scientific and technological sovereignty, and production 
tasks of state scale, and ensuring national security, and 
the sustainable development of civilization.
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