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Generalized compensation principle
in incomplete factorization methods*
V. P. IL'IN1 and K. YU. LAEVSKnt

Abstract - We consider incomplete factorization methods of solving the systems of linear algebraic equa-
tions with Stieltjes matrices in which the precondition matrix B is constructed by the generalized principle of
adjustment of the row sums Byq =Ayqy q = l,...,m, with a different number m of test vectors. We formu-
late the theorem on the conditions for the existence of these preconditioners and their positive de finite ness.
We give examples of numerical experiments, which demonstrate the efficiency of the algorithms proposed.

1. INTRODUCTION
The iterative incomplete factorization algorithms are now actively developed methods
of solving the systems of linear algebraic high-order equations

Au=f (1.1)
with sparse matrices that result from the approximation of multidimensional boundary
value problems by the grid methods, viz. the finite difference method, the finite ele-
ment method or the finite volume method (see [6,7] and the references therein). The
main problem here is to construct factorized precondition matrices B that would be
readily invertible and sufficiently close to the initial matrix of the system A in a sense
(which is the subject of special discussion). The iterative process in the simplest case
is realized by the formula

B(un - u""1) = f-Aun~l. (1.2)

In the most efficient algorithms, namely in Chebyshev acceleration algorithms or
conjugate gradient algorithms calculations by formula (1.2) are also used. However,
the vector of a successive approximation un is then corrected by the spectral or
variational optimization of the iterative process. Provided that the matrices A, B are
symmetric and positive definite, the number of iterations, which is necessary to reduce
the initial error by a factor of ε -1:

(Azn,zn)/(AzG
9z°) < ε ,

is estimated in both cases by the value

where # is the condition number of the matrix B~l/2AB~1/2, which is equal to the
ratio of the maximum to minimum eigenvalues of the similar matrix B~^A.
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400 V. P. ΙΠη and K. Yu. Laevskii

Consider block tridiagonal matrices A = D - L - U of the form

Ί
\ ~U2

0

0
LM-l DM-l UM-1

-L'M

where D = aiag{Dk} is the diagonal or block diagonal matrix, and L = {Lk}, U =
are the lower and upper rigorously triangular matrices (the orders Nk of diagonal
blocks Dk may be different and the general order A is N = N^ + ... + Λ^). For these
matrices the precondition matrix Β is determined for a wide class of algorithms in the
form

is the block diagonal matrix whose blocks are found by thewhere G
recursion method:

= 2,3 M.
(1.4)

Here 0 < θ < 1 is an iterative parameter. The matrix Q implies approximation (in a
certain sense) to the matrix β, and Ck is conventionally determined as a diagonal
matrix whose entries are found by the equality

- 0, Cke =
(1.5)

where e is the vector with unit components.
The main method of constructing symmetric matrix 'approximations' is the band

method:

β = β°7) (1.6)

where Q^ implies the *band part' of width p in the matrix β (the entries of the
matrix Q(P* for |i -;"| < (p - l)/2, ρ = 1,3,5,..., are the same as those of β, and
the other entries are zero ones).

N. I. Buleev was the first to develop the incomplete factorization methods. As the
matrix C he took diag{C^}, and the matrices G and B were determined empirically
by approximation principles, namely the condition (1.5) is that for θ = 1 the vector
equality holds:

Be=Ae. (1.7)
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Compensation principle in incomplete factorization methods 401

This equality is called the complete compensation condition. Since the error vector
z1 = u - w1 that is determined from (1.2) satisfies the relation

when the condition (1.7) is satisfied and z° = e, we obtain z1 ==0, i.e. the exact
solution is obtained on a single iteration.

More recently, H. L. Stone proposed the method [9] in which the compensation
principle was developed so that the exact solution was obtained on a single iteration if
the vector components of the initial error z° are the values of a linear function.
However, the constructed precondition matrix B turns out to be nonsymmetric, which
hampers the acceleration of the iterative process. There are other papers (see, e.g.
[1]) in which attempts were made to construct symmetric preconditioned with
analogous properties but the algorithms for calculating B turned out to be unstable.

In the algebraic language the condition (1.7) is called the adjustment principle of
the row sums (of the initial and precondition matrices). Its development, viz. the
generalized adjustment principle of the row sums is that (1.7) is replaced by the
equality

By=Ay, y>0.

This leads to the only and unessential change in the algorithm, viz. the vector e in
the determination of Ck from (1.5) is replaced by the arbitrary positive vector y:

Cky = (^Gk-}lUk.l-LkG-_\Uk_l)y, y>0. (1.8)

For the Stieltjes matrices (symmetric monotonic matrices with nonpositive off-diagonal
entries) the incomplete factorization methods with preconditioners of the form (1.3),
(1.4), (1.8) are studied as to the correctness of calculations (nonsingularity of matrices
G) and the estimate of the convergence rate of the iterative process.

The extension of the algorithms considered is possible, viz. the change-over in the
determination of matrices Ck from diagonal to band matrices whose entries are found
by using several vectors rather than the single 'test' vector y:

(1.9)
q = l,...,m, A: = 2,3,...,AT.

Note that each vector ygU is of order Λ^, which is equal to the order of the corre-
sponding square matrices Dk, Gk, and Ck, and the band width of the matrix Ck,
which is calculated by the condition (1.9), is 2m + 1. It is not difficult to check that
equalities (1.9) correspond to the relations between the initial and precondition
matrices for θ = 1:

Ayto=Byti>9 q = l,...,m, y^ = {y^\ k = Ι,.,.,Μ}. (1.10)

These relations are called the generalized compensation principle. Some numerical
experiments, in which two or three test vectors y® are used, are described in [2,3].
It is shown in [4] that the tridiagonal symmetric matrix Ck for the case of two vectors
of the particular form y(q\ q = 1,2, is determined uniquely.

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 6/23/15 3:33 AM



402 V. Ρ. ΙΓίη and Κ. Yu . Laevskii

In Section 2 we describe some properties of the algorithms, which are obtained by
the generalized compensation principle for the Stieltjes systems of equations. We
prove, in particular, that if m vectors y^\ q = l,...,M, are strongly linearly inde-
pendent (the definition is given below), equalities (1.10) uniquely define the sym-
metric band (2m + l)-diagonal matrices Ck of dimension Λ .̂, which give the matrix
C = diag{C^} that is not positive definite for the general case. We show in Section 3
that the precondition matrix Β is a positive definite one for some special cases. In
Section 4 we give examples of the solutions of methodical grid equations with five-
diagonal matrices. In Section 5 we discuss some results obtained and the new arising
problems, which invite special investigation.

2. GENERALIZED COMPENSATION ALGORITHM
In this section we dwell on the incomplete factorization algorithm that is based, first,
on the use of the band approximations of the matrices [in accordance with (1.6)] in
the determination of Gk and Ck in (1.4) and (1.10) and, second, on the use of some
number m > 1 of the test vectors y^\ q = l,...,m, in (1.10).

Denoting by Yk the rectangular Nkxm matrix whose columns are vectors y^\ we
rewrite relation (1.9) in the matrix form

Φι-**1*"*'*· * = 2,3,..,Μ (2.1)
where

** - W-A-i - (VV-'A
and Vk is a rectangular matrix of the same structure as Yk [its columns are

recursi°n relations (1.4) are also rewritten, respectively:

(2.2)
fc = 2,3,...,M.

When realizing formulae (2.1), (2.2) we face two nonconventional algebraic prob-
lems. The first problem is to find the band part of the matrix product one of whose
cofactor is a matrix inverse to the band one. The main problem here is to calculate
the band part of the matrix inverse to the band one. This is the only problem if the
matrices Lk and Uk are diagonal ones, i.e.

The algorithm for solving this problem, which needs O(Nm2) operations, is described
in [6,7].

The second problem to be discussed below is to find the band matrix C, that
satisfies the condition (2.1). It is necessary to emphasize three principal points here,
viz. the derivation of recursion relations for the matrix entries C = {c· .} (for brevity,
we omit the indices fc), the determination of conditions for the vectors y^\ which are
necessary to solve this problem, and clearing up the question of whether the obtained
matrix C is symmetric when the specified matrix R is symmetric.

We represent the sought matrix C as
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Compensation principle in incomplete factorization methods 403

l,m

C2,m + l 0

C2,m + l

0
' e ' C NtN

(2.3)

For now, we assume that the matrix C is 'quasisymmetric', i.e. its entries satisfy the
condition ci . · = c. · only if i,j<N-m. In other words, only the main submatrix
Cm = {Cj. .; z,/ > N-m + 1} of order m in the lower right corner of the matrix C is
assumed to be nonsymmetric. We have chosen this representation because the
number of the unknown c^ . in this case is equal to the number Nm of equations of
the system

Cyfo) = vfo), v f o > = j R y f o > , <7=l , . . . ,m (2.4)

where N is the order of the vectors y^\ v^ and the sought matrix C.
We denote by c{ the column vector of order m whose entries for / = l,...,N-m,

are the entries c^, c / /+1, ..., c / / + m_ 1 of the /-th row of the matrix C, which are in
its upper triangular part, and for / = N-m + l,...,Af are the entries
Ci N-m+2>'~>ci N /-th row of the matrix C, which are in its last m columns.
We denote by 1̂  a square submatrix of order m, which is the transpose of the matrix
that consists of the rows of the rectangular matrix Υ with numbers from / to l + m - 1
inclusive. Then we rewrite equations (2.4) as

= 2,3,. ..,™-
(2.5)

Ι,.,.,Ν-

where _^ and v{ denote the column vectors of order m whose entries consist of the
/-th rows of the matrices Υ and V, respectively.

If we denote the right-hand sides in equations (2.5) by w{, the evaluation of the
unknown vectors c{ reduces to a successive solution of the systems

I - w , l=\,...,N
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404 V. P. ΙΠη and Κ. Yu. Laevskii

where the components HJ are expressed recurrently in terms of the calculated values
of the vector components ck, k<l. It is evident that all the matrices YI must be
nonsingular for the problem (2.5) to be solvable uniquely, given the 'quasisymmetric'
structure of the matrix C.

Definition 2.1. The rectangular Nxm matrix Υ is called the matrix of strong rank
m if all of its submatrices YI of order m (which consist of the successive rows yr

•ty+p··· ' -ty+m-l °^ *e matr^ ^) are nonsingular.
The above concept may be expressed in terms of the properties of the column

vectors of the matrix, i.e. yW, q = l,...,m.

Definition 2.2. The vectors y^ of order N are called strongly linearly independent
vectors if they form the rectangular Ν χ m matrix (m < N) of strong rank m.

Recall that the necessary and sufficient condition for the set of the vectors y^\
q = l,...,m, to be linearly independent (in the ordinary sense) is that the matrix Υ
must have at least a single nonzero minor of order m (the matrix Υ is of rank m).

The matrix C, which is determined by relations (2.4), (2.5), in the block second-
order representation

cn c12
(2.6)

has the 'quasisymmetry' properties, viz. the conditions are satisfied:

C21

We can formulate the result obtained as follows.

Theorem 2.1. If the vectors y^\ q = l,...,m, are strongly linearly independent, the
band matrix C of the form (2.3) with properties (2.6), (2.7) is determined uniquely
by relations (2.4), (2.5).

We emphasize that the assertion does not require that v^) be equal to Ry($ in
relations (2.4), i.e. the entries of the matrix C are formally determined in (2.5) for
any set of the vectors v^\ In particular, for v^ = 0 we have C = 0.

It is evident that the strongly linearly independent vectors y^ can be constructed
in a variety of ways. One of them is, for example, to choose a nonsingular matrix Yl
with rows y\^"">ym

 anc* determine the other rows successively: yl =^_m for / > m.
We now show that the constructed matrix C is actually symmetric.

Theorem 2.2. Let the hypotheses of Theorem 2.1 be satisfied and let the vectors
yfa) be determined by relations (2.4) with symmetric matrix R. Then the matrix C is
symmetric.

Proof. We represent the matrix C as the sum of its symmetric and skew-symmetric
parts:
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Compensation principle in incomplete factorization methods 405

where

Using them, we can rewrite equalities (2.4) as

CY=(R-C)Y (2.8)
V

where in view of (2.7) only the lower right block of the skew-symmetric matrix C can
be nonzero:

Ό 0

If the matrix equality (2.8) is premultiplied by the transpose Y' and (2.9) is taken
into account, we get

Hence, because YN_m + l is nonsingular, we obtain the expression

Because the matrices CL, R - C are congruent and R - C is symmetric, this expres-
"* V Λ

sion implies that the skew-symmetric matrix Cm can be only a zero one, i.e. C = C is
symmetric.

3. SOME PROBLEMS OF THE ALGORITHM JUSTIFICATION
Theorems 2.1, 2.2 actually establish the minimum conditions for the generalized
compensation algorithm to exist, i.e. for the symmetric matrix C to be calculated by
the conditions (1.9).

Let Hk be a square nonsingular matrix of order m and let Yk be a rectangular
A^xw-matrix of strong rank m. Then it is evident that the matrix

is also of strong rank m. Hence the matrix equation

CkYk = RkYk (3.2)

is solvable uniquely and its solution is the matrix Ck from equation (2.1). We can
formulate the assertion obtained (omitting the index k for brevity) as follows.

Theorem 3.1. When the hypotheses of Theorem 2.1 are true, the matrix C is
invariant under any nonsingular transformation of vectors y^ of the form (3.1)

In order to understand this it is sufficient to check that if y^\ q = l,...,m, are the
columns of the matrix Ϋ and h are the entries of the matrix //, the matrix relation
Ϋ = YH is equivalent to the linear transformation of the test vectors
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406 V. P. ΙΠη and Κ. Yu . Laevskii

Thus, if the precondition matrix Β is constructed by formulae (1.3), (1.4), (1.9) for
some set of test vectors yu\ q = l,...,m, its form does not change under any non-
singular linear transformation of these vectors.

In order to justify the generalized compensation principle, one should first of all
prove that the matrix G is positive definite and hence the matrix B.

To prove that the precondition matrix B is positive definite we need the following
assertion.

Lemma 3.1. Let A=D-L-U be the Stieltjes block tridiagonal matrix (L = [/')
that satisfies the conditions

k = 2,3,...,M-1 (3.3)

Dkek > V*-i ' * = 2.3,...,A/ (3.4)
where ek is the vector of dimension Λ .̂ with unit components. Then if the matrices
Gk calculated by formulae (2.1), (2.2) have nonpositive off-diagonal entries, they are
the Stieltjes matrices.

Proof. We establish the validity of the lemma by induction, taking into account that
Gj =D1 is the Stieltjes matrix and GICI > t/^ in accordance with (3.3). Let Gk_l

be the Stieltjes matrix and GJC_1e^_1 > Uk_lek. Then

<V_\>o, Rk'Lkc^\uk_l-Llfp
Since Rkek = Ckek, the chain of inequalities holds:

~Lkek-i + LkGk-\(Gk-iek-i - uk-iek> >Dkek - Lkek-r
In accordance with (3.4) Gkek > 0, and since under the condition of the lemma the
off-diagonal entries of the matrix Gk are nonpositive, according to Lemma 6.4 from
[4] Gk is the Stieltjes matrix. Finally, the inequality Gkek>Ukek+l follows from
(3.3), which completes the induction step.

From the representation (2.2) it follows that if the matrix Gk_^ is of the Stieltjes
character, in order for the off-diagonal entries of the matrix Gk to be nonpositive it
is sufficient for the off-diagonal entries of the matrix LkG^Uk_^ + Ck to be non-
negative for θ € [0, 1] and, in particular, it is sufficient for the off-diagonal entries of
the matrix Ck to be nonnegative.

We consider the vectors for the case m = 2:

ν(χ) = P y(2) = / y(2) v(2) \ k = 21 Μ Π S"l^k k' ^k ^^kV"y^kNk £.,J9...,ivi v5·^

where yj:' is a rigorously monotonic vector, i.e. for f = 2,3,...,Λ^ we have either
yki >yf]-i or yki <yf]-r ^ ^ not ^^cu^ to see ^αί *ese vectors are strongly
linearly independent. Omitting the index k for brevity, we consider the off-diagonal
entries of the matrix C obtained from the conditions (2.4), (3.5).
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Compensation principle in incomplete factorization methods 407

Lemma 3.2. If the symmetric matrix R has nonnegative entries, the off-diagonal
entries of the matrix C determined by formulae (2.4), (3.5) are also nonnegative.

Proof. We denote y = Te = {yi =y(2)}, T = aiag{yi}. From relations (2.4), (3.5) it
follows that

(CTe\ -jj-iOOf = (Se)i9 i = 1,2,. ..,Λ^ (3.6)

where S = RT - TR is a skew-symmetric matrix whose entries s. - are expressed in
terms of the matrix R = {r- .}:

It is not difficult to derive from (3.6) the equations for the off-diagonal entries of the
matrix C:

+ , + - - ' , , . - . , .
The successive partial summation of these equations yields the equalities:

Since the matrix 5 is skew-symmetric, there are only the entries of its upper triangu-
lar part in the last sum, i.e. according to (3.7) we have

.

The desired result follows from this representation, the condition r l > 0, and the
rigorous monotonicity of the vector y.

Thus, from Lemmas 3.1, 3.2 it follows that G is the Stieltjes matrix in the case
m = 2 for the vectors (3.5). Thus, we have established the positive definiteness of the
matrix G [4] and because of the representation B = (G - i/')G~1(G - U) the
positive definiteness of the matrix B. The result obtained can be represented as the
theorem.

Theorem 3.2. If the conditions of Lemma 3.1 are satisfied for the matrix A and two
test vectors are used, one of these vectors has constant components and the other has
rigorously monotonic components, then the precondition matrix B is positive definite.

By Theorem 3.1 this assertion also holds when any pair of the vectors y(l\ y(2\
which are obtained by the nonsingular linear transformation of vectors of the form
(3.5), are used.

We can carry out the analogous investigation for another pair of the test vectors:

Jk(1)==e*· >^(2) = (1,0,1,0,...)', * = 2,3,...,M (3.9)

that are strongly linearly independent.
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408 V. P. ΙΠη and Κ. Yu . Laevskii

The tridiagonal matrix C that is determined by (2.4), (3.9) for m = 2 has off-
diagonal entries that are described by formula (3.8). However, Lemma 3. 2 does not
hold for this case. In order to analyse the precondition matrix (1.3) we formulate the
generalized compensation condition (1.10), using the representation for the matrices

G^Dlt Gk = Dk- (I- 9 ) 1 ^ ( 0 ^ - exkt k = 2,3,...,M (3.10)

where Xk are the tridiagonal matrices found from the conditions

and the matrix Qk is determined by the equality

It is evident that the matrices Xk are found from (3.11) uniquely and are related to
Ck from (1.9) by

which ensures that the matrices Gk determined from (2.2) and (3.10) coincide.
We consider the off-diagonal entries of the matrix X^ omitting the index k for

brevity. We make an additional assumption that the entries of the matrix Qk decrease
with distance from the principal diagonal

Remark 3 .1. The assumption that these inequalities hold is reasonable since
obviously they hold if Ok_1 is the Stieltjes matrix and the entries of the matrices L,
and Ujc-i are constants. In the general case the analysis of the additional restrictions
to the initial matrix A is needed.

Lemma 3.3. If the entries of the symmetric matrix Q satisfy the conditions (3.12),
the off-diagonal entries of the tridiagonal matrix X determined by formulae (3.9),
(3.11) are nonnegative.

Proof. It is evident that the off-diagonal entries xi /+1 of the tridiagonal matrix Xk
are expressed by the formula analogous to (3.8):

where y. are the components of the vector y and s. l = (yf -χ·) .̂· / are the entries of
the skew-symmetric matrix

We transform the expression for xii+l separately for odd and even i, taking into
account that
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Compensation principle in incomplete factorization methods 409

For definiteness we assume that Nk is odd. The transformations for even Nk are
analogous. We have for odd z:

_ (A5k-l)/2
xl 2 ~ ^- 1̂ 21λ,Δ , ^ Χ,^-ί

Σ. <71)2/ + Σ.

In accordance with (3.12) we have <?2.+1 2/ > q2j+i 2/+1 > ^2/ 2/+r ^e nonnegativity
of <7(· - entails the inequalities

*2/-l,2/>0· i = l,2,...,(tffc-l)/2. (3.13)

The equality for even ζ follows from (3.12):

By the conditions (3.12), we have ̂  2 /_1 ^ ^2- 2/ > ̂ /-i 2/» % / ^ ^· Hence,

(3.14)

From this inequality and inequality (3.13) follows the nonnegativity of all the
off-diagonal entries of the matrix X.

The nonnegativity of the off-diagonal entries of the matrices Xk leads to the
nonpositivity of the off-diagonal entries of the matrices Gk that are determined by
formulae (2.2), (3.10) for 0<θ<1, and in view of Lemma 3.1 Gk are the Stiltjes
matrices. Hence we immediately obtain the result analogous to that stated in
Theorem 3.2.

Theorem 3.3. If the conditions of Lemma 3.3 are satisfied, the precondition matrix
Β that is determined by formulae (1.3), (3. 9) -(3. 11) is positive definite for
0<θ< 1.

It is evident that this assertion holds when any other pair of the test vectors that are
obtained from (3.9) under the nonsingular linear transformation are used.

Remark 3. 2. Theorems 3.2 and 3.3 establish the convergence of the iterative
processes with the precondition matrices Β for two different pairs of the test vectors.
However, the estimates of the convergence rate of the iterations and its optimization
for the parameter θ invite further investigation.

4. EXAMPLES OF NUMERICAL EXPERIMENTS
In order to experimentally study the efficiency of the implicit incomplete factorization
methods depending on the number and character of test vectors we carried out the
series of methodical calculations for the systems of five-point difference equations that
approximate the Dirichlet problem in a square domain on the square grid with steps
h = l/(/V+ 1). In this case the matrices Dk = {-1,4, -1} are tridiagonal, Lk and Uk
are identity matrices. The block order of the matrix A and the order of each block
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410 V. P. ΙΓιη and Κ. Yu. Laevskii

Table 1. Problem 1, ρ = 3, m - l, y = e.

Table 2.

N+l

8

16

32

64

128

N+l
0.0

16 6

32 10

64 19

128 35

0.2

6

10

18

33

Spectral characteristics of the

0.0

Amax 1.038

Amin 0.824

a? 1.259

Amax 1-063

Amin 0.422

a? 2.516

Amax 1.072

Amin 0.140

a? 7.664

Amax 1.072

Amin 0.038

a? 28.162

Amax 1.072

Amin 0.010

a? 110.123

0.2

1.051

0.855

1.230

1.095

0.471

2.326

1.113

0.163

6.844

1.115

0.045

24.862

1.115

0.012

98.865

Table 3. Problem 1, p

N+l
0.0

8 4

16 6

32 10

64 19

128 35

0.2

4

6

10

18

32

θ
0.4 0.6

6 6

9 9

17 15

30 87

matrices Β ~ A

θ
0.4

1.066

0.888

1.200

1.140

0.536

2.125

1.173

0.197

5.945

1.179

0.056

21.223

1.180

0.014

82.235

= 3,m = 2,^)

θ
0.4 0.6

4 4

6 5

9 9

16 15

30 27

0.8

6

9

13

23

for ρ = 3

0.6
1.083

0.925

1.172

1.208

0.632

1.910

1.274

0.258

4.933

1.292

0.076

17.067

1.294

0.020

65.514

-,*«
0.8

5

5

8

13

22

1.0

6

9

13

19

, m = 1, y -e.

0.8
1.106

0.963

1.149

1.325

0.784

1.690

1.494

0.400

3.734

1.550

0.130

11.959

1.562

0.035

44.879

= {/}·

1.0

5

8

11

13

15

1.0
1.136

1.000

1.136

1.598

1.000

1.598

2.771

l.OOQ

2.771

5.287

1.001

5.283

10.439

1.001

10.427
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Compensation principle in incomplete factorization methods 411

Table 4. Problem l, p = 3, m - 2, y,^ = e,

N+l

16

32

64

128

0.0

6

10

19

35

0.2

6

10

18

33

t
0.4

6

9

16

30

?
0.6

6

9

15

27

0.8

6

9

13

23

1.0

6

9

13

18

Table 5. Problem l, p = 3, m = 2,.

/ V + l

8

16

32

64

128

θ
0.0

4

6

10

19

35

0.2

4

6

10

17

32

0.4

4

6

9

16

30

0.6

4

5

9

15

27

0.8

4

5

8

13

22

1.0

4

6

8

10

11

Table 6. The number of iterations for the optimal values of Θ:
Problem l, p = 3, m = 2.

N+l

32

64

128

a
7 (0.900 + 0.950)

8 (0.982 + 0.984)

9 (0.994 + 0.996)

b
8 (0.930 + 0.950)

12 (0.900 + 0.990)

16 (0.992 + 0.994)

c
6 (0.940 + 0.950)

8 (0.980 + 0.990)

9 (0.992 + 0.996)

are equal to N. The calculations were carried out for W = 7, 15,31, 63, 127, which
correspond to the sizes of the steps Λ = 2~k, k = 3,..., 7. As the characteristics of the
algorithm quality we considered the boundaries of the spectrum, Amax and Amin, of
the matrix B~1A, the condition number a? (calculated by the power method [5]), and
the number of iterations η(ε), which is necessary to obtain the condition

We carried out all the calculations to a double precision.
In the main test example (Problem 1) for which the experiments were carried out,

the vector in the right-hand side of equation (1.1) is obtained by the Laplace equation
with unit values of the solution at the boundary when the exact solution is u(x., y·) = 1.
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Table 7. Spectral characteristics of the matrices B~1A for p = 3, m = 2,

Ν+1 θ

8 Amax

Amin

S

16 Amax

Amin

X

32 Amax

Amin

S

64 Amax

Amin

S

128 Amax

Amin

a?

0.0

1.038

0.824

1.259

1.063

0.422

2.516

1.072

0.140

7.664

1.072

0.038

28.162

1.072

0.010

110.123

0.2

1.016

0.846

1.201

1.017

0.453

2.242

1.015

0.154

6.573

1.000

0.042

23.568

1.000

0.011

91.887

0.4

1.003

0.871

1.151

1.000

0.496

2.015

1.000

0.176

5.679

1.000

0.049

20.340

1.000

0.013

78.941

0.6

1.000

0.818

1.223

1.000

0.561

1.782

1.000

0.213

4.690

1.000

0.061

16.339

1.000

0.016

62.892

0.8
1.000

0.753

1.328

1.000

0.556

1.798

1.000

0.298

3.359

1.000

0.091

10.947

1.000

0.024

41.253

1.0
1.000

0.685

1.461

1.000

0.366

2.732

1.000

0.181

5.524

1.000

0.090

11.111

1.000

0.044

22.559

The initial approximation is taken as the function

-^Γ*» (4.1)

A large number of experimental results are given for this initial data in [6,7] for
different algorithms. These results may be used to compare the efficiency of the
methods considered in this paper.

Table 1 gives the number of iterations for the implicit algorithm IMIF3 (as de-
signated in [6,7]) when the tridiagonal matrices Gk are used [p = 3 in formulae (2.2)]
for different θ and when the 'classical' diagonal matrices Ck with single test vector
y^ -e, m = 1, are used. The table allows us to analyse the efficiency of the
algorithms.

Table 2 gives the spectral characteristics of the matrices B~1A for the same
algorithm. The maximum eigenvalue, the minimum eigenvalue, and the condition
number are given in each square from top to bottom.

Tables 3-5 present the number of iterations when different kinds of tridiagonal
matrices Gk and Ck are used, which are determined by the two test vectors y^ and
3jp), i.e. for m = 2. The vectors y^ for all cases were defined as y^ = e. In the first
version the vectors y were taken linear', i.e. y^ = {!,...,#}, in the second version
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Table 8. Spectral characteristics of the matrices B~ A for p = 3, m = 2,

Λ Τ + 1

8 1•«•max

Amin

*
16 Amax

Amin

X

32 Amax

Amin

Z

64 Amax

Amin

X

128 Amax

Amin

X

θ

0.0

1.038

0.824

1.259

1.063

0.422

2.516

1.072

0.140

7.664

1.072

0.038

28.162

1.072

0.010

110.123

0.2

1.050

0.854

1.229

1.092

0.470

2.322

1.109

0.162

6.833

1.111

0.045

24.822

1.111

0.011

96.715

0.4

1.064

0.888

1.199

1.133

0.535

2.117

1.164

0.196

5.924

1.710

0.055

21.149

1.171

0.014

81.954

0.6

1.081

0.924

1.170

1.195

0.630

1.898

1.259

0.257

4.902

1.275

0.075

16.966

1.277

0.020

65.133

0.8

1.102

0.962

1.145

1.306

0.781

1.672

1.466

0.397

3.696

1.519

0.128

11.845

1.531

0.034

44.461

1.0

1.132

1.000

1.132

1.568

1.000

1.568

2.699

1.000

2.699

5.137

1.001

5.133

10.135

1.001

10.124

they were taken oscillating with alternating signs, i.e. 3^ = {-1,1,-1,1,...}, in the
third version they were taken 'sinusoidal', i.e. yf& = {sin(kn/(N + l))sin(;7r/(Ar+ 1)),
j = Ι,.,.,Ν}. Thus, the 'total' test vector y® = {y^} was the first eigenvector of the
initial matrix. The results show that the use of the tridiagonal matrices substantially
reduces the number of iterations [except when the test vector with alternating signs or
the 'high-frequency* test vector yj& is used].

Tables 3-5 demonstrate that the number of operations decreases as the compensa-
ting parameter θ increases. To analyse this dependence in greater detail, additional
experiments were carried out for values of θ in a neighbourhood of unity. The results
are given in Table 6 (the columns 'a', *b', and 'c' are complimentary to Tables 3-5,
respectively). In the table the minimum number of iterations and the range of values
θ for which they are obtained are presented.

As is seen from the table, the number of operations for the optimal parameters θ
is some 10-30 per cent less than that for 0 = 1, and the optimal values of θ approach
unity as the system order increases.

Tables 7-10 give the spectral characteristics analogous to those in Table 2 for the
matrices B~1A that correspond to the experimental results in Tables 3-6. (In
Table 10 the optimal parameters θ imply the parameters for which the values of #
are minimum).
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Table 9. Spectral characteristics of the matrices B~1A for p = 3, m = 2, y,^ = e,

N+l

8

16

32

64

128

0.0

Amax 1.038

Amin 0.824

a? 1.259

Amax 1.063

Amin 0.422

a? 2.516

Amax 1.072

Amin 0.140

a? 7.664

Amax 1.072

Amin 0.038

a? 28.162

Amax 1.072

Amin 0.010

X 110.123

0.2

1.024

0.849

1.207

1.020

0.454

2.245

1.016

0.155

6.575

1.000

0.042

23.564

1.000

0.011

91.884

0.4

1.016

0.877

1.158

1.002

0.499

2.006

1.001

0.176

5.674

1.000

0.049

20.332

1.000

0.013

78.933

Table 10. Spectral characteristics of
for the optimal values of

N+l

32 1.000

0.400

2.500

64 1.000

0.255

3.923

128 1.000

0.161

6.194

a

0.894

0.963

0.987

b
2.280

0.908 0.

2.512

3.869

0.877 0.

4.410

7.341

0.911 0.

8.057

θ
0.6

1.012

0.875

1.157

1.000

0.568

1.760

1.000

0.214

4.674

1.000

0.061

16.326

1.000

0.016

62.879

the matrices 1
θ (ρ = 3, m =

c
1.000

978 0.414

2.417

1.000

992 0.262

3.820

1.000

998 0.162

6.159

0.8

1.018

0.833

1.222

1.000

0.691

1.446

1.000

0.300

3.330

1.000

0.092

10.925

1.000

0.024

41.232

3~1A
2).

0.898

0.964

0.987

1.0

1.025

0.790

1.298

1.022

0.458

2.230

1.015

0.235

4.316

1.000

0.118

8.481

1.000

0.059

16.866

We also carried out the experiments in which the five-diagonal matrices Gk and
Ck were used, i.e. for p = 5 and w = 3 . Tables 11 and 12 give the results for
Problem 1 for y^ = e, y<& = {/}, y^ = {(-I)7*} (i.e. for 'constant', linear', and
'high-frequency' test vectors).
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Table 11. The number of iterations (Problem 1)
for three test vectors (p = 5, m = 3).

ΛΤ+1
0.0

8 3

16 5

32 8

64 13

128 24

0.2

3

5

7

12

21

θ
0.4 0.6

3 3

4 5

6 6

10 8

18 14

Table 12. Spectral characteristics of the matrices B~

0.8
4

5

6

7

11

1.0
4

7

11

14

16

1Α for three test vectors

N+ 1 Θ
0.0

8 Amax 1.032

Amin 0.962

ar 1.073

16 Amax 1.102

Amin 0.701

at 1.571

32 Amax 1.144

Amin 0.301

X 3.801

64 Amax 1.157

Amin 0.091

a? 12.777

128 Amax 1.159

Amin 0.024

a? 48.627

0.2
1.021

0.970

1.052

1.071

0.758

1.412

1.111

0.357

3.109

1.126

0.112

10.019

1.130

0.030

37.653

0.4
1.014

0.967

1.049

1.038

0.820

1.265

1.069

0.440

2.430

1.000

0.149

6.713

1.000

0.041

24.555

Table 13. The number of iterations for optimal θ:

Λ Γ + 1 16

η(ε) 4 (0.34 + 0.59)

32

5 (0.63 +

0.6
1.008

0.948

1.063

1.012

0.802

1.262

1.026

0.566

1.814

1.000

0.219

4.557

1.000

0.063

15.855

(p-5,m-
64

0.75) 6 (0.82 + 0.85)

0.8
1.004

0.926

1.083

1.000

0.696

1.436

1.000

0.514

1.945

1.000

0.386

2.592

1.000

0.127

7.846

3).
128

8 (0.91 + 0

1.0
1.000

0.903

1.107

1.000

0.580

1.725

1.000

0.277

3.607

1.000

0.123

8.114

1.000

0.056

17.949

.96)

The results of the experimental search for the optimal values of θ for the algo-
rithm are presented in Table 13. We see that the dependence of the number of itera-
tions on θ is about the same as that for the tridiagonal matrices Ck. However, we can
see a substantial decrease in the optimal values of θ in Table 7.
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Table 14. The number of iterations (Problem 1) for
five-diagonal matrices Gk and the single
test vector y = e (p-5t m = 1).

Table

N+l

8

16

32

64

128

N+l
0.0

8 3

16 5

32 8

64 13

128 24

0.2

3

5

8

13

22

15. Spectral characteristics of the
and the single test vector y =

0.0

Amax 1.032

Ami« 0.962

a? 1.073

Amax 1.102

Amin 0.701

x 1.571

Amax 1.144

Amin 0.301

a? 3.801

Amax 1.157

Amin 0.091

Z 12.777

Amax 1.159

Amin 0.024

* 48.627

0.2
1.037

0.970

1.069

1.128

0.748

1.509

1.194

0.344

3.468

1.216

0.107

11.389

1.220

0.028

43.023

Θ
0.4 0.6

3 3

5 5

7 8

12 11

21 19

matrices B~1A
e (;? = 5, m =

θ
0.4

1.041

0.977

1.066

1.160

0.802

1.447

1.265

0.406

3.113

1.303

0.132

9.857

1.311

0.036

36.817

0.8

3

5

7

11

17

1.0
3

5

8

12

16

for five-diagonal matrices Gk

1).

0.6
1.046

0.985

1.062

1.201

0.865

1.389

1.376

0.505

2.724

1.448

0.179

8.110

1.467

0.049

29.680

0.8
1.051

0.992

1.059

1.259

0.936

1.345

1.585

0.687

2.309

1.766

0.295

5.990

1.819

0.088

20.791

1.0
1.056

0.997

1.059

1.351

1.000

1.351

2.210

1.000

2.210

4.154

1.001

4.152

8.160

1.001

8.155

In order to illustrate the efficiency of the three test vectors Tables 14 and 15 give
the number of iterations and the spectral characteristics of the matrices B~1A when
the five-diagonal matrices Gk and the diagonal matrices Ck, which are calculated by
the single test vector y = e, are used.

We also carried out additional experiments to study the efficiency of the proposed
algorithms in relation to the behaviour of the vector of the initial error z° = u - u°.
This dependence turns out to be sufficiently weak, which is seen from the results in
Table 16 for Problem 2: the vector of the right-hand side, /, in the algebraic system is
constant, its components are equal to 100A2 (h is a grid step), the zero vector u° = 0
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Table 16. The number of iterations for Problem 2,

N+l

8

16

32

64

128

0.0

3

5

8

13

22

0.2

3

5

7

12

19

0.4

3

4

6

10

18

0.6

3

4

5

8

15

0.8

3

5

6

6

11

1.0

4

6

9

11

13

is taken as the initial approximation. The solution of this problem is of a quadratic
character. We use here the same algorithm as that in Tables 11-15. We see that the
number of iterations in this case is somewhat less than that in Tables 14 and 15.

Table 17 presents the spectral characteristics of the matrix B~^A when the same
algorithm as that in Tables 11-16 (p = 5, m = 3) and the three test vectors from [3]
with a cyclic variation of the numbers of unit components (set Ά') are used:

yW = (1,0,0,1,0,0,...)'

y® = (0,1,0,0,1,0,...)'

/3) = (0,0,1,0,0,1,...)'.

This table allows us to analyse the effect of the choice of different test vectors.
Finally, we give the experimental results for Problem 3 considered in [8], viz. for

the difference five-point system for the Dirichlet homogeneous problem for the
Laplace equation in the unit square on the square grid with step Λ = 1/40. This
problem has zero exact solution. The iterations were performed with the initial
approximation u° = {exp(//i -jh)}. The results obtained for this data are given in [8].
The method of steepest descent with the preconditioner corresponding to the implicit
alternating direction method is used there. The value H^II^/H*0!!^ was controlled,
and the number of iterations required to obtain the precision ε = 10 ~4 turned out to
be 49.

The calculations completely correspond to the above conditions. Table 18 gives the
number of iterations for different values of ρ (the band width of the matrix G), m,
the parameter 0, and the different types of the test vectors considered above. The
rows of the table correspond to the following versions of the algorithm:

(1)^ = 3, m = l,y = e;
(2) ρ = 3, m = 2, y& = e, y&> - 'linear';
(3) p = 3, m = 2, yW = e, y® - Oscillating';
(4) p = 3, m = 2, yW = e, y® - 'sinusoidal';
(5) p = 3, m = 2, yW - 'linear', y® - 'oscillating1;
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Table 17. Spectral characteristics for the set Ά' of three test vectors (p = 5, m = 3).

N+l

8

16

32

64

128

0.0 0.2

Amax 1.032 1.038

Amin 0.962 0.969

a? 1.073 1.071

Amax 1.102 1.129

Amin 0.701 0.746

a? 1.571 1.512

Amax 1.144 1.194

Amin 0.301 0.343

X 3.801 3.481

Amax 1.157 1.217

Amin 0.091 0.106

3S 12.777 11.439

Amax 1.159 1.221

Amin 0.024 0.028

a? 48.627 43.218

θ
0.4 0.6

1.045 1.052

0.977 0.984

1.070 1.068

1.162 1.205

0.800 0.862

1.454 1.398

1.267 1.380

0.404 0.501

3.135 2.752

1.304 1.450

0.131 0.177

9.942 8.215

1.313 1.468

0.035 0.049

37.156 30.096

0.8

1.058

0.992

1.067

1.266

0.033

1.357

1.592

0.681

2.336

1.769

0.290

6.089

1.820

0.086

21.184

1.0

1.066

1.000

1.066

1.365

1.000

1.365

2.234

1.000

2.234

4.200

1.001

4.198

8.251

1.001

8.246

Table 18. The number of iterations for Problem 3
for a different number and different types
of the test vectors.

0.0 0.2

1 44 39

2 44 38

3 44 39

4 44 38

5 44 39

6 21 19

7 21 17

8 21 19

θ
0.4 0.6 0.8

33 27 20

33 27 19

33 27 20

33 27 19

33 28 20

16 13 11

12 9 5

16 13 11

1.0
9

3

8

3

14

7

3

7

(7) ρ = 5, m = 3, yW = e, y® - linear', y® - Oscillating';
(8) p = 5, m = 3, the set of vectors Ά'.
We conclude the survey of the experimental results with the remark: by and large

in the generalized compensation principle the problems of algorithm stability, the
positive definiteness of the preconditioner, and the convergence of the iterative
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process remain unsolved. For example, when using the three test vectors with
'constant' y(l\ linear7 y(2\ and 'quadratic' y® = {;2} the iterative process does not
converge, viz. the entries of the matrix C .̂, which are large in magnitude, appear, the
Stieltjes character of the matrices Gk is affected, and large round-off errors occur
even in the case of the double precision of the machine computation.

5. SOME CONCLUSIONS
The above experimental evaluation allows us to make the following conclusions as to
the efficiency of using the additional test vectors and increasing the band width of the
matrix G.

(a) The introduction of a single additional test vector into the algorithm with
tridiagonal matrices G (p = 3, m = 2) allows us to substantially decrease the condition
number of the matrix B~1A and the number of iterations, and these indicators of
efficiency have a pronounced minimum for the optimal values of the parameter 0,
which turn out to be somewhat less than unity.

(b) The 'linear' or 'sinusoidal' test vectors lead to approximately the same positive
effect, whereas the Oscillating' vector (which can be considered to be a high-frequency
one, i.e. it corresponds to the maximum eigenvalue of the matrix of the original
system) does not practically speed up the convergence (in the following we do not
consider it).

(c) As the order of the system increases, the optimal value of the iterative
parameter θ increases (in Table 10 for ρ = 3, m = 2 the value θ varies from 0.894
to 0.998 on the grids of size from 32 χ 32 to 128 x 128). Variations in the condition
numbers of the matrices B~1A, which correspond to the optimal values of 0, are
approximately proportional to N1/2. Note that in the 'classical' version ρ = 3, m = l,
y = e (see Table 2), the value θ = 1 is practically optimal on all the grids, and the
condition numbers linearly depend on N.

(d) If the number of the test vectors increases from two to three and the band
width of the matrix G from three to five, the number of iterations decreases by about
10-20 per cent. With allowance for the higher computational cost of a single iteration,
the efficiency of the algorithms for p = 3, m = 2 and p = 5, m = 3 is considered to be
approximately identical (the number of arithmetic operations on a single iteration at
each node is 4p + 21). With increasing p and m the optimal values of the parameter
θ somewhat decrease.

(e) Not only the change in the number of the test vectors but also the change in
their character can strongly change the spectral properties of the matrix B~^A. Thus,
for m = 2, θ = 1 the spectrum is to the left of unity when the second vector is 'linear'
and to the right of unity when it is Oscillating' (see Table 8).

Thus, we can formulate the assertion that the use of additional test vectors is a
possible means of increasing the efficiency of the incomplete factorization methods.
However, new theoretical problems, which invite further investigation, arise here, viz.
the choice (including the adaptive one) of the best test vectors, finding the optimal
iterative parameters, the justification of nonsingularity of the precondition matrices,
the study of algorithm stability, and the estimate of the convergence rate of the
iterations.
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