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Abstract. Iterative processes in the Krylov subspaces for solving large ill conditioned saddle-
type SLAEs with sparse matrices arising in finite difference, finite volume, and finite element
approximations of multidimensional boundary value problems with complex geometric and
functional properties of the initial data, characteristic of many relevant applications are studied.
Combined two-level iterative algorithms using efficient Chebyshev acceleration and variational
the conjugate directions methods, as well as the Golub-Kahan bi-diagonalization algorithms
in the Krylov subspaces are considered. Examples of two-dimensional and three-dimensional
filtration problems are used to study the resource consumption and computational performance
of the proposed algorithms, as well as their scalable parallization on the multiprocessor systems
with distributed and hierarchical shared memory.

1. Introduction
We consider a system of linear algebraic equations (SLAEs) with a saddle-type matrix

Aū ≡ A
[
u
p

]
=

[
f
g

]
≡ f, A =

[
D C>

C 0

]
, (1)

where A ∈ RN,N , ū, f̄ ∈ RN , D ∈ RN1,N1 , C ∈ RN2,N1 , N = N1 + N2, u, f ∈ RN1 and
p, g ∈ RN2 .

The matrix D is assumed to be symmetric and positive semidefinite. Moreover, a necessary
and sufficient condition for the non-degeneracy of A is ker(D) ∩ ker(C) = {0}, and a sufficient
condition is the positive definiteness of the matrix D on kerC, see [1], and in what follows we
will assume it to be satisfied.

Problems with a saddle point represent a widespread form of mathematical statements in
modeling problems, including initial-boundary mixed formulations for differential classical or
generalized equations, optimization problems, and computational algebra, see [2] - [3] and the
references therein. We focus on methods for solving the saddle SLAEs with large sparse matrices
arising from grid approximations of multidimensional boundary value problems that arise in
many topical applications: electromagnetism, hydro-gasdynamics, elastic plasticity, multiphase
filtration in porous media, optimization problems, and so on.

Due to the peculiarities of the block structure of the saddle algebraic systems, a considerable
number of works has been devoted to methods for solving them: reviews by G. Golub with
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colleagues [4], P. Vasilevski [5], and Y. Notay [6], the monograph by Yu. V. Bychenkov and E.V.
Chizhokov [7], a series of papers by C. Greif and co-authors (including those for asymmetric
SLAEs of the saddle type, [8] - [11]) and M. Arioli et al. [12] - [15], see also papers [16] - [19].

Note that, without loss of generality, we can consider the saddle SLAE in the form[
D C>

C 0

] [
u
p

]
=

[
f
0

]
. (2)

Indeed, if we take some particular solution of the system Cû = g, then the vector u = ǔ+ û,
which is the solution of SLAE (1) will satisfy the system[

D C>

C 0

] [
ǔ
p

]
=

[
f −Dû

0

]
.

We also note that any solutions of SLAE (2) simultaneously satisfy the system

Ãv = Ã

[
u
p

]
≡
[
D̃ C>

C 0

] [
u
p

]
=

[
f
0

]
≡ f̃ , D̃ = D + S, S = C>K−10 C, (3)

where v, f̃ ∈ RN , and K0 ∈ RN1,N1 is an arbitrary non-singular matrix. Since the latter
system is formally a regularization, or generalization, of SLAE (2), in the future we will dwell
on algorithms for solving precisely equation (3).

The main objective of our research is the construction and comparative analysis of cost-
effective and efficiently parallelizable algorithms for solving ill-conditioned SLAEs that arise in
finite difference, finite volume, or finite element approximations of two-dimensional and three-
dimensional problems with complex geometric and contractual material properties of the input
data. In particular, we consider the application of the methods under study to the solution of
the Darcy grid equations in a mixed formulation with contrasting coefficients, when the matrix
block D in (3) is symmetric positive definite (s.p.d.), and the matrix A itself can be positive
semidefinite.

The further content is constructed as follows. Section 2 deals with the analysis of various
block preconditioned grid saddle problems. Section 3 considers the spectral properties of a
family of preconditioned SLAEs of the saddle type. In Section 4, two-level iterative processes in
the Krylov subspaces are described and investigated. Section 5 is devoted to the paralellization
and performance issues of iterative methods. In conclusion, the results obtained and plans for
the further development of the algorithms are discussed.

2. Block Preconditioning of the Saddle - Type SLAEs
Using the Shur complement

S = −CD̃−1CT ,

the matrix of system (3) is factorized as

Ã =

[
D̃ 0
C S

] [
I D̃−1CT

0 I

]
.

If the matrices D̄, S in (3) are replaced by their approximations (preconditioners) Bd and
Bs, then we obtain the preconditioner of the matrix B in the form of an incomplete block
factorization

B1 =

[
Bd 0
C Bs

] [
I B−1d CT

0 I

]
. (4)
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A somewhat rougher approximation, when only one (left or right) factor is used in (4) leads to
incomplete block triangular preconditioning with the matrix

B2 =

[
Bd CT

0 Bs

]
(5)

or to the incomplete Uzawa preconditioner

B3 =

[
Bd 0
C Bs

]
. (6)

The implementation of each step of the corresponding iterative processes can be represented
by several stages, in which only one block component of the considered solution is recomputed
(therefore, these methods are sometimes called segregation). In a somewhat generalized form,
such a stationary algorithm (without Krylov acceleration) can be represented in the following
three stages, see [6]:

ûn+1
d = und +Q

(1)
d (fd − D̄und − CTunc ),

un+1
s = uns −B−1s (fs − Cû−1d ), (7)

un+1
d = ûn+1

d +Q
(2)
d (fd − D̄Aûn+1

d − CTun+1
s ).

Here Q
(1)
d , Q

(2)
d are some approximations of a matrix inverse or generalized inverse to the

preconditioner Bd. In particular, if Q
(1)
d = B−1d , Q

(2)
d = 0 or Q

(1)
d = 0, Q

(2)
d = B−1d , then

from (7) we get either the Uzawa algorithm with the preconditioner B3 from (6) (in this case,
the third stage is omitted, i.e. un+1

d = ûn+1
d , or the incomplete block triangular preconditioning

with the matrix B2 from (5), while the first stage in (7) is omitted and un+1
d = und .

If the matrix Qd = Q
(1)
d + Q

(2)
d − Q

(2)
d D̄Q

(1)
d is non-singular, then iterative process (7)

corresponds to the preconditioner

B4 =

(
I 0

CQ
(1)
d I

)(
Q−1d 0

0 −Bs

)(
I Q

(2)
d CT

0 I

)
. (8)

In this case for Q
(1)
d = Q

(2)
d = B−1d from (8) follows the so-called symmetric Uzawa method with

preconditioning matrix

B5 =

(
I 0

CB−1d I

)(
Bd(2Bd − D̄)−1Bd 0

0 Bs

)(
I B−1d CT

0 I

)
. (9)

One of the promising block-diagonal preconditioners for solving SLAE (3) is the following :

B6 =

[
D̃ + C>K−11 C 0

0 K2

]
, (10)

where K1 and K2 are some symmetric non-singular matrices. Such approaches have been
proposed by C. Greif et al. in [8] - [11].

3. Spectral Analysis of the Preconditioned SLAEs
The eigenvalues and vectors of the preconditioned matrix Ā = B−16 Ã, from the “ perturbed ”
SLAE (3) are determined by the generalized spectral problem

λB6 = Ãz, z = (z>1 , z
>
2 )T , zk ∈ RNk , k = 1, 2,
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having the following representation in the component form:

(D̃ + C>K−10 C)z1 + C>z2 = (λ(D + C>K−11 C)z1, (11)

Cz1 = λK2z2.

An analysis of this spectral problem allows one to obtain interesting results for various special
cases. In [9], [10] it was shown, in particular, that the unique spectral properties of the matrix
Ā are obtained for the high singularity of the block D̃ relevant to algorithms for solving systems
of the Maxwell equations. For example, the following results are valid.
Proposition 1. Let B6 be s.p.d. matrix, and {zi, i = 1, ..., N1−N2} is the basis of the kernel of
the matrix C. Then the preconditioned matrix B−16 Ã has N1−N2 linearly independent vectors
(zTi 0) ∈ RN , which correspond to N1 −N2 multiple eigenvalues λ = 1.

Proposition 2. Let K1 = K2 = K, and D̃ be a symmetric positive semidefinite matrix with
kernel dimension equal to r. Then λ = 1 is the eigenvalue of the matrix B−16 Ã with multiplicity
N1, and λ = −1 is the eigenvalue of the multiplicity r. The remaining N2− r eigenvalues belong
to the interval λ ∈ (−1, 0) and satisfy the relation

λ = −µ/(µ+ 1), (12)

where µ is N2 − r positive generalized eigenvalues

µD̃z = CTK−1Cz. (13)

Let {zi, i = 1, ..., N1−N2} be the basis of the kernel C, {xi, i = 1, ..., r} be the basis of the kernel
D̃, and {yi, i = 1, ..., N1 − N2} is a collection of linearly independent vectors complementing
ker(D̃) ∪ ker(C) based on RN . Then N1 − N2 vectors (zi, 0), r vectors (xi,K

−1Cxi) and
N2−r vectors (yi,K

−1yi) are linearly independent eigenvectors corresponding to the eigenvalues
λ = 1, and r the vectors (xi, K

−1xi) are the eigenvectors corresponding to λ = −1. In
general, the presence of different matrices K0,K1,K2 in the preconditioner B6 will provide
ample opportunities for constructing effective algorithms in specific cases.

4. Golub - Kahan Bidiagonalization Iterative Methods
We consider a family of iterative methods for solving the saddle symmetric SLAEs with the
matrix Ã from (3), based on the efficient GK− bidiagonalization (Golub - Kahan) approach,
which was originally proposed for the singular decomposition of rectangular matrices, but then
by M. Saunders, M. Arioli, C. Greif and other authors has been successfully used to solve
algebraic systems, taking into account the block saddle structure. Without loss of generality,
we write down the investigated SLAE in the form

Ã

[
u
p

]
≡
[
D̃ C>

C 0

] [
u
p

]
=

[
0
g

]
, D̃ = D + C>K−1C0. (14)

It is easy to verify that if in (3), the function u is replaced by u+D̃−1f , then this system will take
the form (14) with the right-hand side g = −CD̃−1f . It is assumed that in (14) D̃ and K are
s.p.d. matrices, and the inequality N1 ≥ N2 also holds. The method of G−K bidiagonalization
is based on the construction of D̃ -orthogonal vectors vk and K – orthogonal vectors qk that
satisfy the conditions

C>Q = D̃V [B>0]>, V >D̃V = IN1 ,

CV = KQ[B>0], Q>KQ = IN2 , (15)
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where V = [v1, ..., vN1 ] ∈ RN1,N2 , Q = [q1, ..., qN1 ], and B ∈ RN2,N2 there is a bi-diagonal matrix

B =



α1 β1 0 . . . 0

0 α2 β3
. . . 0

...
. . .

. . .
. . .

...
0 . . . 0 αN2−1 βN2−1

0
. . . 0 0 αN2

 .

Introducing new unknown functions

u = V z, p = Qy (16)

and multiplying system (14) by the block-diagonal matrix block-diag(V >, Q>), we obtainIN2 0 B
0 IN1−N2 0
B> 0 0

z1z2
y

 =

 0
0

Q>g

 , z1 ∈ RN2 , z2 ∈ RN1,·,N2 . (17)

It follows from (17) that the vector u depends on N2 columns of the matrix V , since z2 = 0.
Thus, SLAE (17) is reduced to [

IN2 B
B> 0

] [
z1
y

]
=

[
0

Q>g

]
. (18)

From here, defining

q1 = K−1g/||g||K−1 , α1D̃v1 = C>q1, ||g||K−1 = (g,K−1g)1/2,

we find the initial vector v1 :

v1 = w/α1, α1 =
√
w>C>q1, w = D̃C>q1.

The further vectors vi, qi and the entries αi, βi of the matrix B are calculated from the recurrence
relations (n = 1, ..., )

s = K−1(Cvn − αiKqn), βn+1 =
√
s>Ks,

qn+1 = s/βn+1, w = D̃−1(C>qn+1 − βn+1D̃vn), αn+1 = (w>D̃w)1/2, vn+1 = w/αn+1.

The consecutive approximations of un, according to (16), are determined by the first n columns
of the matrix V , i.e.

un = Vnz1 =

n∑
j=1

z
(j)
1 vj , z1 = (z

(1)
1 , z

(2)
1 , ..., z

(j)
1 ),

where z
(j−1)
1 are the components of the vector z1 from (18) calculated by the formulas

z
(1)
1 = ||g||N−1/α1, z

(j+1)
1 = −βj+1z

(j)
1 /αj+1, j = 1, ..., N2.

Omitting the details of the derivation of formulas (see [12] for details), we obtain the resulting
recurrence relations for the iterative solution:

u1 = z
(1)
1 v1, un+1 = un + z

(n+1)
1 vn+1, n = 1, ..., N2 − 1, d1 = q1/α1,

p1 = −z(1)1 α1, pn+1 = pn − z(n+1)
1 dn+1, dn+1 = qn+1 − βn+1dn/αn+1, (19)



MSR 2020
Journal of Physics: Conference Series 1715 (2021) 012004

IOP Publishing
doi:10.1088/1742-6596/1715/1/012004

6

where dn is the n - th column of D = QB−1. Note that the described algorithm has the following
optimization properties: at each n - th step, the error of the iterative approximation reaches its
minimum, i. e.

min
un ∈ Un

Cun − g⊥Qn

||u− un||D̃, (20)

Un = Span{v1, ..., vn}, Qn = Span{q1, ..., qn}.

As was noted in [12], this method has a high convergence-rate when solving SLAEs arising
from finite element approximations of continuous multi-dimensional saddle-type boundary value
problems, i.e. in mixed statement. Moreover, an essential factor is that at each iteration it
is required to solve the arising algebraic subsystems with the matrices D̃ and K, which, in a
sense, play the role of preconditioners. Their approximate inversion leads, in fact, to two-level
iterative processes in certain subspaces [20]. The implementation of the internal iterations can
be done, for example, by means of the efficient Chebyshev acceleration or conjugate direction
methods in Krylov subspaces (CA and CD, respectively). It is important, that in many cases,
the eigenvalue bounds and condition number of the matrix D̃ can be estimated.

If we denote by Â and B̂ the matrix and the preconditoner for SLAEs Âu = f̂ , to be solved
at the internal iterations, the CA and CD algorithms can be written in the unified form with
two-terms coupled recurrences, see [21]:

r0 = f̂ − Âu0, p0 = B̂−1rn, n = 0, 1, ... :

un+1 = un + αnp
n, rn+1 = rn − αnÂpn, (21)

pn+1 = B̂−1rn+1 + βnp
n.

For the Chebyshev approach, the iterative coefficients are defined by the formulas

α0 = τ, αn = γnτ, βn = (γn − 1)αn−1/αn,

where the parameters of τ, τn, and γ depend on the minimum and maximum eigenvalues m,M
of the matrix B̂−1Â :

τ = 2/(M +m), γn = 4/(4− γn−1γ2), γ0 = 2, γ = (C − 1)/(1 + C), C = M/m.

For the preconditioned conjugate direction methods, the iterative formulas can be derived
from two-side preconditioning of the original SLAE with the matrix Â and right hand vector f̂ :

Ǎǔ ≡ L−1ÂU−1Uu = L−1f̂ = f̌ , B̂ = LU, L = U>,

ǔ = Uu, Ǎ = L−1ÂU−1 = Ǎ>. (22)

To solve this SLAE, the generalized CD method can be written in the form

ǔ0 = Uu0, p̌0 = ř0 = f̌ − Ǎǔ0 = L−1r0 = L−1(f̂ − Âu0), ρn = (Ǎγ p̌n, p̌n),

ǔn+1 = ǔn + αnp̌
n, řn+1 = řn − αnǍp̌n, αn = σn/ρn, (23)

p̌n+1 = řn + βnp̌
n, βn = σn+1/σn, σn = (Ǎγ−1řn, řn),

where the direction vectors p̌n satisfy to the following orthogonal properties (γ = 0, 1, 2) :

(p̌n, p̌k)γ = (Ǎγ p̌n, p̌k) = ρ(γ)n δk,n, ρ(γ)n = ||p̌n||2γ , γ = 0, 1, 2,
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which provide the minimization of the “preconditioned” residual functionals

Ψ(γ)
n = (řn, řn)γ−2 ≡ (Ǎγ−2řn, řn).

Here δk,n is Kronecker symbol, and γ = 2, 1, 0 corresponds to conjugate residual, conjugate
gradient and minimal iteration methods, see [21] and references therein. For γ = 1 (CG -
conjugate gradient method), for example, the parameters αn, βn are defined as follows :

αn = σn/ρn, βn = σn+1/σn,

σn = (B̂−1rn, rn), ρn = (Âpn, pn),

and iterative process is implemented by means of (21).
If γ = 2 (CR - conjugate residual algorithms) the coefficients σn, ρn, as well as solution,

residual and direction vectors, are computed, instead of (21), (24), by the formulas

p̂0 = r̂0 = B̂−1p0 = B̂−1r0 = B̂−1(f̂ − Âu0),
un+1 = un + αnp̂

n, r̂n+1 = r̂n − αnB̂−1Âpn, (24)

p̂n+1 = r̂n+1 + βnp̂
n, αn = σn/ρn, βn = σn+1/σn,

σn = (Âr̂n, rn), ρn = (B̂−1Âp̂n, Âp̂n).

Let us remark, that implementation the preconditioned conjugate gradient and conjugate
residual methods, by means of (21), (24) , and (25) for mulas respectively require matrix-vector

product by Â and B̂−1 only and, in fact, we do not need LU – factorization of the matrix B̂.

5. Parallelization and Performance Issues of Iterative Methods
Modern understanding of the quality of the algorithm includes the two main characteristics:
mathematical efficiency and performance of its implementation on a specific supercomputer
architecture. The first aspect includes the design and optimization of iterative methods with a
high convergence rate, as well as theoretical estimates of computational resource consumption
(the necessary volumes of arithmetic operations and memory). The second aspect is purely
practical and is characterized by the real time of the algorithm execution for a certain class
of tasks, which depends on the scalability of its parallelization, as well as on programming
technologies on a particular computer platform.

The SLAEs that are of most interest to us are of high orders (108−1011) and sparse matrices
with large condition numbers (1012− 1015) and an irregular structure. This does not only leads
to a large number of iterations, but also forces one to work with distributed and hierarchical
shared memory systems, and also significantly slows down the access to data.

The main quantitative characteristic of parallelization is the acceleration of calculations

Sp = T1/Tp, Tp = T ap + T cp ,

where Tp is the time of solving the problem on p processors, which is the total of the time of
information exchanges and arithmetic operations, which are described by approximate formulas

T ap = τaNa, T cp = Ne(τ0 + τcNc).

Here τa and Na are the average execution time of one arithmetic operation and their total
number, Ne is the number of exchanges, τ0 and τc are the waiting time and the duration of the
transmission of one number, and Nc is the average volume of one communication.
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Since the inequalities τ0 � τc � τ0 are valid for machine constants, obvious recommendations
follow for the constructed algorithms: we must try to minimize the amount of communications,
and exchange them not in small, but in large portions, i.e. it is possible to carry out preliminary
accumulation of data buffers. These conclusions are all the more true that inter-processor
information transfers do not only slow down the computational process, but are also the most
energy-consuming operations, and this becomes a significant factor in the cost of operating a
supercomputer, see [22].

The parallelization strategy for large grid SLAEs arising from the approximation of multi-
dimensional boundary value problems is based on hybrid programming tools and additive domain
decomposition methods (DDM, [22]) with two-level iterations in the Krylov subspaces. Iterations
of the upper level (over subdomains) are carried out using the data exchange among processes
(by means of MPI library), each one performing (simultaneously) solving an algebraic subsystem
in the corresponding subdomain. At each such iteration, the values of approximate solutions
are exchanged on the interface boundary surfaces of the contacting subdomains. Naturally, all
the matrix and vector data for subsystems are preliminary generated in a distributed form over
processes. The SLAE solution in each of the subdomains is parallelized using multi-threaded
computing (systems like OpenMP) on multi-core processors with shared memory. Additional
acceleration here can be achieved by vectorizing operations (command systems such as AVX), see
the review in [23]. Let us note, that because of the absence of an adequate model of computing
on modern machines, the code optimization being an experimental research.

Substantial computational acceleration can be obtained by using a variable precision machine
arithmetic. When solving large SLAEs, it is to use a double precision conventional with
a representation length a floating-point real number of 64 bits, however, for extremely ill
conditioned matrices, the transition to quadruple precision (128 bits) is necessary. On the
contrary, at certain stages of the algorithm, it is permissible to use a simple and even a half-
precision arithmetic (32 and 16 bits, respectively), which are performed much faster. Such an
approach is natural at the first steps of the iterative process, when the error of the approximate
solution is still relatively large. Another possibility of using a reduced accuracy exists in the
DDM when solving auxiliary SLAEs in subdomains. It must be borne in mind that such solutions
require a thorough analysis of the realized numerical errors of the method to ensure stable
calculations in general, see [24]. In this book, for example, there is a discussion how the stopping
criteria of iteration

||rn|| ≤ ε1||f̄ ||+ ε2||A|| · ||ūn||, 0 < ε1, ε2 � 1,

where rn = f̄−Aūn is the residual of equation (1), provides the real accuracy of the approximate
solution for the specific values of ||f̄ ||, ||ūn|| and ||A||.

Further reserve for increasing the performance is the code optimization, which can be achieved
by using high-quality computing tools (SPARSE BLAS, for example), using various compiler
options and special properties of the supercomputer platform.

6. Conclusion
In the presented brief review, we have discussed the main computational and technological
issues for a simple, in a sense, the algebraic saddle point problem. The generalization of the
statement could be done in various directions : non-zero right lower block of the matrix A in (1),
non-symmetric algebraic system, non-stationary initial-boundary value problems, as well as the
interdisciplinary problems, including direct or inverse ones. In any cases, the numerical solution
of the linear algebraic saddle point system of equations presents the “bottle neck” of the large-
scale computer experiments, because the computational resources of this stage of mathematical
modeling grow non-linearly under increasing the degree of freedom for the problem to be solved.
The flexibility of the proposed approaches provides good possibilities for the further research.
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