
Metadata of the chapter that will be visualized in
SpringerLink

Book Title Supercomputing
Series Title

Chapter Title The Conception, Requirements and Structure of the Integrated Computational Environment

Copyright Year 2019

Copyright HolderName Springer Nature Switzerland AG

Corresponding Author Family Name Il’in
Particle

Given Name V. P.
Prefix

Suffix

Role

Division Institute of Computational Mathematics and Mathematical Geophysics,
SBRAS

Organization Novosibirsk State University

Address Novosibirsk, Russia

Email ilin@sscc.ru

Abstract The general conception, main requirements and functional architecture of the integrated computational
environment (ICE) for the high-performance mathematical modeling of a wide class of the multi-physics
processes and phenomena on the modern and future postpetaflops supercomputers are considered. The new
generation problems to be solved are described by the multi-dimensional direct and inverse statements for
the systems of nonlinear differential and/or integral equations, as well as by variational and discrete
inequalities. The objective of the ICE is to support all the main technological stages of large-scale
computational experiments and to provide a permanent and extendable mathematical innovation structure
for wide groups of the users from various fields, based on the advanced software and on integration of the
external products. The technical requirements and architecture solutions of the project proposed are
discussed.

Keywords
(separated by '-')

Mathematical modeling - Integrated computational environment - High performance -
Interdisciplinary direct inverse problems - Numerical methods - Program technologies



The Conception, Requirements
and Structure of the Integrated
Computational Environment

V. P. Il’in(B)

Institute of Computational Mathematics and Mathematical Geophysics, SBRAS,
Novosibirsk State University, Novosibirsk, Russia

ilin@sscc.ru

Abstract. The general conception, main requirements and functional
architecture of the integrated computational environment (ICE) for
the high-performance mathematical modeling of a wide class of the
multi-physics processes and phenomena on the modern and future post-
petaflops supercomputers are considered. The new generation problems
to be solved are described by the multi-dimensional direct and inverse
statements for the systems of nonlinear differential and/or integral equa-
tions, as well as by variational and discrete inequalities. The objective
of the ICE is to support all the main technological stages of large-scale
computational experiments and to provide a permanent and extendable
mathematical innovation structure for wide groups of the users from
various fields, based on the advanced software and on integration of the
external products. The technical requirements and architecture solutions
of the project proposed are discussed.

Keywords: Mathematical modeling
Integrated computational environment · High performance
Interdisciplinary direct inverse problems · Numerical methods
Program technologies

1 Introduction

In the epoch of fantastic growth of the postpetaflops supercomputers, the math-
ematical modeling of a wide class of multi-physics processes and phenomena has
become the third way of the knowledge mining and deep learning, together with
theoretical and natural experimental investigations. The huge computational
and big data resources, the achievements of theoretical, applied and numeri-
cal mathematics, as well as the success in artificial intelligence and information
technologies are a challenging chance for innovations in industry, nature, econ-
omy, social and human applications. The extremal machine experiments acquire
a great importance both for basic research and practical issues.

The work is supported by the Russian Scientific Foundation, grant N 14-11-00485 P.,
and by Russian Foundation of Basic Reseach, grant N 16-29-15122 ofi-m.

c© Springer Nature Switzerland AG 2019
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2018, CCIS 965, pp. 1–13, 2019.
https://doi.org/10.1007/978-3-030-05807-4_56

A
u

th
o

r 
P

ro
o

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05807-4_56&domain=pdf
https://doi.org/10.1007/978-3-030-05807-4_56


2 V. P. Il’in

As was pointed out in [1], in the near future the main problem for the com-
puter science community will consist in the development of large volumes of the
new generation software for upcoming supercomputers with millions and hun-
dred millions of nodes, cores, special accelerators, and other units. The great
opportunities for simulation are opened based on Data Centers, Grid Technolo-
gies and Cloud Computing. In such a situation the unique possibility to over-
come the actual world crisis in programming is based on creating a modern
software paradigm and on organizing a wide cooperation of various development
groups, which should unify the academic expertise, software manufacturing and
potential users. It is important to understand that an advanced algorithm can be
proposed, investigated and tested efficiently by the operating mathematicians,
but the robust implementation and code optimization for the method should
be done by a professional programmer under the production requirements. And
creative interaction between such specialists is the best way to a fast scientific
innovation to industry.

Historically, the scientific simulation software has been evolved in the three
main frameworks, that are either free accessible or commercial: applied pro-
gram packages (ANSYS [2] or FEniCS [3], for example), algorithm libraries
(see NETLIB [4] and MKL INTEL [5]) and special tools for particular opera-
tions (grid generation–NETGEN [6], visualization–PARAVIEW [7], etc.). The
other trend in the past decades was based on creating an integrated com-
putational environment (ICE), from the system standpoint, to support the
general issues of mathematical modeling. We can mention such projects as
OpenFOAM [8], DUNE (Distibuted Unified Numerical Environment [9]), MAT-
LAB [10], INMOST [11], and Basic System of Modeling (BSM, [12]). Such a
kind of software products is considered as instrumental media for automatic
construction of the new computational methods and technologies which present
the background for a flexible creation of the configurations on the principle of
popular intellectual constructor LEGO, for particalur applications. The objective
of such intellectual system is to provide such alternative properties as the high
efficiency, performance, robustness and the universality of the resulting codes.

In general, the statements of mathematical modeling problems, interdisci-
plinary direct and inverse ones, are described by the nonlinear systems of dif-
ferential, integral, and/or discrete equations, or by equivalent, in a sense, varia-
tional relations in the corresponding functional spaces. In the applications with
real data, the unknown solutions are defined in the computation domains with
complicated geometries of multi-scale boundaries and contrast material proper-
ties in different domains.

The numerical experiments in various applications are based on a large num-
ber of algorithms and software technologies, but the fact is, an enormous set of
numerical procedures can be classified and divided into separate stages: geomet-
rical and functional modeling that is responsible for the automatic construction
of the models for tasks to be solved, generation of adapted grids, approximation
of the original continuous problems by the corresponding discrete relations, solv-
ing the obtained algebraic tasks, using methods of optimization for solving the

A
u

th
o

r 
P

ro
o

f



The Conception, Requirements and Structure of the ICE 3

inverse problems, post-processing and visualization of the results obtained, con-
trol analysis and decision making, etc. Each of these steps has a rich extendable
intellectual functionality and is presented by the library of algorithms. Such sub-
systems act reciprocally via coordinated data structures, which also provides the
interaction with external software products.

These components form the mathematical kernel that can be efficiently used
for the automatic construction of algorithms in the framework of applied pro-
gram configurations for particular practical fields, which are oriented to a wide
class of the end users involved in various problems. Let us make one more
remark. The numerical problems can be considered based on a hierarchical set of
models: coarse, middle and fine, for example. And computer experiments should
be made succesively, with increasing the accuracy of approximations, to provide
the adequacy of the obtained simulation results. Correspondingly, the computa-
tional tasks to be solved can be classified in the three groups: small, middle, and
large problems. The conventional division can be chosen as follows: the run times
of the first, the second and the third groups of tasks present similar values (sec-
onds, minutes, hours, etc.) on the gigaflops, teraflops and petaflops computers,
respectively. Of coarse, the strategies and tactics of the parallelization are dif-
ferent in these situations, and the main topic of our interest is solving the large
(and very large) problems.

The considered Integrated Computational Environment (ICE) should provide
a high productivity of applied programmers from different groups of developers
and conceptually represent a community project. In general, the resulting codes
present an open source, but the implemented algorithms and technologies can
be used for creating the confidential applications or for the special computing
services.

The conception of a global environment for the computer simulation
presents a tremendous software project. The described modeling problems can
be examined in various coordinates. From the productive branches point of
view, the processes and phenomena to be simulated, can be referred to ener-
getics, machinery, biology, geophysics, chemistry, ecology, etc. From another
standpoint, the same problems can be considered by means of the applied
statements from hydro-gasdynamics, elasticity, electromagnetism, thermo-mass-
transfer, and/or in multi-physics formulations. The favorable circumstances are
that all these multi-variant particular cases can be presented by a finite set
of abstract mathematical relations. So, the mathematical modeling involves in
a powerful chain various branches of the fundamental sciences and technolo-
gies: theoretical, applied, and numerical mathematics, informatics and program-
ming, intensive data computing, artificial intelligence, and different application
fields. But the mathematical modeling is impossible without high-technological
software, and the mission of the ICE concludes in unification the people of new
mass professionals on the general industrial platform.

The contribution of this paper can be presented as follows: motivation of cre-
ating the Integrated Computational Environment (ICE) for a high performance
scientific software for supercomputer modeling; description of the architecture

A
u

th
o

r 
P

ro
o

f



4 V. P. Il’in

of the ICE functional kernel for the instrumental support of the main stages for
solving a wide class of the interdisciplinary direct and inverse problems; technical
requirements for constructing the ICE and technological principles of implement-
ing big programs; expected results of realizing the ICE for valuable increasing
productivity of the development and for the effective wide distribution of the
created applied products.

The paper is organized as follows. Section 2 presents the formal statements
of the problems to be solved. Section 3 includes a description of technological
stages of mathematical modeling, the corresponding data structures, the gen-
eral description of the numerical algorithms, the issues of the scalable paral-
lelism, and the implementation features of the functional kernel for a proposed
scientific software. In Sect. 4, the general technical requirements and some archi-
tecture solutions for the integrated computational environment are presented. In
conclusion, we discuss several methodological aspects and the conception of the
ICE, and, also, the future activity dealing with the proposed project in terms of
the fundamental problems of the mathematical modeling.

2 Statements of Problems

In principle, the general mathematical statement of the numerical simulation is
described by the interdisciplinary, or multi-physics, direct or inverse problem. In
the abstract form, a direct task can be presented by the initial boundary value
problem (IBVP) for the operator equation:

L�u = �f(�x, t), �x ∈ Ω̄, 0 < t � T < ∞, (1)

where the unknown solution �u is the vector function which is defined in the
space-time computation domain (�x, t) ∈ Ω̄ × [0, T ] and satisfies the boundary
and initial conditions

l�u = �g(�x, t), �x ∈ Γ = ΓD

⋃
ΓN , �u(�x, 0) = �u0(�x). (2)

Here the operator l is responsible for the conditions on the boundary Γ. For
example, L in (1) can be presented by the differential operator

L = A
∂

∂t
+ ∇B∇ + C∇ + D, Ω̄ = Ω

⋃
Γ (3)

with the matrix coefficients A,B,C,D whose entries can depend on independent
space-time variables �x, t and, in nonlinear cases, on components of the solution
�u(�x, t) to be sought for. The examples of the boundary conditions on different
parts of the boundaries ΓD, ΓN can be described as follows:

u = gD, x ∈ ΓD; DNu + AN∇nu = gN , x ∈ ΓN , (4)

where DN and AN are, in general, some matrices. The computation domain
Ω can be presented as a union of the subdomains Ωj with the corresponding
interior and external boundaries Γj

i , Γe
j :

Ω̄ =
⋃

Ω̄j , Γ = Γe
⋃

Γi, Γi =
⋃

Γi
j, k =

⋃
(Ω̄j

⋂
Ω̄k). (5)

A
u

th
o

r 
P

ro
o

f



The Conception, Requirements and Structure of the ICE 5

It is important to remark that the coefficients of original equations can have
sufficiently contrast values in different subdomains. Moreover, different equations
can be solved in different subdomains. It is usually supposed that the input data
in the direct problem (1)–(5) provide the existence and uniqueness of the solu-
tions to be sought for some functional spaces. However sometimes we need to
make a computational experiment for a given problem even without theoretical
knowledge about its properties. The descriptions of various mathematical state-
ments for differential and integral equations, as well as the review of the modern
literature, can be found in the recent books [13,14].

In real cases the ultimate goal of the research consists in solving not direct
but inverse problems, which means, for example, the identification of the model
parameters, the optimization of some processes, etc. The universal optimization
approach to solving the inverse problems is formulated as minimization of the
objective functional

Φ0(�u(�x, t, �popt)) = min
�p

Φ0(�u(�x, t, �p)), (6)

which depends on the solution �u and on some vector parameter �p which is
included in the input data of the direct problem. The constrained optimization
is carried out under the linear conditions

pmin
k � pk � pmax

k , k = 1, . . . , m1, (7)

and/or under the functional inequalities

Φl�u(�x, t, �p)) � δl, l = 1, . . . ,m2. (8)

Formally, the direct problem can be considered as the state equation and can be
written down as follows:

L�u(�p) = �f, �p = {pk} ∈ Rm, m = m1 + m2. (9)

There are two main kinds of the optimization problems. The first one consists
in the local minimization. This means that we look for a single minimum of the
objective function in the vicinity of the initial guess �p0 = (p0

1, . . . , p
0
m). The

second problem is more complicated and presents the global minimization, i. e.
the search for all extremal points of Φ0(�p).

The numerical solution and high-performance implementation with scalable
parallelism on the modern multi-processor computational systems (MPS) of the
above mathematical problems present a tremendous set of the complicated com-
putational schemes, (see the discussions in [15,16], for example). The efficient
scalability of the parallel algorithms is attained in a weak or in a strong sense.
The first point of view means that the computing run time is approximately the
same if the degree of freedom (d.o.f.) of the mathematical problem to be solved
and the number of computational hardware units simultaneously increase. The
second case corresponds to the situation, when the run time for a big problem
with a fixed d.o.f. decreases in proportion to enlarging the volume of computa-
tional equipment. Different strategies and tactics of parallelization are attained

A
u

th
o

r 
P

ro
o

f



6 V. P. Il’in

by the mapping of algorithmic structures onto computer architectures. Here, the
quantitative characteristics are estimated by the speedup Sp and the paralleliza-
tion efficiency Ep:

Sp = T1/Tp, Ep = Sp/P, Tp = T a
p + T c

p , (10)

where Tp is the computer time needed for a given task (or the algorithm) on
p processors. The description carefully analyzes a real model of computations
at the heterogeneous cluster systems with distributed and hierarchical shared
memory presenting a sufficiently complicated problem and will not be the topic
of our consideration. We just mention that the conventional parallel technolo-
gies are based on creating the MPI (Message Passing Interface) processes on the
multi-thread computations, on the vectorization of the operations by AVX spe-
cial tools, as well as on the intensive computing at the fast graphical accelerators
(GPGPU or Intel Phi, for example). It is important to consider the coefficient

Qp = Na
p /(Na

p + N c
p), (11)

where Na
p and N c

p are the number of arithmetic operations and the volume
of communications, respectively, because the interprocessor data transfers not
only decelerate the computational process, but are essentially energy consum-
ing. So, the problem of incresing the coefficient Qp in (11) is an unexpected
mathematical consequence of the engineer requirements.

3 Technological Stages of Mathematical Modeling

In total, the large-scale computational experiments can be divided into the fol-
lowing main technological stages. In the framework of the ICE, all computational
steps are implemented by the corresponding autonomous subsystems which are
connected with each other via specified data structures. In general, a set of such
subsystems forms the functional kernel of the integrated operating environment.

The first stage of a computing scenario consists in the geometrical and func-
tional modeling. From the mathematical and technological standpoints, this
means the automatic construction and modifications of the original problem. On
the one hand, we need to describe the computation domain which includes dif-
ferent types of three dimensional (3-D), 2-D, 1-D and 0-D geometrical objects:
the computation domain Ω̄ = Ω

⋃
Γ, the subdomains Ω̄j = Ωj

⋃
Γj , the surface

boundary segments (the faces Γj), the edges Ep (intersections of the surfaces)and
the vertices, or points, Pq. In the dynamic and shape optimization problems, var-
ious operations can be defined on these objects: shifts, rotations, scaling, as well
as topological and theoretical-set transformations. In the recent decades, many
modern mathematical approaches have been developed : analytical metrics, dif-
ferential calculus, isogeometric analysis (see [17,18], for example).

The second part of the mathematical model includes the description of func-
tional objects, i. e. the equations to be solved, their coefficients, initial values,
boundary conditions, objective functionals, required accuracy, and so on. Of

A
u

th
o

r 
P

ro
o

f



The Conception, Requirements and Structure of the ICE 7

course, these data should be connected with geometric information. The end
results of the first stage of the computer simulation consist in the geometric and
functional data structures GDS and FDS, respectively, which map the whole
input information onto a set of integer and real arrays. We will call the consid-
ered subsystem of the ICE as VORONOI.

It is important to remark that there is a large world market of the computer-
aided design products (CAD, CAE, CAM, PLM), which include the huge intel-
lectual solutions in the geometric and visualization problems. The modern trend
consists in the convergence, or integration, of CAD-systems and scientific codes
for the mathematical modeling. Of course, the subsystem VORONOI should
include convertors from the GDS and the FDS to the conventional information
formats of the external computer design products, as well as to the popular
visualization tools (PARAVIEW, for example).

Based on geometric and functional data structures we can realize the grid
generation, which presents an important and resources-consuming stage of the
numerical solution for the multi-dimensional problems. In the world software
market, there are many available (free of charge) and expensive commercial
codes, but the problem of constructing optimal or even “good” 3-D grids in the
complicated computation domain is far enough from its final solution. Moreover,
it is not easy to define the concept of an optimal or a good mesh, and there are
many different quantitative characteristics of the grid quality.

Formally, the grid data structures are similar to the GDS and include the
following objects: the grid computaion domain Ω̄h = Ωh

⋃
Γh with the bound-

ary Γh, the grid subdomains Ω̄h
k = Ωh

k

⋃
Γh

k with the corresponding faces Γh
k , the

grid edges Eh
p and the nodes Ph

q . The conventional approach to the discretiza-
tion of the computation domain consists in constructing an adaptive grid. This
means that the vertices Pq, the edges Ep and the surfaces Γk of the computa-
tion domain Ω should coincide with the corresponding grid nodes Ph

q , the grid
edges Eh

p and the faces Γh
k . All these objects, in contrast to micro-objects, we

call macro-objects: finite elements, or volumes, T̄h
r = Th

r

⋃
Fh

r , with the element
faces Fh

r , the mesh ribs Rh
s (intersection of the neighbouring faces Fh

r ), and the
mesh-points Qh

l .
There are many kinds of the grids with different types of finite elements

with various distributions of the meshsteps h, local refinement and multi-grid
approaches included. Also, there are a lot of algorithms for the mesh gen-
eration, which are based on the frontal principles, on comformal or quasi-
conformal transformations, on the differential geometry and various metrics.
Here we consider the quasi-structured grids. This means that the grid structures
can be different in different grid subdomains. For example, a grid can be non-
structured, which means that the neighbouring mesh-points for every node can
be defined by the enumeration only. In general, the quasi-structured grid consists
of the grid subdomains which can have different types of the finite volumes, and
grids in different subdomains can be constructured by the different algorithms.

In a sense, the grids considered present a two-level hyper-graph, at the macro-
and micro-, or mesh, levels. In the technological sense, the final result of the grid

A
u

th
o

r 
P

ro
o

f



8 V. P. Il’in

generator should be the mesh data structure (MDS) with full mapping of the
input geometric and functional data onto the micro (mesh) level. In particular,
all inter-connections between grid objects should be strictly defined. Also, the
affiliation of each finite volume Th

j , grid face Γh
k into the corresponding subdo-

mains Ωk and the boundary surface segment Γp must be given.
The principles of constructing the library DELAUNAY are described in

[19]. In fact, it presents the integrated instrumental media for the consid-
ered class of problems, based on original algorithms, as well as on re-using
the external codes (there are popular free available mesh generators NET-
GEN, GMESH, TETGEN, for example). In the world “grid developer commu-
nity”, there are several popular grid formats, and the subsystem DELAUNAY
should include the corresponding data convertors with the MDS. At this stage
one of important operations includes the decomposition of the grid computation
domain into grid subdomains, when the number of mesh points is too large, from
108 to 1010, for example. In this case, it is natural to implement such procedures
in parallel, and form the corresponding MDS for subdomains, distributed among
different processors and MPI-processes.

There are many numerical approaches to construct the qualitive or optimal
grids, but, in general, these mathematical questions are open yet. Also, we do not
consider here resource-consuming problems of generating the dynamic meshes
which are changed during the computational process.

The next stage of the mathematical modeling presents the approximation of
the original IBVP, based on the MDS, the GDS and the FDS. In this case, the
most popular approaches are finite difference, finite volume, finite element, and
discontinuty Galerkin methods (FDM, FVM, FEM, and DGM, see [14,20,21],
for example). The advanced theoretical and applied mathematical results have
profound foundations and technologies for constructing and justification of high
order accuracy numerical schemes for complicated IBVPs with real data. The
implementation of such algorithms on the non-structured grids is not simple,
and the tools for automatic construction of the scheme are very useful for such
problems, (see [3], for example). It is important to remark that a very power-
ful approach here is based on the element technology with computing the local
matrices and assembling the global matrix, which provide the “natural” paral-
lelization and easy programming of the algorithms.

The concept of the integrated operating environment for the methods
of approximation of the multi-dimensional IBVP is presented in the library
CHEBYSHEV [22] based on original algorithms and re-using the external soft-
ware. The end result of this subsystem consists in the algebraic data structure
(ADS) which presents the original problem to be solved at the discrete level. To
provide the necessary accuracy, the obtained systems of linear algebraic equa-
tions (SLAEs) should have very large dimensions (108 and more) and sparse
matrices. To save such systems in the memory, the conventional compressed for-
mats are used, Compressed Sparse Row (CSR), for example. Of course, for the
large d.o.f., the distributed versions of the CSR are used, i.e. the matrix is divided
into block rows, and each one is placed in the corresponding MPI-process.

A
u

th
o

r 
P

ro
o

f



The Conception, Requirements and Structure of the ICE 9

The most resource-consuming stage of mathematical modeling is a numeri-
cal solution of large sparse SLAEs, because the volume of arithmetic operations
grows nonlinearly, when the number of unknowns increases. Fortunately, the
computational algebra is one of the most progressive parts of numerical math-
ematics, both in algorithmic and in technological senses, (see [23–26] and the
literature, cited therein). In particular, there are many applied software pack-
ages and libraries with algebraic solvers which are free accessible. The main
approaches to solve large sparse SLAEs are based on the preconditioned itera-
tive methods in the Krylov subspaces. The scalable parallelism is provided in the
framework of the two-level iterative domain decomposition methods (DDM) by
means of hybrid programming with using MPI tools for the distributed memory
of the heterogeneous cluster MPS, multi-thread computing of the shared mem-
ory of the multi-core CPUs, vectorization of operations by means of the AVX
system, as well as fast computation on the graphic accelerators (GPGPU or Intel
Phi).

The grid computation domain is decomposed into subdomains with
parametrized overlapping and different interface conditions on the interior
boundaries. Algebraically, the external iterative process presents the multi-
preconditioned generalized minimal residual (GMRES) or a semi-conjugate
residual (SCR) algorithm, based on the parallel block Schwartz-Jacobi method,
coarse grid correction, deflation and/or augmentation procedures, and an
advanced low-rank approximation of the original matrix. At each external itera-
tion, solving the auxiliary SLAEs in subdomains is implemented synchronously
by means of direct or iterative algorithms, with various preconditioning matrices.

The described parallel methods are realized in the framework of the library
KRYLOV [25] which presents the integrated algebraic environment, based on the
original algorithms and efficient re-using the external products. In particular, the
robust matrix-vector operations and other algebraic tools from the library MKL
Intel are applied in KRYLOV in a productive manner.

If the original continuous problem is nonlinear, then after its discretisation
we will have the system of nonlinear algebraic equations (SNLAEs). In these
cases, the quasi-linearization process is applied, based on Newtonian type of
iterations, and at each of such steps the linear equations are solved.

The optimization methods for solving inverse problems are presented in
the library KANTOROVICH. This broad class of algorithms includes solv-
ing the tasks of linear, integer and nonlinear programming, constrained or
non-constrained, local or global minimization of functionals. In the recent
decades, such a scientific direction has been developed dramatically fast. The
advanced approaches include the conjugate equation approaches, modified
Lagrangians and regularization, interior point methods, successive quadratic
programming, trust region algorithms, kriging technologies, and surrogate opti-
mization (see [27,28] and the literature therein). The last mentioned approach
corresponds to the situation, when the run time for computing one value of the
objective function is too expensive and requires several hours or more. In such
a case, the design, or planning, of numerical experiments is very important, as

A
u

th
o

r 
P

ro
o

f



10 V. P. Il’in

well as using special methods for approximation of the investigated functionals
by means of the radial basic functions (RBF, see [28], for example).

So, in general, we have multi-step computational process, and on each
stage it is necessary to repeat geometric and functional modeling, grid gen-
eration, approximation, and so on. When the numerical solution of the prob-
lem has been obtained, we have to understand and interpret the digital results
which are presented usually by the values of the scalar or/and vector func-
tions defined on the multi-dimensional non-structured grid or by the coeffi-
cients of the expansion of these solutions into the series of some basis func-
tions. If we simulate some physical 3-D fields, for example, it is interesting to
see the iso-surfaces, force lines, gradients, some extremal points and other char-
acteristics, dynamic behavior included. Such postprocessing and vizualization
approaches are very computation-consuming and may constitute the main run
time of computer experiments. The usual way to overcome such issues consists
in using the graphic accelerators.

We consider mainly the intensive computing stages of mathematical model-
ing, and such important questions as the general control of large-scale numerical
experiments and decision making systems on the simulation results present the
special topic for further research.

4 Technical Requirements for Integrated Environment

The unification of the program implementations of the above -described mathe-
matical stages of modeling presents a huge software complex, which consists of
the functional kernel of the basic system of modeling [12]. From the system stand-
point, it is a method-oriented set of tools for solving a wide class of mathematical
problems. In order to provide the resulting success of the project in question, the
BSM should be organized as an open source program product with a long life-
cycle and professional maintenance, with active participation of different groups
of developers and end users. In accord with such a conception, the integrated
computational environment should satisfy the following evident requirements.

• The flexible extendability of the content of the models and of the problems
to be solved in the framework of the ICE, as well as a manifold of applicable
advanced numerical methods and program technologies without limitations
on the d.o.f. and on the number of computer nodes, cores and other units. The
matter of fact is that theoretical, applied and numerical mathematics, as
well as computational and informational technologies are permanently fast
developed, and the new generation software should be currently modernized
in order to provide the scientific innovations for practical applications.

• Adaptation to the evolution of computer architectures and platforms. Com-
ponent object technologies (COM, see [29], for example) to provide the auto-
matic concordance of the internal and external interfaces. Of course, such a
feature of the applied software is obvious for a wide-spread distribution of
the advanced computational technologies, and needs the automatic mapping
of algorithm structures onto hardware equipment.

A
u

th
o

r 
P

ro
o

f



The Conception, Requirements and Structure of the ICE 11

• Compatibility of the flexible and expandible data structures with the conven-
tional formats to provide the efficient re-using the external products. Unifi-
cation of the interfaces and possibilities for their convertation is a powerful
device for the integration of intellectual software properties.

• High performance of the software developed, scalable parallelism based on the
hybrid programming tools and code optimization on the heterogeneous multi-
processor supercomputers with distributed and hierarchical shared memory
on the cluster nodes and many-core CPUs (Central Processor Unit), respec-
tively, as well as using vectorization of operations by means of the AVX system
and graphic accelerators (GPGPU or Intel Phi, for example). A special atten-
tion should be given to constructing the computational schemes with minimal
data communications.

• The polyglot interaction and consistency of various program components, as
well as opening the working contacts for different groups of developers. The
similar multi-language requirements are necessary to create friendly interfaces
for the end users of different professional applications. As it was pointed out
in [30], the general problem consists in a software language engineering for
creating domain-specific languages. Figuratively speaking, the road-map of
artificial intelligence for the computer science community is to move from
paleo-informatics to neo-informatics.

In order to satisfy such strict and diverse requirements, the integrated pro-
gram environment should have a valuable system support. Such intelligent
components constitute the infrastructure whose goal is to provide the main-
tenance, information security, collective exploitation and further development
of the ICE. The corresponding instruments should include the following main
procedures:

• automatic verification and validation of the codes, as well as testing and
comparative analysis of the efficiency of algorithms on representative sets of
the model and real life examples;

• construction of the particular program configurations for a specific application
by assembling the functional modules from the ICE, multi-version control
included;

• preparing the documentation on the project components (manuals, user
guides, special descriptions, etc.), different examples for demonstrations
included;

• data structures control and transformations, manufacturing the problem-
oriented languages and compilers, or convertors, providing the friendly inter-
faces for developers and users;in particular, such a problem includes the ana-
lytical transformations of the analytical expressions, as it is done in the popu-
lar systems MAPLE and MATHEMATICS; here we should recall the formula
by Niclaus Wirt: “Program = algorithm + data structure”.

• a permanently extended knowledge database, which includes the information
about mathematical statements, supported by the ICE, employing compu-
tational methods and technologies, as well as industrial or natural problems

A
u

th
o

r 
P

ro
o

f



12 V. P. Il’in

and other applications, which can be solved; ontology principles and cognitive
instruments can help the users to recognize the statement and pecularities of
the problem, to choose the corresponding algorithm and/or available code for
computational experiments.

5 Conclusion

In the recent years, the widespread discussions on the digital economy and on
the post-industrial society require the understanding of the role of mathemat-
ical and computer sciences in the product and social life management. Math-
ematical modeling is becoming a significant device in the business and human
evolution. And the high-performance numerical simulation is impossible with-
out integrated program environment which should be a permanent background
for the collective development of the advanced algorithmic approaches, for sup-
port, maintenance, and promotion of the unique software support to provide the
wide practical innovation.

An important consequence of the global mathematical modeling consists
in the appearance of new mass professions: developers, distributers and mod-
ellers. The latter present the new generation of the end users, from theoretical
physicists to designers of building or aircraft industries, whose main working
instrument becomes a power computer with intellectual interface.

Creating an integrated computational environment presents an unprecedent
large project, based on the unification of the various proffesions. In a sense, this
is the way from individual or small group program productions to the industrial
conception of the unified community activity in the scientific software business. It
is well known that the expenses of the supercomputer hardware and software
are comparable and big enough. So, the mathematical modeling is becoming the
subject of the digital economy, and organizing solutions should take into acount
this side of scientific innovations.

References

1. IESP. www.exascale.org/iesp
2. ANSYS. www.ansys.com
3. FEniCS. http://fenicsproject.org
4. Netlib. http://netlib.org
5. Intel R Mathematical Kernel Library. http://software.intel.com/en-us/intel-mkl
6. Schoberl, J.: Netgen-an advancing front 2D/3D-mesh generator based on abstract

rules. Comput. Vizualization Sci. 1(1), 41–52 (1997)
7. PARAVIEW. www.paraview.org
8. OpenFOAM. http://www.openfoam.com
9. DUNE. http://www.dune-project.org

10. MATLAB. https://www.mathworks.com/products/matlab.html
11. INMOST: A toolkit for distributed mathematical modelling. www.inmost.org

A
u

th
o

r 
P

ro
o

f

www.exascale.org/iesp
www.ansys.com
http://fenicsproject.org
http://netlib.org
http://software.intel.com/en-us/intel-mkl
www.paraview.org
http://www.openfoam.com
http://www.dune-project.org
https://www.mathworks.com/products/matlab.html
www.inmost.org


The Conception, Requirements and Structure of the ICE 13

12. Il’in, V.P., Gladkih, V.S.: Basic system of modelling (BSM): the conception, archi-
tecture and methodology (in Russian). In: Proceedings of International Conference
on Modern Problems of Mathematical Modelling, Image Processing and Parallel
Computing, MPMMIP&PC-2017, pp. 151–158. DSTU Publ., Rostov-Don (2017)

13. Brugnano, L., Iavernano, F.: Line Integral Methods for Conservative Problems.
CRC Press/Taylor & Francis Group, New York (2015)

14. Il’in V.P.: Mathematical Modelling, Part I: Continuous and Discrete Models (in
Russian). SBRAS Publ, Novosibirsk (2017)

15. Il’in, V.P.: Fundamental issues of mathematical modeling. Her. Russ. Acad. Sci.
86(2), 118–126 (2016)

16. Il’in, V.P.: On the parallel strategies in mathematical modeling. In: Sokolinsky, L.,
Zymbler, M. (eds.) Parallel Computational Technologies. PCT 2017. CCIS, vol.
753, pp. 73–85. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-
67035-5 6

17. Delfour, M., Zolesio, J.-P.: Shape and Geometries. Metrics, Analysis Differential
Calculus, and Optimization. SIAM Publications, Philadelphia (2011)

18. Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis. Towards Integration
of CAD and FEA. Wiley, Singapore (2009)

19. Il’in, V.P.: DELAUNAY: technological environment for grid generation (in Rus-
sian). Sib. J. Ind. Math. 16, 83–97 (2013)

20. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods.
Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0

21. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic
Equations. Theory and Implementation. SIAM, Philadelphia (2008)

22. Butyugin, D.S., Il’in, V.P.: CHEBYSHEV: the principles of automatical construc-
tions of algorithms for grid approximations of initial-boundary value problems (in
Russian). In: Proceedings of International Conference, PCT-2014, pp. 42–50. SUSU
Publ., Chelyabinsk (2014)

23. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publ., New York
(2002)

24. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Meth-
ods: Algorithms, Theory and Parallel Implementation. SIAM, Philadelphia (2015)

25. Butyugin, D.S., Gurieva, Y.L., Il’in, V.P., Perevozkin, D.V., Petukhov, A.V.: Func-
tionality and algebraic solvers technologies in Krylov library (in Russian). Vestnik
YuUrGU. Ser. Comput. Math. Inform. 2(3), 92–105 (2013)

26. Il’in, V.P.: Problems of parallel solution of large systems of linear algebraic equa-
tions. J. Math. Sci. 216(6), 795–804 (2016)

27. Il’in, V.P.: On the numerical solution of the direct and inverse electromagnetic
problems in geoprospecting (in Russian). Sib. J. Num. Math. 6(4), 381–394 (2003)

28. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modeling.
A Practical Guide. Wiley, New York (2008)

29. Maloney, J.: Distributed COM Application Development Using Visual C++. Pren-
tice Hall, New York (1999)

30. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Language
Using Metamodels. Addison-Wesley, New York (2008)

A
u

th
o

r 
P

ro
o

f

https://doi.org/10.1007/978-3-319-67035-5_6
https://doi.org/10.1007/978-3-319-67035-5_6
https://doi.org/10.1007/978-0-387-75934-0

