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Abstract. This paper considers the efficient methods and high- per-
formance parallel technologies for the numerical solution of the multi-
dimensional initial boundary value problems, with a complicated geom-
etry of a computational domain and contrast properties of a material
on the heterogeneous multi-processor systems with distributed and hier-
archical shared memory. The approximations with respect to time and
space are carried out by implicit schemes on the quasi-structured grids.
At each time step, the iterative algorithms are used for solving the sys-
tems of linear or nonlinear equations that, in general, are non-symmetric
with a special choice of the initial guess. The scalable parallelism is pro-
vided by two-level iterative domain decomposition methods, with param-
eterized intersection of subdomains in the Krylov subspaces, which are
accelerated by means of a coarse grid correction and polynomial or other
types of preconditioning. A comparative analysis of the performance and
speed up of the computational processes is presented, based on a simple
model of parallel computing and data structures.
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1 Introduction

In this paper, we consider various numerical approaches to solving multi-
dimensional initial boundary value problems (IBVPs) for nonstationary partial
differential equations (PDEs) in complicated computational domains with real
data, and offer a comparative analysis of their performance on modern heteroge-
neous multi-processor systems (MPS) with distributed and hierarchical shared
memory. In general, we will assess the efficiency of numerical solutions of a class
of mathematical problems by the volume of computational resources required
to provide the accuracy needed on a particular type of MPS. Of course, such a
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statement is not quite clear, and we should refine many details in this important
concept. A simple way to do this consists in measuring run time and using these
measurements as a performance criterion. Other tools could be the estimation
of computing time and communication time based on a certain model for the
implementation of the problem on MPS. In what follows, we will use the second
approach and consider simple representations for both the arithmetical execu-
tion time Ta and the communication time Tc. In total, the performance of the
numerical solution of the problem will be defined by the run time Tt = Ta + Tc.
We suppose here that the arithmetical units do not work during data transfer,
although the whole picture can be more complicated.

The performance is characterized by two main aspects: mathematical effi-
ciency of numerical methods and computational technologies for software imple-
mentation on a particular hardware architecture. The algorithmic issues depend
on two main mathematical stages: discrete approximation of the original con-
tinuous problem and numerical solution of the resulting algebraic task. It is
important that we do not examine model problems but problems with real data:
multi-dimensional boundary value problems in computational domains with a
complicated geometry, multi-connected and multi-scaled (in general) piece-wise
smooth boundaries and contrast properties of a material, which provide singu-
larities of the solution to be sought. It means that in order to ensure a high
numerical resolution and accuracy of the computational model, we must use fine
grids with a very small time step τ and a spatial step h. So we have, in princi-
ple, a “super task” with a very large number of degrees of freedom (d. o. f.) or
a high dimension of the corresponding discrete problem. In general, the origi-
nal problem can be nonlinear and multi-disciplinary or multi-physical, i.e. it is
described either by a system of PDEs or by the corresponding variational rela-
tions for unknown vector functions. Also, the mathematical statement may not
be a direct one with all the coefficients of the equations given and with initial and
boundary conditions, it may be instead an inverse problem that includes vari-
able parameters to be found from the condition of minimization of some given
objective functional of the unknown solution. For simplicity, however, we will
mainly consider direct IBVPs for a single linear scalar equation. A review of the
corresponding models can be found in [11] (see also the literature cited therein).
We also do not consider in detail other computational steps of the mathemati-
cal modeling (grid generation, post-processing, visualization of the results, etc.)
since they are of a more general type and are almost defined by the problem
specifications.

The approximation approaches are divided into temporal and spatial dis-
cretizations. If we carry out the spatial approximation at first by the finite volume
method, the finite element method or any other method [2], then we will obtain
a system of ordinary differential equations (ODEs). There are various explicit
and implicit, multi-stage and/or multi-step algorithms of different orders [3] that
may be applied to solve such a system. It is important to remark that modern
computational trends give preference to methods of high order of accuracy since
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they make it possible to decrease the amount of data communication, which is
not only a slow operation but an energy consuming process.

If we use schemes that are implicit with respect to time, thereby providing a
stable procedure for numerical integration, it will be necessary to solve at each
step a system of linear algebraic equations (SLAEs) of special type, with large
sparse matrices. This is the most expensive computational stage as it requires
a large number of arithmetical operations and a big amount of memory, and
both grow nonlinearly when the number of d. o. f. increases [4]. In this case, the
main tool to ensure a high performance is the scalable parallelization of domain
decomposition methods (DDM), which belongs to a special field of computational
algebra (see, for example, [5–7]). A detailed review of parallelization approaches
for nonstationary problems is presented in [8,9]. In what follows, we will con-
sider direct IBVPs only, whereas the ideal of engineering problems consists in
solving inverse problems, which involves computing optimized parameters of the
mathematical model under the condition of constrained optimization of a given
objective functional. However, this is a topic that requires a special research.

The paper is structured as follows. In Sect. 2, the example of the heat transfer
equation is considered regarding various aspects of temporal and spatial approxi-
mations. Section 3 deals with geometrical and algebraic issues of DDM as applied
to nonstationary problems. In the last Section, we discuss an application of the
given analysis for the parallel solution of practical problems.

2 Discretization Issues of Nonstationary Problems

Let us consider the initial boundary value problem (IBVP)

∂u

∂t
+ L(u) = f(x, t), x ∈ Ω ⊂ Rd, d ≥ 2,

Ω̄ = Ω ∪ Γ, 0 < t ≤ Te < ∞, u
∣
∣
t=0

= u0(x),

l(u)
∣
∣
Γ

= g(x, t), x = (x1, . . . , xd),

(1)

where t and x are, respectively, temporal and spatial variables; u0(x) is a given
initial guess; L is some differential operator, possibly, a nonlinear one and, in
general, a matrix operator. In this case, the unknown u = (u1, . . . , uNu

)T is a
vector function. We call task (1) a multi-disciplinary or multi-physics problem.
Here Ω̄ denotes a bounded d-dimensional computational domain with boundary
Γ =

⋃NΓ

k=1 Γk; l is a boundary-condition operator, which can be of various types
li (Dirichlet, Neumann or Robin) at the corresponding boundary segments Γi; f
and g are functions that may depend on the unknown solution. We suppose that
IBVP (1) describes a practical problem with real data. This means, for example,
that the computational domain Ω̄ may have a complicated geometry, possibly,
with multi-connected piecewise smooth curvilinear boundary surfaces Γk. As an
illustration, the following linear scalar differential operator of the second order
is considered in (1):
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Lu = −
n∑

i,j=1

∂

∂xi

(

ai,j(x)
∂u

∂xj

)

+
n∑

i=1

bi
∂u

∂xi
+ cu = f(x). (2)

The corresponding boundary conditions can be written down as

αku + βk

d∑

i,j=1

ai,j
∂u

∂xj
cos(n, xj) = gk, |αk| + |βk| �= 0, x ∈ Γk, (3)

where n denotes the outward unit normal to Γk.
Note that if the original system of PDEs is complex and has temporal deriva-

tives of high order, it can always be transformed into a first order real system
by including additional unknown functions. Also, formulas (1) can describe an
inverse problem if it contains variable parameters p = (p1, . . . , pNp

)T , which
should be optimized by means of the minimization of a prescribed objective
functional. For simplicity, the original IBVP is written in the classical differen-
tial form, and it can be re-described in a variational style. It is supposed that
the input data ensures the smoothness of the numerical methods in all cases.
One more remark: in general, some boundary segments Γk can move, but we will
primarily consider the boundary Γ fixed.

The approximation of the original problem (1) can be made in two steps. In
the first step, we generate a spatial grid Ωh, which, in the three-dimensional case
(d = 3), for example, a set of nodes (vertices), edges, faces (possibly, curvilinear),
and finite elements or volumes. After applying the spatial approximation using
the finite volume method, the finite element method, the discontinuous Galerkin
method or other approaches, we obtain a system of N ordinary differential equa-
tions:

Bu̇h + Auh = fh,

u̇h, uh, fh ∈ RN ; B,A ∈ RN,N ,
(4)

where u̇ denotes the time derivative of u, and the components of the vector
fh = {fl} and of the matrices B = {bl,l} and A = {al,l} may, in general, depend
on the unknown solution.

In a simple case, the unknown vector uh = {uh
l } consists of approximate

nodal values of the original solution (u)h = {u(xl)} but, basically, it can include,
for instance, other functionals, and some derivatives of u at different points. The
vector (u)h of the discretized unknown solution satisfies the equation

B(u̇)h + A(u)h = (f)h + ψh, ψ = O(hγ), (5)

where ψh is the spatial approximation (truncation) error of Eq. (4), h is the
maximal distance between neighboring grid nodes, and γ > 0 is the order of the
approximation. The matrix A in (4) can be defined as

(Auh)l ≡ al,lul +
∑

l′∈ωl

al,l′ul′ = fl, l ∈ Ωh, (6)

where Ωh can be considered to be a set of indices that determine the number
N = O(h−1) of all unknowns, and ωl denotes the stencil of the lth node, i.e. the
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set of neighboring nodes. In other words, ωl is the union of the column numbers
of the nonzero elements in the lth row of the matrix A (the number of such
values will be denoted as Nl). The total set made up by all ωl, l = 1, . . . , N ,
determines the portrait of the sparse matrix A (Nl 
 N). Note that Nl does not
depend on the matrix dimension N , which can be estimated as N ≈ 107 ÷ 1010

for a large-size real problem. Moreover, for d = 3, we have Nl ≈ 10 ÷ 30 for
the first or the second order schemes, whereas Nl > 100 for the fourth to sixth
orders of accuracy.

To solve ODEs (4), it is possible to apply various multi-stage and/or multi-
step numerical integrators of different orders of accuracy with respect to the
time step τn. For simplicity, we consider the two-step weighted scheme

B
un+1 − un

τn
+ θ(Aun+1 − fn+1) = (1 − θ)(fn − Aun),

θ ∈ [0, 1], n = 0, 1, . . . ,

(7)

where n is a time-step number; θ = 0 corresponds to the explicit Euler method,
otherwise, we have an implicit algorithm. If θ = 1/2, formula (7) corresponds
to the Crank–Nicolson scheme, which has the second order approximation error
ψτ = O(τ2), τ = maxn{τn}; besides, ψτ = O(τ) for θ �= 1/2. Here and in what
follows, we omit the index “h” for the sake of brevity. If we denote by (u)n

a vector whose components are the values of the exact solution u(tn,xl), and
substitute it for un in (7), then we have

B
(u)n+1 − (u)n

τn
+ θ[A(u)n+1 − (f)n+1] = (1 − θ)[(f)n − A(u)n] + ψn, (8)

where ψn = ψτ + ψh is the total, i.e. temporal and spatial, approximation error
of the numerical scheme.

If relations (7) are nonlinear, we should use quasi-linearization for each n,
i.e. apply the iterative process and solve SLAEs at each “nonlinear” step.

In the implicit scheme with θ �= 0, we have to solve a large algebraic sys-
tem by some iterative approach, even for the original linear IBVP, since direct
(noniterative) algorithms are too expensive in our case (matrices B + τnθA are
supposed to be nonsingular). Finally, from (7), we do not calculate un+1 but
some approximate value ũn+1, which produces the residual vector

rn = (1 − θ)(f̃n − Aũn) − B
ũn+1 − ũn

τn
+ θ(Aũn+1 − f̃n+1). (9)

Now let us determine the total vector of the original solution, zn+1 = (u)n+1−
ũn+1. It follows from (8) and (9) that the vectors zn+1, rn and ψn are connected
by a relation that, for the reduced original problem (the elements of the matrices
A and B, as well as those of the vectors fn are supposed to be independent of
u and t), can be written down as

C1z
n+1 = C2z

n + τn(ψn − rn),
C1 = B + θA, C2 = B − (1 − θ)A.

(10)
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If
‖τn(ψn − rn)‖ ≤ τ‖ψ‖ (11)

for some vector norm, then we obtain from (10) the following estimate:

‖zn+1‖ ≤ ρ‖zn‖ + τρ1‖ψ‖,

ρ = ‖C−1
1 C2‖, ρ = ‖C−1

1 ‖.
(12)

It follows from the considerations above that if the iterative residual rn at
each time step has the same order of accuracy as the approximation error ψn,
then the total solution error does not change the order of accuracy. One impor-
tant issue in solving a nonstationary problem consists in choosing the initial
guess for the iterative solution of SLAEs at each time step. It is natural that
the un values would be a good approximation to un+1 to reduce the number of
iterations, provided that the time step τn is sufficiently small. Another simple
approach is based on the linear extrapolation with respect to time:

un+1 = un + (un − un−1)τn/τn−1 + O(τ2). (13)

In this case, we need to save the numerical solution for one additional time step.
One of the popular methods for solving ODEs is based on the application of
predictor-corrector schemes. For example, if we use in (7) the Crank–Nicolson
scheme, for which θ = 1/2 and ψτ = O(τ2), or any other implicit method, this
involves including a preliminary predictor stage for computing an approximate
value of un+1 by the simple explicit formula

B(ûn+1 − un) = τn(fn − Aun) ≡ τnrn, (14)

where B is a diagonal or another easily invertible matrix, and ûn+1 is considered
to be a predicted value of un+1. It can be interpreted as a zero iteration, un+1,0 =
ûn+1, and corrected by m iterations of the form

B(un+1,s − un) = τn[θ(fn+1 − Aun+1,s−1) + (1 − θ)(fn − Aun)],
s = 1, . . . ,m.

(15)

This approach is called PCm and in practice provides an acceptable small resid-
ual

rn+1,s = τn[θ(fn+1 − Aun+1,s−1) + (1 − θ)rn] − B(un+1,s − un)

in a few iterations.
An improved idea to choose the initial guess can be proposed based on the

least-squares method (LSM; see [10]). Let us save several previous time-step
solutions un−1, . . . , un−q, and compute the value un+1,0 by means of the linear
combination

un+1,0 = un + c1v1 + . . . + cqvq = un + V c,

vl = un − un−l, l = 1, . . . , q,

c = (c1, . . . , cq)T ∈ Rq, V = (v1, . . . , vq) ∈ RN,q.

(16)
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The system of Eq. (7) can be rewritten as

Cun+1 ≡ (τ−1
n B + θA)un+1 = gn+1,

gn+1 = [τ−1
n B + (1 − θ)A]un + θfn+1 + (1 − θ)fn.

(17)

So it follows from relation (16) that the initial residual rn+1,0 = gn+1 −
Cun+1,0 of system (17) satisfies the equality

rn+1,0 = rn − CV c. (18)

Formally, here we can set rn+1,0 = 0 and obtain overdetermined SLAE for the
vector c:

Wc ≡ CV c = τn, W ∈ RN,q. (19)

The generalized normal (with a minimal residual) solution of this system can
be computed by the SVD (Singular Value Decomposition) algorithm or by the
least-squares method (LSM), which gives the same result in exact arithmetics.
The LSM gives the “small” symmetric system

Gc ≡ WT Wc = WT τn, G = V T CT CV ∈ Rq,q, (20)

which is nonsingular if W is a full-rank matrix. It is easy to verify that Eq. (20)
implies the orthogonality property of the residual:

WT rn+1,0 = 0. (21)

Note that, instead of the LSM approach (20), (21), it is possible to apply the
so-called deflation principle [11], which uses the following orthogonality property
instead of (21):

V T rn+1,0 = 0. (22)

In this case, we have to solve SLAE

Hc ≡ V T CV c = V T c, H ∈ Rq,q, (23)

to determine the vector c. If this vector is computed from system (20) or (23),
then the initial guess un+1,0 for SLAEs (17) is determined from (16). For solving
system (17) at each time step, it is natural to apply some preconditioned iterative
method in Krylov subspaces. The stopping criterion of such iterations is

‖rn+1,m‖ = ‖gn+1 − Cun+1,m‖ ≤ ε‖gn+1‖ (24)

for some given tolerance ε 
 1. If condition (24) is satisfied, we set un+1 =
un+1,m and go to the next time step.
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3 Geometrical and Algebraic Issues of Algorithms

The general scheme of solution of nonsteady IBVPs can be described as having
two main parts. The first one consists in generating an algebraic system at
each time step. Usually, this stage is parallelized easily enough, with a linear
speedup when the number of computer units grows. The more complicated stage
includes solving the algebraic system of equations, linear or nonlinear (SLAEs or
SNLAEs); such tasks require a large amount of computational resources (memory
and number of arithmetic operations) as the number of d. o. f. grows.

If we have SNLAEs at each time step, the solution methods involve a two-
level iterative process. At first, some type of quasi-linearization is applied, and
at each “nonlinear” iteration (Newton or Jacobi type, for example), we need
to solve SLAEs, usually with a large sparse ill-conditioned matrix. This second
stage will be the main issue in our considerations in what follows.

The main tool to achieve scalable parallelism on modern MPS is based on a
domain decomposition method that can be interpreted in an algebraic or geo-
metrical framework. Also, domain decomposition methods can be considered at
both the continuous and the discrete levels. We use the second approach and
suppose that the original computational domain Ω has already been discretized
into a grid computational domain Ωh. So, in what follows, the DDM is imple-
mented only in grid computational domains, and the upper index “h” will be
omitted for brevity.

Let us decompose Ω into P subdomains (with or without overlap):

Ω =
P⋃

q=1

Ωq, Ω̄q = Ωq ∪ Γq, Γq =
⋃

q′∈ωq

Γq,q′ , Γq,q′ = Γq ∩ Ω̄q′ , q′ �= q. (25)

Here Γq is the boundary of Ωq, which is composed of the segments Γq,q′ , q′ ∈ ωq,
and ωq = {q1, . . . , qMq

} is a set of Mq contacting or conjugate subdomains.
Formally, we can also denote by Ω0 = Rd \ Ω the external subdomain:

Ω̄0 = Ω0 ∪ Γ, Γq,0 = Γq ∩ Ω̄0 = Γq ∩ Γ, Γq = Γ i
q ∪ Γq,0, (26)

where Γ i
q =

⋃

q′ �=0 Γq,q′ and Γq,0 = Γ e
q stand for the internal and external parts of

the boundary of Ωq. We also define the overlap Δq,q′ = Ωq

⋂
Ωq′ of neighboring

subdomains. If Γq,q′ = Γq′,q and Δq,q′ = Ø, then the overlap of Ωq and Ωq′ is
empty. In particular, we suppose in (25) that each of the P subdomains has no
intersection with Ω0 (Ωq

⋂
Ω0 = Ø).

The idea of the DDM involves the definition of the sets of IBVPs that should
be equivalent to the original problem (1) in all subdomains:

∂uq

∂t
+ Luq(x) = fq, x ∈ Ωq, lq,q′(uq)

∣
∣
Γq,q′

= gq,q′ ≡ lq′,q(uq′)
∣
∣
Γq′,q

,

q′ ∈ ωq, lq,0uq

∣
∣
Γq,0

= gq,0, q = 1, . . . , P.
(27)

Interface conditions in the form of Robin boundary conditions (instead of (3),
for simplicity) are imposed in each segment of the internal boundaries of the
subdomains, with the operators lq,q′ from (27):
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αquq + βq
∂uq

∂nq

∣
∣
∣
∣
Γq,q′

= αq′uq′ + βq′
∂uq′

∂nq′

∣
∣
∣
∣
Γq′,q

,

|αq| + |βq| > 0, αq · βq ≥ 0.

(28)

Here αq′ = αq and βq′ = βq; nq is the outer normal to the boundary segment
Γq,q′ of the subdomain Ωq. Strictly speaking, two pairs of different coefficients,
α
(1)
q , β

(1)
q and α

(2)
q , β

(2)
q , should be given for conditions of type (28) on each piece

Γq,q′ , q′ �= 0, of the internal boundary. For example, α
(1)
q = 1, β

(1)
q = 0 and

α
(2)
q = 0, β

(2)
q = 1 formally correspond, respectively, to the continuity of the

solution sought and its normal derivative. The additive Schwarz algorithm in
DDM is based on an iterative process in which the BVPs in each subdomain Ωq

are solved simultaneously, and the right-hand sides of the boundary conditions
in (27) and (28) are taken from the previous iteration.

We implement the domain decomposition in two steps. At the first one, we
define subdomains Ωq without overlap, i.e. contacting grid subdomains have no
common nodes, and each node belongs to only one subdomain. Then we define
the grid boundary Γq = Γ 0

q of Ωq, as well as the extensions of Ω̄t
q = Ωt

q ∪ Γ t
q ,

Ω0
q = Ωq, t = 0, . . . ,Δ, layer by layer:

Γq ≡ Γ 0
q =

{

l′ ∈ ω̂l, l ∈ Ωq, l′ /∈ Ωq, Ω1
q = Ω̄0

q = Ωq ∪ Γ 0
q

}

,

Γ t
q =

{

l′ ∈ ω̂l, l ∈ Ωt−1
q , l′ ∈ Ωt−1

q , Ωt
q = Ω̄t−1

q = Ωt−1
q ∪ Γ t−1

q

}

.
(29)

Here Δ stands for the parameter of extension or overlap.
At each time step, the algebraic interpretation of the DDM, after the approx-

imations of BVPs (27) and (28), is described by the block version of SLAEs (17),

Cq,quq +
∑

r∈ω̂q

Cq,rur = gq, q = 1, . . . , P, (30)

where indices “n + 1” have been omitted for brevity; Cq,q and uq, fq ∈ RNΔ
q

are a block diagonal matrix and subvectors with components belonging to the
corresponding subdomain ΩΔ

q ; NΔ
q is the number of nodes in ΩΔ

q .
The implementation of the interface conditions between adjacent subdomains

can be described as follows. Let the lth node be a near-boundary one in the
subdomain Ωq. Then we write down the corresponding equation in the form

(Dq,qu)l ≡
(

cl,m + θl

∑

m/∈ωq

cl,m

)

ul +
∑

m∈ωq

cl,mum =

= gl +
∑

m/∈ωq

cl,m(θlul − um).
(31)

Here θl is some parameter that corresponds to different types of boundary condi-
tions at the boundary Γq, namely θl = 0 corresponds to the Dirichlet condition,
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θl = 1 corresponds to the Neumann condition, and θl ∈ (0, 1) corresponds to the
Robin boundary condition.

If we denote D = block-diag{Dl,l}, then a simple variant of DDM is described
as the Schwarz (or block Schwarz–Jacobi) iterative method

Dus+1 = (D − C)us + g, s = 0, 1, . . . . (32)

Improved versions of this approach are given by preconditioned algorithms
in Krylov subspaces. Firstly, let us consider the advanced choice of the precon-
ditioning matrices.

In the case of an overlapping domain decomposition, the additive Schwarz
iterative algorithm is defined by the corresponding preconditioning matrix BAS ,
which can be described as follows (see [7]). For the subdomain ΩΔ

q with overlap

parameter Δ, we define a prolongation matrix RT
q,Δ ∈ RN,NΔ

q that extends the

vectors uq = {ul, l ∈ ΩΔ
q } ∈ RNΔ

q to RN according to the relations

(RT
q,Δuq)l =

{

(uq)l if l ∈ ΩΔ
q ,

0 otherwise.

The transpose of this matrix defines a restriction operator that restricts vec-
tors in RN to the subdomain ΩΔ

q . The diagonal block of the preconditioning
matrix BAS , which represents the restriction of the discretized BVP to the
qth subdomain, is expressed by Ĉq = Rq,ΔCRT

q,Δ. In these terms, the additive
Schwarz preconditioner is defined as

BAS =
P∑

q=1

BAS,q, BAS,q = RT
q,ΔĈ−1

q Rq,Δ.

Also, it is possible to define the so-called restricted additive Schwarz (RAS)
preconditioner by considering the prolongation RT

q,0 instead of RT
q,Δ, i.e.

BRAS =
P∑

q=1

BRAS,q, BRAS,q = RT
q,0Ĉ

−1
q Rq,Δ.

Note that BRAS is a nonsymmetric matrix, even if C is a symmetric one.
The third way to define the preconditioner consists in the weighted determi-

nation of the iterative values in the intersections of the subdomains. For example,
if the set of node indexes Sh

q =
⋂

q′ Ωh
q′ belongs to ns+1

q grid subdomains Ωh
q′ , and

we have ns+1
q different values of us+1

l for l ∈ Sh
q , then it is natural to compute

the real next iterative value of the subvector un+1
q by means of the least-squares

condition for the corresponding residual subvector.
Another type of preconditioning matrix which is used for DDM iterations

in Krylov subspaces is responsible for the coarse grid correction or aggregation
approach, which is based on a low-rank approximation of the original matrix C.
We define a coarse grid, or macrogrid, Ωc and the corresponding coarse space
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with Nc 
 N degrees of freedom, as well as some basic functions wk ∈ RN , k =
1, . . . , Nc. We suppose that the rectangular matrix W = (w1, . . . , wNc

) ∈ RN,Nc

has full rank. Then we define the coarse grid preconditioner Bc as

B−1
c = WĈ−1WT , Ĉ = WT CW ∈ RNc,Nc ,

where the small matrix Ĉ is a low-rank approximation of C; W is called the
restriction matrix, and the transposed matrix WT is the prolongation matrix.

Let us consider now the construction of the preconditioned iterative processes
in Krylov subspaces. We offer a general description of the multi-preconditioned
semi-conjugate residual (MPSCR) iterative method [12]. Let r0 = f0 − Cu0

be the initial residual of algebraic system (17), and let B
(1)
0 , . . . , B

(m0)
0 be a

set of some nonsingular easily invertible preconditioning matrices. Using them,
we define a rectangular matrix composed of the initial direction vectors p0k,
k = 1, . . . ,m0:

P0 = [p01 · · · p0m0
] ∈ RN,m0 , p0l = (B(l)

0 )−1r0, (33)

which are assumed to be linearly independent.
Successive approximations un and the corresponding residuals rn will be

determined with the help of the recursions

un+1 = un + Pnᾱn = u0 + P0ᾱ0 + · · · + Pnᾱn,

rn+1 = rn − CPnᾱn = r0 − CP0ᾱ0 − · · · − CPnᾱn.
(34)

Here ᾱn = (α1
n, . . . , αmn

n )T are mn-dimensional vectors. The direction vectors
pn

l , l = 1, . . . ,mn, which form the columns of the rectangular matrices Pn =
[Pn

1 · · · Pn
mn

] ∈ RN,mn , are defined as orthogonal vectors in the sense of satisfying
the relations

PT
n CT CPk = Dn,k = 0 for k �= n, (35)

where Dn,n = diag{ρn,l} is a symmetric positive definite matrix since the matri-
ces Pk have full rank, as is supposed.

Orthogonality properties (35) provide the minimization of the residual norm
‖rn+1‖2 in the Krylov block subspace of dimension Mn:

KMn
= Span{P0, . . . , C

n−1Pn−1}, Mn =
n−1∑

k=0

mk (36)

provided that we define the coefficient vectors ᾱn and the matrices Pn by the
formulas

ᾱn = {αn,l} = (D−1
n,n)−1PT

n CT r0, (37)

Pn+1 = Qn+1 −
n∑

k=0

Pkβ̄k,n, (38)
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where the auxiliary matrices

Qn+1 = [qn+1
1 · · · qn+1

mn
], qn+1

l = (B(l)
n+1)

−1rn+1, l = 1, . . . , mn, (39)

have been introduced; B
(l)
n+1 are some nonsingular easily invertible precondition-

ing matrices, and β̄k,n are coefficient vectors that are determined, after substi-
tution of (38) into orthogonality conditions (35), by the formula

β̄k,n = D−1
k,kPT

k CT CQn+1. (40)

Let us remark that a successful acceleration of various Krylov algorithms can
be attained by least-squares approaches [13].

4 Parallel Implementation of the Method

The parallel implementation of the numerical approaches we have considered
consists, in general, of the following main stages:

(a) at each time step the grid constructing and or reconstructing the mesh at
each time step if it is necessary, i.e. if the solution changes dresfiarlly in time;

(b) computing the coefficients of a discrete algebraic system, and recomputing
these coefficients if the input data of the original problem depend on time;

(c) at each time step, implementing nonlinear iterations if the coefficients of the
original IBVP depend on the unknown solution;

(d) solving SLAEs by means of domain decomposition methods in Krylov sub-
spaces;

(e) postprocessing and visualization of the numerical results obtained;
(f) solving the inverse or the optimal IBVP which includes constraint minimiza-

tion of the objective parameterized functional based on the optimization
methods and on solution of a set of direct problems, presented by the above
stages;

(g) control of the general computational process and decision-making in the
results of mathematical modeling.

The “d” stage is the most expensive in terms of the required computational
resources, and it is also the most investigated in the sense of achieving scalable
parallelism. The main numerical and technological tools here are based on both
domain decomposition methods and hybrid programming: MPI (Message Pass-
ing Interface system), open-MP type multi-thread computing, vectorization of
operations and use of special computational units, for instance, GPGPU (see
[14] and references therein). The DDMs represent two-level iterative processes
in the Krylov subspaces. The upper level includes the distributed version of the
MPSCR method (33)–(40), for example. In the case of a symmetric matrix C,
this algorithm becomes simpler and transforms into a multi-preconditioned con-
jugate residual (MPCR) method with short recursions. Here matrix-vector oper-
ations are parallelized easily by means of efficient functions from the SPARSE
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BLAS library. To minimize inter-processor communication time, a special array
buffering is implemented. The main speedup is attained by synchronously solving
the auxiliary algebraic subsystems for subdomains on the corresponding proces-
sors. It is important that SLAEs can have diverse matrix structures and be solved
by various direct or iterative algorithms. In a sense, we have here a heteroge-
neous block iterative process, and minimizing the general run-time is not simply
in such cases. In this situation, the balancing domain decomposition problem is
a nonstandard task that should be solved in terms of general computer resource
consuming minimization.

The scalable parallelization of the other computational stages (a–c) should
also be based, naturally, on the domain decomposition principle. Within the
conception of the basic system of modeling (BSM; see [15]), each stage would be
implemented by the corresponding BSM kernel subsystem which is interacted
by means of distributed data structures.
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