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TWO-LEVEL LEAST SQUARES METHODS IN KRYLOV
SUBSPACES

V. P. Il’in∗ UDC 519.6

Two-level least squares acceleration approaches are applied to the Chebyshev acceleration method
and the restarted conjugate residual method in solving systems of linear algebraic equations with
sparse unsymmetric coefficient matrices arising from finite volume or finite element approxima-
tions of boundary-value problems on irregular grids. Application of the proposed idea to other
iterative restarted processes also is considered. The efficiency of the algorithms suggested is in-
vestigated numerically on a set of model Dirichlet problems for the convection-diffusion equation.
Bibliography: 6 titles.

1. Introduction

The paper considers the classical problem of numerical linear algebra, i.e., the solution of a
system of linear algebraic equations (SLAE) of the form

Au = f, A = {ak,l} ∈ RN,N ; u, f ∈ RN , (1)

where the matrix A and the right-hand side vector f are given. It is assumed that the order N of
the system is extremely large, and the coefficient matrix is sparse and ill-conditioned. For these
reasons, SLAE (1) is numerically solved by parallel preconditioned iterative methods in Krylov
subspaces on a Multiprocessor Computer System (MCS). In the case where the coefficient
matrix is unsymmetric, the iterative methods optimal in the order of the convergence rate
of an iterative process (such as methods of semi-conjugate residuals (SCR) or generalized
minimum residuals (GMRES) [1,2]) use long vector recursions. But in practice such recursions
are necessarily shortened by using restarts, which are repeated every m iterations. In this case,
the current residual vector is determined from the original equation, and the Krylov iterations
are restarted. This results in a significant deceleration of convergence, which is a due fee for
limited resources of a computer. Another approach to saving computer resources consists in
allowing a limited orthogonality of direction vectors. Obviously, both approaches can also be
combined.

The aim of the present paper is to study methods for accelerating the convergence of
restarted iterations based on the Least Squares Method (LSM) for decreasing the Euclidean
norm of the residual. The approach suggested is described in application to Multi-Precon-
ditioned Semi-Conjugate Residual (MP-SCR) methods [3], which, in some special cases, are
equivalent to the widely-used Flexible Generalized Minimum Residual (FGMRES) method [1].
Also we consider application of less expensive Conjugate Residual (CR) algorithms and Cheby-
shev acceleration, see [2]. Since, in the general unsymmetric case, the latter methods do not
possess variational properties and may even diverge in some cases, residual minimization at
restarts for the current period is carried out using LCM. Moreover, we additionally use the
second optimization level, consisting in using linear combinations of the restart approximations
computed by the LSM.

The paper is organized as follows. Section 2 describes the suggested two-level methods for
accelerating iterations in Krylov subspaces. The next Sec. 3 is devoted to presenting results of
numerical investigation of the algorithms under consideration. In the Conclusion, we consider
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prospects of parallelizing the approaches in question and of applying them in solving practical
problems.

2. Two-level iteration methods in Krylov subspaces

Consider a multi-preconditioned semi-conjugate residual method, with a given initial ap-
proximation u0, described by the following formulas:

r0 = f − Au0, p0
l = (B(l)

0 )−1r0, l = 1, . . . ,M0, P0 = [p0
1 · · · p0

M0
] ∈ RN,M0 ;

n = 0, 1, . . . : un+1 = un + Pnᾱn = u0 + P0ᾱ0 + · · · + Pnᾱn,

rn+1 = rn − APnᾱn = r0 − AP0ᾱ0 − . . . − APnᾱn,

ᾱn = (α1
n, . . . , αMn

n )T , Pn = [pn1 · · · pnMn
] ∈ RN,Mn .

(2)

Here, p0
l = (B(l)−1

0 )rn, l = 1, . . . ,Mn, are the direction vectors, which are determined from
the initial residual vector r0 and some nonsingular preconditioning matrices B

(l)
0 ; ᾱn ∈ RMn

are vectors of iteration parameters, and Mn is the number of preconditioners used at the nth
iteration. Considering the norm ||rn+1||2 = (rn+1, rn+1), we see that it attains its minimum
in the block Krylov subspace

KM̄n
= Span{P0, . . . , A

n−1Pn−1}, M̄n =
n−1∑

k=0

Mk, (3)

provided that the following orthogonality conditions are fulfilled:

P T
n ATAPk = Dn,k = 0 for k �= n,

Dn,n = diag{ρn,l = (pln)TATApln} ∈ RMn,Mn ,
(4)

and the corresponding coefficients are determined by the formulas

ᾱn = {αn,l} = D−1
n,nP

T
n AT r0. (5)

In this case, the following relations hold:

‖ rn+1 ‖2 = (rn, rn) − (Cnr0, r0) = (r0, r0) − (C0r
0, r0) − · · · − (Cnr0, r0),

Cn = PnAD−1
n,nATP T

n .
(6)

A direct verification of the orthogonality relations (4) demonstrates that for them to be
valid, it is sufficient that the “direction matrices” Pn+1 be determined from the recursion
relations

Pn+1 = Qn+1 −
n∑

k=0

Pkβ̄k,n, Qn+1

[
qn+1
1 . . . qn+1

ms

] ∈ RN,ms , (7)

qn+1
l =

(
B

(l)
n+1

)−1
rn+1, l = 1, . . . ,Mn, β̄k,n = D−1

k,kP
T
k ATAQn+1.

Here, β̄k,n = (β1
n, . . . , βMk

n )T ∈ RMk are vector coefficients, and B
(l)
n+1 are easily invertible

nonsingular preconditioning matrices, chosen in a certain way, whose number Mn can vary
from iteration to iteration. Formulas (7) can be realized using a stable modification of the
Gram–Schmidt orthogonalization [4].

Theorem 1. Let the matrices A and B
(l)
n , n = 0, 1, . . . ; l = 1, . . . ,Mn, be nonsingular and

let the matrices Pn be of full rank. Then the iterative process (2)–(7) minimizes ‖rn+1‖ in
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the block Krylov subspace (3) of dimension M̄n. Moreover, the following semi-orthogonality
conditions for the residual vectors are fulfilled:

(
A(B(l)

n )−1rn, rk
)

=

{
0, k < n,

σn =
(
A(B(l)

n )−1rn, rn
)
, k = n,

and the coefficients of the recursion relations can be computed by the formula αn,l = σn/ρn,l.

The above-considered version of MP-SCR generalizes FGMRES in the sense that, at different
iterations, the preconditioners are allowed to differ not only in their form but also in their
number. A specific feature of such algorithms is the necessity to store, in the course of
iterations, M̄n+1 vectors, which is too expensive for n large. In order to alleviate this drawback,
periodic restarts are repeated every mr iterations and a limited orthogonalization is carried out,
where the summation in relations (7) is only performed for k = n, n−1, . . . ,max{0, n−m0+1},
i.e., for n > m0, only the last m0 direction matrices are stored.

By a restart we mean an iterative procedure of computing the current residual vector rn+1

directly from the original equation, as the initial residual r0, rather than from the recursion
relation (2). The subsequent mr approximations are again determined from the recursion
relations, then a new restart occurs, etc.

This iterative process can be generalized if the period length at the sth restart, which is
denoted by m

(s)
r , is allowed to vary, i.e., m

(s)
r = ns−ns−1, where n0 = 0 and ns is the number

of the iteration at which the sth restart occurs. In addition, the number of matrices Pn to
be orthogonalized, which is denoted by m

(n)
0 in what follows, can change not only at different

restarts but at each iteration as well. In the resulting reduced R-SCR method the recursion
relations (2) are written in the standard way, but at restarts the residual is computed from
the original equation. In this case, the first equality in (7) takes the form

Pn+1 = Qn+1 −
n∑

k=m̄
(n)
0

Pkβ̄k,n, n = ns, ns + 1, . . . , ns+1 − 1, (8)

where m̄
(n)
0 = min{0, n−m

(n)
0 }, s = 1, 2, . . . . In the R-SCR method, described by formulas (2)

(but only for n = ns, ns + 1, . . . , ns+1 − 1; s = 1, 2, . . . ) and relations (8), the dimensions
of the Krylov subspaces are obviously reduced, which leads to slowing down the convergence
rate of the iterative process. In order to eliminate or, at least, alleviate this drawback, we
additionally accelerate the reduced algorithm under consideration by forming linear combina-
tions of vectors at restarts and optimizing them by minimizing the residuals. The suggested
accelerated reduced method AR-SCR is a two-level iterative process in Krylov subspaces and
can be represented in terms of the auxiliary vectors

vs = uns − uns−1 , ws = Avs = rns−1 − rns , s = 1, . . . ,Ms, (9)

where Ms is the number of the restarts performed. We will search for the corrected values of
the restart approximations uns in the form

ûns = uns + c1v
1 + · · · + csv

s = uns + Vsc̄s,

Vs = (v1 . . . vs) ∈ RN,s, c̄s = (c1, . . . , cs)T ∈ Rs.
(10)

The corresponding residual vectors are written as

r̂ns = f − Aûns = rns − Wsc̄s, Ws = (w1 . . . ws) ∈ RN,s, s = 1, . . . ,Ms. (11)

The unknown coefficient vectors from (11) satisfy the overdetermined SLAE

Wsc̄s = rns , s = 1, . . . ,Ms, (12)
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which characterizes, in a certain sense, the smallness of the residual r̂ns and has, in general, no
classical solution. In order to find c̄s, one can use the generalized inverse matrix W+

s or apply
the left Gaussian transformation to the equation. This results in the least squares generalized
solution [5],

Bsc̄s = W T
s rns , Bs = W T

s Ws ∈ Rs,s, (13)

which provides for minimization of the residual

r̂ns = min
c1,...,cs

{f − Aûns} (14)

in the Krylov subspace KM̄s
(r0, A), whose dimension equals M̄s = Ms + min{m(n)

0 }. Note
that the system of equations (13) with symmetric positive semidefinite matrix Bs always is
compatible, but it is nonsingular only whenever the rectangular matrix Ws has full rank s. The
numerical solutions of systems (12) and (13) obtained, for example, by using the singular value
decomposition (SVD) [4] are identical, provided that the exact arithmetic is used. However,
if round-off errors are taken into consideration one should bear in mind that the condition
number of SLAE (13) is an order of magnitude larger than that of (12).

Remark 1. The norms of the residual vectors r̂ns attain their minima in multi-preconditioned
block Krylov subspaces with rather complicated structures, whose dimensions are formally
determined by the number of parameters.

Now we comment on potential generalizations or, on the contrary, on special cases of the
approach suggested. First, instead of using the MP-SCR methods, intermediate iterations in
between restarts can be based on the Semi-Conjugate Residual algorithm [2], as well as on
the full orthogonalization methods (FOM) and GMRES [1], which rely on Arnoldi’s orthogo-
nalization and are asymptotically equivalent in the order of the convergence rate of iterations.
Second, in the recursion relations (8), one can take a single term with the scalar multiplier
βn = βn,n determined in (7) rather than a sum. This situation can be described as a special
case of formula (8), in which one sets m̄

(n)
0 = n:

s = 0, 1 . . . , rns = f − Auns , Pns
l =

(
B(l)

ns

)−1
rns ,

n = ns, ns + 1, . . . , ns+1 − 1 : un+1 = un − Pnᾱn,

Pn+1 = Qn+1 − Pnβ̄n, rn+1 = rn − Apnᾱn,

Pn = [pn1 . . . pnMn
] ∈ RN,Mn , ᾱn = (α1

n, . . . , αMn
n )T .

(15)

Formally, in between restarts, we have the multi-preconditioned conjugate residual method
(MP-CR) with short recursions. For unsymmetric SLAEs, this method only ensures local
residual minimization in one-dimensional Krylov subspaces. However, it can be regarded as a
method for constructing certain auxiliary vectors, defined similarly to (9), but at intermediate
iterations in between restarts only:

ṽn=un−un−1, w̃n=Aṽn, n = ns + 1, ns + 2, . . . , ns+1 = ns + m(s)
r . (16)

Given the latter vectors and using LSM, one can minimize the residuals at restarts. To this
end, for s = 0, 1, . . . the following formulas, similar to (10)–(14), can be used:

ũns+1 = uns+1 + Ṽsc̃s, Ṽs = (vns + 1, vns + 2, . . . , vns+1) ∈ RN,m
(s)
r , c̃s ∈ Rm

(s)
r ,

r̃ns+1 = rns+1 − W̃sc̃s, W̃s = AVs,

W̃sc̃s = rns+1, B̃sc̃s = W̃ T
s W T

s c̃s = W T
s rns+1.

(17)
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Subsequent intermediate iterations are performed with account for the corrections, i.e., for
n = ns, the vector uns in the recursion relations (15) should be replaced by the vector ũn

s

from (17). The resulting method, which is referred to as LSM-CR, can be improved in its turn
if the approximations obtained at the restart iterations are corrected once again by the same
least squares method using formulas (9)–(14). Such an algorithm with two-level minimization
of residuals is denoted by ALSM-CR.

In the approach considered, the subscript s can formally be regarded as the number of a
certain iterative process in which the operations between restarts, performed in accordance
with the CR method by formulas (15), realize a special polynomial preconditioning [6].

Note that at intermediate iterations, one can use the spectral Chebyshev acceleration
method rather than the conjugate residual method. This method can be represented in var-
ious forms, one of which is similar to (15). We present it for the case of a single constant
preconditioner B

(l)
n = B, to which, at every iteration, a single direction vector pn corresponds,

and the coefficients ᾱn = αn and β̄n = βn are scalars [2]:

s = 0, 1 . . . : rns = f − Auns , pns = B−1rns ,

n = ns, ns + 1, . . . , ns+1 − 1 : un+1 = un + αnpn,

pn+1 = B−1rn+1 + βnpn, rn+1 = rn − Aαnpn,

α0 = τ, αn = τnτ,

βn = (τn − 1)αn−1αn, τ = 2/(λ1 + λN ),

τn = 2/
[
λN + λ1 − (λN − λ1) cos

(2n − 1)π
2m

]
,

n = 1, . . . ,m1 = ns+1 − ns,

(18)

In (18), the values λ1 and λN , which are assumed to be real, positive, and available, are the
smallest and largest eigenvalues of the matrix B−1A. In a number of applications, they can
be estimated which accuracy sufficient for practical purposes. The algorithm resulting from
combination of the Chebyshev iterations (18) with the correction of restart approximations
by the least squares formulas (9)–(14) will be denoted by LSM-CH. This iterative process,
by analogy with ALSM-CR, can additionally be accelerated by using linear combinations of
restarts in accordance with (16)–(17). This yields the ALSM-CH method, which formally
determines consecutive approximations in Krylov subspaces as well.

Theorem 2. Let the ALSM-CR and ALSM-CH algorithms be defined for the intermediate
iterations with a constant period length m

(s)
r = mr from the recursion relations (15) and (18),

respectively. If, in addition, the restart approximations uns are twice corrected in accordance
with formulas (9)–(14) and (16)–(17) of the least squares method, then the resulting iterative
processes minimize the residuals in the Krylov subspaces

KMs(r
0, A,B−1)=Span(r0, AB−1r0, . . . , (AB−1)Ms r0), Ms = smr. (19)

Remark 2. The least squares acceleration methods under consideration can be interpreted
as implicit algorithms in Krylov subspaces. An important feature of such algorithms is a high
degree of parallelizability, which results from the fact that the entries of the matrices Bs and B̄s

from (13) and (17) can be computed concurrently on different processing units. Furthermore,
the simultaneous computation of the vectors c̄s and čs from the corresponding SLAEs of small
order s � N by different arithmetic units allows one to avoid extra communications.
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3. Experimental investigation of the algorithms

The efficiency of the algorithms suggested will be considered on the Dirichlet problem for
the convection-diffusion equation

−∂2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω, u|Γ = g(x, y), (20)

in the square computational domain Ω = (0, 1)2 with boundary Γ and convective coefficients
p and q, which are considered constant for simplicity. This boundary-value problem is ap-
proximated on a square grid with step size h = 1/(L + 1) and total number of interior nodes
N = L2,

xi = ih, yj = jh, i, j = 0, 1, . . . , L + 1,
by using five-points finite volume monotone approximations of the exponential type, which
have the second-order accuracy. The SLAE to be solved is preliminarily scaled in such a way
that in our numerical experiments we actually solve the normalized equations resulting from
the following transformations with the diagonal matrix D = diag{al,l}:

D−1/2AD−1/2D1/2u = D−1/2f,

Āū = f̄ , Ā = D−1/2AD−1/2, ū = D1/2u, f̄ = D−1/2f.
(21)

Numerical experiments have been conducted in the standard double precision arithmetic for
values of the functions f(x, y) = 0 and g(x, y) = 1, which correspond to the exact solution
u(x, y) = 1 of problem (20). Since the convergence rate depends on the initial error u − u0,
its influence has been analyzed by comparing results for the different initial guesses u0 = 0
and u0 = P2(x, y) = x2 + y2. We have used the stopping criterion (rn, rn) � ε2(f, f) with
ε = 10−7, the square grids with N = 72, 152, 312, 632, and 1272 nodes, and the period lengths
m = 8, 16, 32, 64, and 128. The computations have been performed on the computer resources
of the Siberian Supercomputer Center (SSKC IVMMG SO RAN).

In the tables below, we present the results of numerical solution of problem (20) with
the convective coefficients p = q = 0 and p = q = 4. Tables 1–4 provide data for the
unpreconditioned conjugate residual method (8) (all B

(l)
n are the identity matrices I) with

two-level correction by the least squares algorithm. This method is denoted by ALSM-CR.
Every cell of these tables contains three numbers, which are the number of iterations n, the
ultimate residual norm ||rn||2, and the absolute error ρ = max{|1 − un|}.

As is readily seen from the data presented, the numbers of iterations for symmetric and
unsymmetric SLAEs are sufficiently close and weakly depend on the initial guess. The resulting
values of the residual norm and absolute error are acceptable and show good agreement with the
stopping criterion used, which testifies that the algorithm is numerically stable. In dependence
of the lengths of restart periods, the convergence rate is different in different experiments. It
either has local extrema or decreases as m grows. It is of importance to emphasize that the
introduction of the second level of least squares acceleration results in a significant (up to ten
times) reduction of the number of iterations. This is observed if one compares our results with
those obtained in [5], which are not reproduced here for shortness.

Tables 5–8 provide similar results for the method ALSM-CH, in which the intermediate
iterations (performed in between restarts) realize the Chebyshev acceleration in accordance
with formulas (18).

For problems with zero and nonzero convection we have used the exact values λ1 and λN

of the spectral bounds for the model grid Laplace equation. However, as supplementary com-
putations have demonstrated, the number of iterations only weakly depends on the accuracy
of bounding λ1, provided that λN is chosen from the natural estimate of the norms of the
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matrices A. For the algorithm in question, as can be seen from comparison with the results
in [5], the additional level of the LSM acceleration also provides for a considerable increase of
the convergence rate. For instance, in Table 8 for N = 1272 and m = 8 we have 216 iteration
for the ALSM-CH method, whereas without the second LSM acceleration (see Table 5 in [5])
the number of iterations is n = 3987.

Table 1. Results of numerical experiments with ALSM-CR for p = q = 4 and
u0 = x2 + y2.

N \ m 8 16 32 64 128
35 31 63 127 255

72 2.1 · 10−7 6.7 · 10−8 1.4 · 10−9 5.2 · 10−12 4.1 · 10−3

8.0 · 10−14 3.4 · 10−14 1.6 · 10−17 6.7 · 10−22 5.0 · 10−24

50 65 94 127 255
152 1.4 · 10−7 6.9 · 10−7 1.5 · 10−7 2.9 · 10−9 3.4 · 10−12

5.1 · 10−14 1.4 · 10−13 8.2 · 10−14 9.6 · 10−18 7.2 · 10−23

85 101 135 190 255
312 2.1 · 10−7 1.7 · 10−6 8.1 · 10−7 4.9 · 10−8 7.28 · 10−7

1.2 · 10−13 2.8 · 10−13 2.6 · 10−13 2.1 · 10−15 4.2 · 10−14

158 176 201 294 382
632 1.6 · 10−16 2.6 · 10−6 3.4 · 10−6 5.8 · 10−6 1.6 · 10−7

6.1 · 10−13 5.9 · 10−13 6.3 · 10−13 6.4 · 10−13 2.4 · 10−15

302 330 349 386 582
1272 1.9 · 10−6 6.1 · 10−6 5.6 · 10−6 1.1 · 10−5 1.0 · 10−5

6.8 · 10−13 1.2 · 10−12 1.2 · 10−12 1.3 · 10−12 1.3 · 10−12

Table 2. Results of numerical experiments with ALSM-CR for p = q = 0 and
u0 = x2 + y2.

N \ m 8 16 32 64 128
35 31 63 127 255

72 3.0 · 10−7 4.2 · 10−8 5.4 · 10−9 5.4 · 10−9 5.4 · 10−9

6.9 · 10−14 1.7 · 10−14 6.2 · 10−16 6.2 · 10−16 6.2 · 10−16

50 65 94 127 255
152 3.9 · 10−8 1.1 · 10−6 3.1 · 10−7 8.8 · 10−8 8.8 · 10−8

1.9 · 10−14 1.5 · 10−13 1.2 · 10−13 1.4 · 10−13 1.4 · 10−13

76 98 129 83 80
312 7.2 · 10−7 3.0 · 10−6 2.8 · 10−6 1.2 · 10−6 2.4 · 10−7

2.5 · 10−13 3.0 · 10−13 2.8 · 10−13 2.7 · 10−13 3.3 · 10−13

141 151 190 259 160
632 4.9 · 10−7 5.5 · 10−7 2.7 · 10−6 6.5 · 10−6 2.6 · 10−6

3.3 · 10−13 4.6 · 10−13 6.5 · 10−13 6.3 · 10−13 5.5 · 10−13

267 286 301 378 495
1272 2.2 · 10−6 2.2 · 10−6 4.0 · 10−6 2.1 · 10−5 2.3 · 10−5

9.0 · 10−13 9.9 · 10−13 1.3 · 10−12 1.2 · 10−12 1.2 · 10−12
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Table 3. Results of numerical experiments with ALSM-CR for p = q = 0 and
u0 = 0.

N \ m 8 16 32 64 128
15 10 10 10 10

72 3.3 · 10−16 3.3 · 10−16 3.3 · 10−16 3.3 · 10−16 3.3 · 10−16

1.4 · 10−30 2.0 · 10−33 2.0 · 10−33 2.0 · 10−33 2.0 · 10−33

43 48 28 28 28
152 5.9 · 10−8 3.0 · 10−7 2.4 · 10−8 2.4 · 10−8 2.4 · 10−8

4.4 · 10−14 1.1 · 10−13 5.1 · 10−14 5.1 · 10−14 5.1 · 10−14

64 93 95 58 58
312 4.6 · 10−7 1.1 · 10−6 6.5 · 10−7 6.6 · 10−8 6.6 · 10−8

2.8 · 10−13 3.0 · 10−13 2.5 · 10−13 1.2 · 10−13 1.2 · 10−13

102 123 200 190 110
632 9.9 · 10−7 1.7 · 10−6 7.4 · 10−6 1.1 · 10−6 4.5 · 10−7

6.1 · 10−13 5.6 · 10−13 5.9 · 10−13 3.7 · 10−13 3.9 · 10−13

190 208 231 382 377
1272 1.1 · 10−6 1.4 · 10−6 4.8 · 10−6 4.9 · 10−6 1.5 · 10−5

8.9 · 10−13 1.2 · 10−12 1.2 · 10−12 1.2 · 10−12 1.3 · 10−12

Table 4. Results of numerical experiments with ALSM-CR for p = q = 4 and
u0 = 0.

N \ m 8 16 32 64 128
36 33 63 127 130

72 1.3 · 10−8 7.2 · 10−8 2.3 · 10−9 3.3 · 10−11 9.0 · 10−8

6.3 · 10−15 3.9 · 10−14 4.5 · 10−17 2.1 · 10−20 4.9 · 10−14

51 76 81 127 255
152 2.3 · 10−7 7.3 · 10−8 7.8 · 10−7 7.6 · 10−9 7.3 · 10−11

1.2 · 10−13 1.7 · 10−14 1.6 · 10−13 3.9 · 10−16 2.7 · 10−20

85 104 128 190 255
312 2.4 · 10−7 1.5 · 10−6 2.4 · 10−6 4.2 · 10−7 2.2 · 10−8

1.7 · 10−13 2.9 · 10−13 3.1 · 10−13 1.2 · 10−14 5.0 · 10−16

161 180 205 312 382
632 1.9 · 10−6 3.3 · 10−6 3.6 · 10−6 5.8 · 10−6 5.6 · 10−7

5.7 · 10−13 5.0 · 10−13 6.3 · 10−13 6.2 · 10−13 6.3 · 10−15

302 331 350 403 509
1272 2.4 · 10−6 2.3 · 10−6 7.8 · 10−6 8.7 · 10−6 4.2 · 10−6

8.8 · 10−13 6.3 · 10−13 1.2 · 10−12 1.2 · 10−12 4.9 · 10−13
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Table 5. Results of numerical experiments with ALSM-CH for p = q = 0 and
u0 = x2 + y2.

N \ m 8 16 32 64 128
37 29 32 44 44

72 2.2 · 10−7 4.5 · 10−8 6.7 · 10−15 1.0 · 10−7 1.2 · 10−7

7.9 · 10−14 4.2 · 10−14 1.3 · 10−27 3.1 · 10−14 4.3 · 10−14

56 72 64 64 88
152 7.3 · 10−8 4.5 · 10−7 3.5 · 10−8 4.1 · 10−8 1.6 · 10−7

1.9 · 10−14 9.6 · 10−14 1.1 · 10−14 4.0 · 10−14 1.1 · 10−13

88 112 144 127 160
312 8.1 · 10−8 1.3 · 10−6 8.0 · 10−7 9.8 · 10−8 1.1 · 10−7

3.4 · 10−14 2.7 · 10−13 2.5 · 10−13 2.7 · 10−13 1.6 · 10−13

160 160 224 288 249
632 5.9 · 10−7 7.5 · 10−7 1.1 · 10−6 2.5 · 10−6 5.5 · 10−7

3.3 · 10−13 4.6 · 10−13 1.1 · 10−13 4.4 · 10−13 5.1 · 10−13

304 304 320 384 512
1272 2.2 · 10−6 2.3 · 10−6 6.9 · 10−7 2.9 · 10−6 1.2 · 10−5

9.0 · 10−13 9.9 · 10−13 1.0 · 10−13 3.7 · 10−13 7.5 · 10−13

Table 6. Results of numerical experiments with ALSM-CH for p = q = 4 and
u0 = x2 + y2.

N \ m 8 16 32 64 128
38 32 32 48 48

72 9.0 · 10−8 1.9 · 10−9 3.1 · 10−12 2.8 · 10−8 5.2 · 10−8

7.0 · 10−14 2.2 · 10−17 3.3 · 10−22 5.0 · 10−15 8.4 · 10−15

56 79 64 80 96
152 1.4 · 10−7 1.2 · 10−7 1.0 · 10−8 8.8 · 10−8 6.0 · 10−8

5.1 · 10−14 2.5 · 10−14 2.6 · 10−16 7.2 · 10−14 2.7 · 10−14

96 112 158 128 160
312 2.1 · 10−7 1.7 · 10−7 3.1 · 10−7 7.9 · 10−9 3.1 · 10−7

1.2 · 10−13 3.3 · 10−14 2.9 · 10−13 8.6 · 10−17 1.7 · 10−13

184 192 224 256 256
632 5.0 · 10−7 3.2 · 10−7 8.5 · 10−8 2.2 · 10−6 2.0 · 10−8

1.4 · 10−13 6.9 · 10−14 6.2 · 10−15 6.4 · 10−13 5.2 · 10−17

344 352 384 384 512
1272 1.9 · 10−6 1.8 · 10−6 5.1 · 10−7 6.4 · 10−6 2.1 · 10−6

6.8 · 10−13 4.6 · 10−13 5.1 · 10−14 1.1 · 10−12 9.8 · 10−14
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Table 7. Results of numerical experiments with ALSM-CH for p = q = 4 and
u0 = 0.

N \ m 8 16 32 64 128
40 32 32 48 48

72 1.3 · 10−8 8.7 · 10−10 1.5 · 10−12 3.5 · 10−8 4.7 · 10−8

6.3 · 10−15 9.8 · 10−18 7.2 · 10−23 4.8 · 10−15 7.9 · 10−15

57 80 64 80 96
152 2.4 · 10−7 7.2 · 10−8 1.5 · 10−8 7.0 · 10−8 5.9 · 10−8

1.4 · 10−13 1.6 · 10−14 8.3 · 10−16 5.8 · 10−14 2.7 · 10−14

96 112 160 128 161
312 2.4 · 10−7 2.6 · 10−7 5.9 · 10−7 2.2 · 10−8 3.6 · 10−7

1.7 · 10−13 5.9 · 10−14 1.5 · 10−13 7.1 · 10−16 1.9 · 10−13

184 192 224 256 256
632 7.0 · 10−7 3.1 · 10−7 4.3 · 10−7 2.5 · 10−6 5.0 · 10−8

1.9 · 10−13 1.0 · 10−13 2.5 · 10−14 3.9 · 10−13 5.8 · 10−16

344 352 384 448 512
1272 2.4 · 10−6 2.3 · 10−6 3.5 · 10−6 5.4 · 10−6 7.1 · 10−7

8.8 · 10−13 6.3 · 10−13 1.1 · 10−12 6.0 · 10−13 1.4 · 10−14

Table 8. Results of numerical experiments with ALSM-CH for p = q = 0 and
u0 = 0.

N \ m 8 16 32 64 128
24 16 32 44 44

72 2.4 · 10−8 8.9 · 10−15 9.0 · 10−15 3.2 · 10−8 1.2 · 10−8

2.8 · 10−14 3.7 · 10−27 6.1 · 10−27 6.1 · 10−15 4.1 · 10−15

48 61 32 64 88
152 1.0 · 10−7 2.1 · 10−7 8.3 · 10−9 2.0 · 10−15 8.4 · 10−8

4.4 · 10−14 1.7 · 10−13 7.8 · 10−13 4.3 · 10−28 1.5 · 10−13

80 112 112 89 160
312 1.7 · 10−7 4.5 · 10−7 2.0 · 10−7 3.2 · 10−8 6.1 · 10−8

1.5 · 10−13 1.2 · 10−13 2.2 · 10−13 4.2 · 10−14 1.6 · 10−13

120 144 224 192 224
632 1.4 · 10−7 6.4 · 10−7 1.6 · 10−7 1.4 · 10−6 1.8 · 10−7

5.1 · 10−14 3.6 · 10−13 2.5 · 10−14 3.7 · 10−13 1.0 · 10−13

216 224 256 448 384
1272 1.2 · 10−6 3.9 · 10−7 4.6 · 10−7 1.9 · 10−6 1.0 · 10−6

9.0 · 10−13 1.4 · 10−13 5.2 · 10−14 2.0 · 10−13 9.3 · 10−14

4. Conclusion

As is seen from the presented preliminary numerical results, the suggested two-level min-
imization of residuals is a promising approach to accelerating the convergence of restarted
iterative methods when solving SLAEs with unsymmetric matrices. In addition to reducing
the number of iterations, this allows one to save computer resources considerably. As concerns
efficiency, the most promising approach is combination of the spectral Chebyshev acceleration
algorithm with two-level corrections by the least squares method in Krylov subspaces. Also
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there is a huge resource for increasing efficiency in concurrent realization of the algorithms con-
sidered based on using hybrid programming for effecting scalable parallelization on an MCS
with distributed and hierarchical shared memory. In the present paper, no preconditioning
has been used, which provides yet another resource for accelerating solution of large algebraic
systems arising in practice. Of course, the above conclusions should be considered preliminary,
and further theoretical investigation of the approaches considered is needed.
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