ilin2008

УДК 519.632

МЕТОДЫ БИСОПРЯЖЕННЫХ НАПРАВЛЕНИЙ В ПОДПРОСТРАНСТВАХ КРЫЛОВА^{*)} В. П. Ильин

Рассматриваются ортогональные и вариационные свойства семейства итерационных алгоритмов в подпространствах Крылова для решения СЛАУ с разреженными несимметричными матрицами. Предложены и исследованы методы бисопряженных невязок, сдвоенных бисопряженных невязок и стабилизированных сопряженных невязок. Приводятся результаты численных экспериментов для серии методических задач.

Ключевые слова: методы бисопряженных направлений, сдвоенные и стабилизированные методы бисопряженных направлений, ортогональные свойства, несимметричные СЛАУ, предобусловливание.

Введение. Для итерационного решения очень больших разреженных СЛАУ с несимметричными матрицами существует три основных группы методов в подпространствах Крылова (см. [1–6]). Первая из них основана на левой или правой трансформации Гаусса исходной системы и последующего применения какого-либо алгоритма сопряженных направлений для решения получаемой симметричной СЛАУ. Принципиальный недостаток такого подхода заключается в сильном увеличении числа обусловленности получаемых симметризованных матриц AA^t или A^tA , где индекс t означает операцию транспонирования. Отметим, что к этому же классу относятся проекционные методы, в которые входят алгоритмы типа Качмажа и Чиммино (см. [7,8] и цитируемую там литературу).

Вторая группа использует обобщенные методы сопряженных направлений, которые порождают полусопряженные векторы, вычисляемые с помощью «длинных» рекуррентных соотношений. Примерами могут здесь служить популярный алгоритм GMRES или методы полусопряженных направлений в различных модификациях [9–12]. Такие методы имеют существенное ограничение, поскольку при большом числе итераций *n* требуется слишком большой объем оперативной памяти ЭВМ для хранения всех вспомогательных векторов. Во избежание этого формируются редуцированные варианты этих алгоритмов, использующие периодические рестарты и/или ограниченную ортогонализацию корректирующих векторов. Однако при этом понижается размерность подпространств Крылова, что приводит к ухудшению сходимости итерационных процессов.

Третья стратегия итерационного решения несимметричных СЛАУ предполагает построение последовательности биортогональных векторов, которые вычисляются с помощью коротких двухчленных рекурсий (см. [13–17], а также монографии [1–6]). Метод бисопряженных градиентов ВСС был предложен в [13, 14], а в [15, 16] были описаны сдвоенный метод бисопряженных градиентов

^{*)} Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 08–01–00526).

CGS и стабилизированный метод бисопряженных градиентов BiCGStab, не использующие транспонированную матрицу A^t . Свойство устойчивости и сходимости этих итерационных схем исследовались, в том числе экспериментально, многими авторами (см., например, [15–18]).

Цель данной статьи состит в расширении и дальнейшем изучении семейства биортогональных алгоритмов. В п. 1 описываются ортогональные и функциональные свойства методов бисопряженных направлений, к которым относится ВСG и его аналог — метод бисопряженных невязок ВСR (Bi-Conjugate Residual). Пункт 2 содержит единообразное изложение сдвоенного метода бисопряженных невязок CRS (Conjugate Residual Squared) и его прототипа CGS. В п. 3 аналогичным образом представлены стабилизированный метод бисопряженных невязок BiCRStab (Bi-Conjugate Residual Stabilized) и его известный предшественник — метод BiCGStab. Свойства алгоритмов исследуются в предположении точных вычислений.

Последний раздел посвящен результатам численных экспериментов по решению рассмотренными итерационными схемами модельных трехмерных диффузионно-конвективных уравнений с различными коэффициентами, рассмотренных ранее в [12,18]. Предобусловленные методы Крылова тестируются на различных сетках с разными значениями рестартовых параметров.

1. Алгоритмы бисопряженных градиентов и невязок. Рассмотрим решение алгебраической системы

$$Au = f, \quad u, f \in \mathbb{R}^N, \quad A \in \mathbb{R}^{N,N}, \tag{1}$$

где матрица А предполагается положительно определенной, т. е.

$$(Au, u) \ge \delta ||u||^2, \quad \delta > 0,$$

$$(u, v) = (v, u) = \sum_{i=1}^N u_i v_i, \quad ||u||^2 = (u, u).$$

(2)

Применим для решения СЛАУ (1) итерационный процесс

$$u^{n+1} = u^n + \alpha_n p^n, \quad r^0 = f - A u^0,$$

$$r^{n+1} = r^n - \alpha_n A p^n, \quad \tilde{r}^{n+1} = \tilde{r}^n - \tilde{\alpha}_n A^t \tilde{p}^n,$$

$$p^{n+1} = r^{n+1} + \beta_n p^n, \quad \tilde{p}^{n+1} = \tilde{r}^{n+1} + \tilde{\beta}_n \tilde{p}^n.$$
(3)

Здесь α_n , β_n , $\tilde{\alpha}_n$ и $\tilde{\beta}_n$ суть некоторые вещественные коэффициенты, u^n есть *n*-е итерационное приближение к искомому решению u; r^n и p^n — соответствующие векторы невязки и коррекции. Будем называть векторы \tilde{r}^n и \tilde{p}^n двойственными векторами невязки и коррекции соответственно. Из формул

$$r^{n} = r^{0} - \alpha_{0} A p^{0} - \dots - \alpha_{n-1} A p^{n-1}, \quad \tilde{r}^{n} = \tilde{r}^{0} - \tilde{\alpha}_{0} A^{t} \tilde{p}^{0} - \dots - \tilde{\alpha}_{n-1} A^{t} \tilde{p}^{n-1}$$
(4)

следует, что векторы r^n , \tilde{r}^n принадлежат подпространствам Крылова

$$\mathcal{K}_{n}(A, r^{0}) = \operatorname{span}\{r^{0}, Ar^{0}, \dots, A^{n-1}r^{0}\},\$$

$$\mathcal{K}_{n}(A^{t}, \tilde{r}^{0}) = \operatorname{span}\{\tilde{r}^{0}, A^{t}\tilde{r}^{0}, \dots, (A^{t})^{n-1}\tilde{r}^{0}\}.$$
(5)

Векторы p^0 , \tilde{r}^0 , \tilde{p}^0 в (3) могут выбираться произвольно, но если мы определим $\tilde{r}^0 = \tilde{f} - A^t \tilde{u}^0$ для заданных векторов \tilde{f} , \tilde{u}^0 , то последовательность $\tilde{u}^{n+1} = u^n + \alpha_n \tilde{p}^n$, если она сходится, имеет предельный вектор \tilde{u} , являющийся решением двойственного уравнения $A^t \tilde{u} = \tilde{f}$.

$$(A^{q}p^{n}, A^{t}\tilde{p}^{k}) = \rho_{n}^{(q)}\delta_{k,n}, \quad \rho_{n}^{(q)} = (A^{q}p^{n}, A^{t}\tilde{p}^{n}), \tag{6}$$

где q=0ил
иq=1,а $\delta_{k,n}$ — символ Кронекера. Если вектор
ы $r^n,p^n,\,\tilde{r}^n,\,\tilde{p}^n$ удовлетворяют соотношениям

$$(A^{q}r^{n}, \tilde{p}^{k}) = (A^{q}r^{n}, \tilde{p}^{n})\delta_{k,n}, \quad (A^{q}p^{k}, \tilde{r}^{n}) = (A^{q}p^{n}, \tilde{r}^{n})\delta_{k,n},$$
(7)

то в силу (4) для итерационных параметров α_n , $\tilde{\alpha}_n$ имеем

$$\alpha_n = (A^q r^0, \tilde{p}^n) / \rho_n^{(q)}, \quad \tilde{\alpha}_n = (\tilde{r}^0, A^q p^n) / \rho_n^{(q)}.$$
(8)

Далее из соотношений

$$(A^{q-1}r^n, \tilde{r}^n) = (A^{q-1}r^0, \tilde{r}^0) - \sum_{k=0}^{n-1} \left[\alpha_k (A^q p^k, \tilde{r}^0) + \tilde{\alpha}_k (A^q r^0, \tilde{p}^k) - \alpha_k \tilde{\alpha}_k \rho_k^{(q)} \right],$$

которые справедливы при условиях (6), легко видеть, что значения коэффициентов (8) обеспечивают свойства

$$\frac{\partial (A^{q-1}r^n, \tilde{r}^n)}{\partial \alpha_k} = \frac{\partial (A^{q-1}r^n, \tilde{r}^n)}{\partial \tilde{\alpha}_k} = 0, \quad k = 0, 1, \dots, n-1.$$
(9)

При этом выполняются следующие равенства:

$$(A^{q-1}r^n, \tilde{r}^n) = (A^{q-1}r^0, \tilde{r}^0) - \sum_{k=0}^{n-1} (A^q r^0, \tilde{p}^k) (A^q p^k, \tilde{r}^0) / \rho_k^{(q)}, \quad q = 0, 1.$$
(10)

Рассмотрим теперь скалярные произведения

$$(A^{q}r^{n}, \tilde{r}^{k}) = \left((A^{q}p^{n} - \beta_{n-1}A^{q}p^{n-1}), \left(\tilde{r}^{0} - \sum_{i=0}^{k-1} \tilde{\alpha}_{i}A^{t}\tilde{p}^{i} \right) \right) \\ \times \left(\left(\left(A^{q}r^{0} - \sum_{i=0}^{n-1} \alpha_{i}A^{q+1}p^{i} \right), (\tilde{p}^{k} - \tilde{\beta}_{k-1}\tilde{p}^{k-1}) \right), \quad (11)$$

из которых при k = n получаем соотношения

$$(A^{q}r^{n}, \tilde{r}^{n}) = (A^{q}p^{n}, \tilde{r}^{0}) = (A^{q}r^{0}, \tilde{p}^{n})$$
(12)

и новые формулы для итерационных параметров

$$\alpha_n = \tilde{\alpha}_n = \sigma_n^{(q)} / \rho_n^{(q)}, \quad \sigma_n^{(q)} = (A^q r^n, \tilde{r}^n).$$

Отсюда выражения (10) могут быть сведены к виду

$$(A^{q-1}r^n, \tilde{r}^n) = (A^{q-1}r^0, \tilde{r}^0) - \sum_{k=0}^{n-1} (A^q r^k, \tilde{r}^k)^2 / \rho_k^{(q)}.$$

Из (11) при k > n мы также имеем

$$\begin{aligned} (A^q r^n, \tilde{r}^n) &= (A^q p^n, \tilde{r}^0) - \tilde{\alpha}_n (A^q p^n, A^t \tilde{p}^n) \\ &- \beta_{n-1} [(A^q p^{n-1}, r^0) - \tilde{\alpha}_{n-1} (A^q p^{n-1}, A^t \tilde{p}^{n-1})] = 0, \end{aligned}$$

а для k < n справедливо равенство

$$(A^{q}r^{n}, \tilde{r}^{k}) = (A^{q}r^{0}, \tilde{p}^{k}) - \alpha_{k}(A^{q}p^{k}, A^{t}\tilde{p}^{k}) - \tilde{\beta}_{k-1}[(A^{q}r^{0}, \tilde{p}^{k-1}) - \tilde{\alpha}_{k-1}(A^{q}p^{k-1}, A^{t}\tilde{p}^{k-1})] = 0.$$

Таким образом, получаем важное ортогональное свойство

$$(A^q r^n, \tilde{r}^k) = \sigma_n^{(q)} \delta_{n,k}.$$
(13)

Заметим, что коэффициенты $\beta_n, \tilde{\beta}_n$ пока не определены. Чтобы это сделать, мы используем свойства (6):

$$(A^{q}p^{n+1}, A^{t}\tilde{p}^{n}) = (A^{q}r^{n+1} + \beta_{n}A^{q}p^{n}, A^{t}\tilde{p}^{n}) = 0,$$

$$(A^{q}p^{n}, A^{t}\tilde{p}^{n+1}) = (A^{q}p^{n}, A^{t}\tilde{r}^{n+1} + \tilde{\beta}_{n}A^{t}\tilde{p}^{n}) = 0,$$

с помощью которых получаем

$$\beta_n = -(A^q r^{n+1}, A^t \tilde{p}^n) / \rho_n^{(q)}, \quad \tilde{\beta}_n = -(A^q p^n, A^t \tilde{r}^{n+1}) / \rho_n^{(q)}. \tag{14}$$

Если теперь мы учтем соотношения

$$A^{t}\tilde{p}^{n} = \frac{1}{\tilde{\alpha}_{n}}(\tilde{r}^{n} - \tilde{r}^{n+1}), \quad A^{q}p^{n} = \frac{1}{\alpha_{n}}A^{q-1}(r^{n} - r^{n+1})$$

и подставим их в (14), то приходим к новым формулам для β_n , $\tilde{\beta}_n$:

$$\beta_n = \tilde{\beta}_n = \sigma_{n+1}^{(q)} / \sigma_n^{(q)}.$$
(15)

Перейдем теперь к скалярному произведению

$$\begin{aligned} (A^{q}p^{n}, A^{t}\tilde{p}^{n}) &= ((A^{q}r^{n} + \beta_{n-1}A^{q}p^{n-1}), (A^{t}\tilde{r}^{n} + \tilde{\beta}_{n-1}A^{t}\tilde{p}^{n-1})) \\ &= (A^{q}r^{n}, A^{t}\tilde{r}^{n}) + \beta_{n-1}(A^{q}p^{n-1}, A^{t}\tilde{r}^{n}) + \tilde{\beta}_{n-1}(A^{q}r^{n}, A^{t}\tilde{p}^{n-1}) + \beta_{n-1}\tilde{\beta}_{n-1}\rho_{n-1}^{(q)}. \end{aligned}$$

Нетрудно видеть, что коэффициенты
 $\beta_n,\,\tilde\beta_n$ из (14), (15) обеспечивают условия

$$\frac{\partial (A^q p^n, A^T \tilde{p}^n)}{\partial \beta_{n-1}} = \frac{\partial (A^q p^n, A^T \tilde{p}^n)}{\partial \tilde{\beta}_{n-1}} = 0,$$
(16)

а соответствующие значения $\rho_n^{(q)}$ для q=0,1равны

$$(A^{q}p^{n}, A^{t}\tilde{p}^{n}) = (A^{q}r^{n}, A^{t}\tilde{r}^{n}) - (A^{q}p^{n-1}, A^{t}\tilde{p}^{n-1})\frac{(A^{q}r^{n}, \tilde{r}^{n})^{2}}{(A^{q}r^{n-1}, \tilde{r}^{n-1})^{2}}.$$
 (17)

Из соотношений (12), (15) следуют требования к выбору начальных векторов $\tilde{r}^0, p^0, \tilde{p}^0$ в случаях q = 0 или q = 1:

$$(A^q r^0, \tilde{r}^0) \neq 0, \quad (A^q p^0, A^t \tilde{p}^0) \neq 0.$$
 (18)

На практике обычно следуют простейшему правилу

$$p^0 = \tilde{p}^0 = \tilde{r}^0 = r^0.$$
(19)

Очевидно, что формулы (3) при q = 0 и q = 1 определяют два различных алгоритма, но мы ради краткости опускаем индекс q в векторах. Из (3), (12)

и (15) для q = 0 определяется известный метод бисопряженных градиентов, который для симметричной матрицы $A = A^t$ при условиях (19) переходит в классический алгоритм сопряженных градиентов.

В случае q = 1 и $A = A^t$ формулы (3), (12), (15) описывают метод сопряженных невязок (см. [3–6]). По этой причине в общем случае $A \neq A^t$ определяемый ими метод будем называть методом бисопряженных невязок.

Известно, что для симметричных положительно определенных СЛАУ методы сопряженных градиентов и сопряженных невязок обеспечивают минимизацию функционалов $\Phi_n^{(q)} = (A^{q-1}r^n, r^n)$ в подпространствах Крылова $\mathcal{K}_n(A, r^0)$, а это вариационное свойство позволяет получить оценку скорости сходимости итераций через характеристики полиномов Чебышева первого рода.

В несимметричном случае соотношение (10) не гарантирует оптимизацию функционала и мы не можем получить оценку числа итераций. Если алгоритмы вида (3) при q = 0 или q = 1 не вырождаются, то векторы p^0, p^1, \ldots, p^n и $\tilde{p}^0, \tilde{p}^1, \ldots, \tilde{p}^n$ линейно независимы и эти итерационные процессы при точных вычислениях сходятся к решению u системы (1) не более чем за N шагов.

2. Сдвоенные методы бисопряженных направлений. Векторы невязок и коррекции в рассмотренных алгоритмах бисопряженных направлений могут быть выражены через их начальные значения:

$$r^{n} = \varphi_{n}^{(q)}(A)r^{0}, \quad p^{n} = \psi_{n}^{(q)}(A)p^{0}, \quad \tilde{r}^{n} = \varphi_{n}^{(q)}(A^{T})\tilde{r}^{0}, \quad \tilde{p}^{n} = \psi_{n}^{q}(A^{T})\tilde{p}^{0}.$$
(20)

Здесь $\varphi_n^{(q)}(t)$ и $\psi_n^{(q)}(t)$ суть полиномы степени n со следующими условиями нормировки:

$$\psi_n^{(q)}(0) = n+1, \quad \varphi_0^{(q)}(t) = \varphi_n^{(q)}(0) = \psi_0^{(q)}(t) = 1.$$
 (21)

Эти многочлены удовлетворяют рекуррентным соотношениям

$$\varphi_{n+1}^{(q)}(t) = \varphi_n^{(q)}(t) - \alpha_n^{(q)} t \psi_n^{(q)}(t), \quad \psi_{n+1}^{(q)}(t) = \varphi_{n+1}^{(q)}(t) + \beta_n^{(q)} \psi_n^{(q)}(t).$$
(22)

Заметим также, что определяемые в (12), (15) скаляры α_n , β_n могут быть записаны с помощью формул

$$\alpha_{n}^{(q)} = \frac{(A^{q}\varphi_{n}^{(q)}(A)r^{0},\varphi_{n}^{(q)}(A^{T})\tilde{r}^{0})}{(A^{q}\psi_{n}^{(q)}(A)p^{0},A^{T}\psi_{n}^{(q)}(A^{T})\tilde{p}^{0})} = \frac{(A^{q}(\varphi_{n}^{(q)})^{2}(A)r^{0},\tilde{r}^{0})}{(A^{q}(\psi_{n}^{(q)})^{2}(A)p^{0},A^{T}\tilde{p}^{0})},$$
(23)
$$\beta_{n}^{(q)} = (A^{q}(\varphi_{n+1}^{(q)})^{2}(A)r^{0},\tilde{r}^{0}) / (A^{q}(\varphi_{n}^{(q)})^{2}(A)r^{0},\tilde{r}^{0}).$$

Отсюда видно, что если мы определим новые векторы с помощью многочленов удвоенных порядков 2n:

$$\bar{r}^n = \Phi_n^{(q)}(A)r^0, \quad \bar{p}^n = \Psi_n^{(q)}(A)p^0,$$

$$\Phi_n^{(q)}(t) = (\varphi_n^{(q)})^2(t), \quad \Psi_n^{(q)}(t) = (\psi_n^{(q)})^2(t),$$
(24)

то с их помощью можно проводить вычисление величин $\alpha_n^{(q)}$, $\beta_n^{(q)}$. Для новых полиномов справедливы следующие рекуррентные соотношения:

$$\Phi_{n+1}^{(q)} = \Phi_n^{(q)} - \alpha_n^{(q)} t \big(Y_n^{(q)} + X_{n+1}^{(q)} \big), \quad \Psi_n^{(q)} = Y_n^{(q)} + \beta_n^{(q)} \big(X_n^{(q)} + \beta_n^{(q)} \Psi_{n-1}^{(q)} \big), \\
X_{n+1}^{(q)} = Y_n^{(q)} - \alpha_n^{(q)} t \Psi_n^{(q)}, \quad Y_n^{(q)} = \Phi_n^{(q)} + \beta_n^{(q)} X_n^{(q)}.$$
(25)

Здесь введены вспомогательные многочлены $X_n^{(q)} = \psi_n^{(q)} \varphi_{n-1}^{(q)}$. Если мы определим векторы

$$w^n = X_n^{(q)}(A)r^0, \quad w^n = Y_n^{(q)}(A)r^0$$

и примем во внимание соотношения

$$\rho_n^{(q)} \equiv \left(A^q \Phi_n^{(q)}(A) r^0, \tilde{r}^0\right) = (\bar{r}^n, (A^q)^T \tilde{r}^0),$$

$$\sigma_n^{(q)} \equiv \left(A^q \Psi_n^{(q)}(A) p^0, A^T \tilde{p}^0\right) = (A \bar{p}^n, (A^q)^T \tilde{p}^0).$$

то можно определить следующие сдвоенные методы бисопряженных направлений, в которых предполагаются начальные условия (19):

$$\begin{aligned} r^{0} &= f - Au^{0}, \quad p^{0} = \tilde{p}^{0} = \tilde{r}^{0} = w^{0} = r^{0}, \quad r_{q}^{0} = (A^{t})^{q} r^{0}, \\ \rho_{n}^{(q)} &= \left(r^{n}, r_{q}^{0}\right), \quad \sigma_{n}^{(q)} = \left(Ap^{n}, r_{q}^{0}\right), \quad \alpha_{n}^{(q)} = \rho_{n}^{(q)} / \sigma_{n}^{(q)}, \quad v^{n} = w^{n} - \alpha_{n}^{(q)} Ap^{n}, \\ u^{n+1} &= u^{n} + \alpha_{n}^{(q)} (w^{n} + v^{n}), \quad r^{n+1} = r^{n} - \alpha_{n}^{(q)} A(w^{n} + v^{n}), \\ \beta_{n}^{(q)} &= \rho_{n+1}^{(q)} / \rho_{n}^{(q)}, \quad w^{n+1} = r^{n+1} + \beta_{n}^{(q)} v^{n}, \\ p^{n+1} &= w^{n+1} + \beta_{n}^{(q)} \left(v^{n} + \beta_{n}^{(q)} p^{n}\right). \end{aligned}$$
(26)

В этих формулах символы q и ~ для векторов r^n , p^n ради краткости опускаются. Соотношения (7) при q = 0 дают известный сдвоенный метод бисопряженных градиентов CGS, а при q = 1 его аналог будем называть сдвоенным методом бисопряженных невязок CRS.

Заметим, что в методе CGS отсутствует умножение вектора на транспонированную матрицу A^t . Единственное отличие между методами CGS и CRS заключается в определении вектора r_q^0 , который вычисляется только один раз до итераций. При q = 1 нахождение скалярных параметров можно также определить по формулам

$$\rho_n^{(q)} = (A^q r^n, r^0), \quad \sigma_n^{(q)} = (A^q A p^n, r^0),$$

так что метод CRS, как и CGS, можно считать не использующим A^t .

Вообще говоря, можно ожидать, что построенные алгоритмы при q = 0и q = 1 будут сходиться в два раза быстрее, чем методы ВСС и ВСК соответственно. Действительно, если $\max_{t \in S} \{|\varphi(t)|\} = 1 - \delta, \ \delta \ll 1$, на спектре S матрицы A, то $\max_{t \in S} \{|\Phi(t)|\} \approx 1 - 2\delta$, что означает асимптотически уменьшение числа итераций вдвое.

3. Стабилизированные методы бисопряженных направлений. Мы рассмотрим в единообразной форме два алгоритма, которые при q = 0 представляют известный стабилизированный метод бисопряженных градиентов BiCG-Stab, а при q = 1 дают новый стабилизированный метод бисопряженных невязок BiCRStab.

Мотивировка предложенного Ван-дер-Ворстом алгоритма BiCGStab заключается в обеспечении более гладкой сходимости итераций, поскольку в методе BiCG зачастую наблюдается нерегулярный характер сходимости.

Рассмотрим итерационные процессы, в которых векторы невязок и коррекции определяются формулами

$$\bar{r}_n^{(q)} = \eta_n(A)\varphi_n^{(q)}(A)r^0, \quad \bar{p}_n^{(q)} = \eta_n(A)\psi_n^{(q)}(A)p^0, \tag{27}$$

где многочлены $\varphi_n^{(q)}, \psi_n^{(q)}$ порождаются методами BiCG и BiCR при q=0 и q=1 соответственно, а полиномы $\eta_n(t)$ удовлетворяют рекуррентным соотношениям

$$\eta_{n+1}(t) = (1 - \omega_n t)\eta_n(t) \tag{28}$$

с некоторыми скалярными параметрам
и $\omega_n,$ которые будут определены позже. Из уравнений (22) имеем

$$\eta_{n+1}\varphi_{n+1}^{(q)} = (1 - \omega_n t) \big(\eta_n \varphi_n^{(q)} - \alpha_n t \eta_n \psi_n^{(q)} \big), \eta_n \psi_n^{(q)} = \eta_n \varphi_n^{(q)} + \beta_{n-1}^{(q)} (1 - \omega_{n-1} t) \eta_{n-1} \psi_{n-1}^{(q)},$$
(29)

откуда для векторов (27) следуют рекуррентные соотношения

$$\bar{r}_{n+1}^{(q)} = (I - \omega_n A) \left(\bar{r}_n^{(q)} - \alpha_n^{(q)} A \bar{p}_n^{(q)} \right), \quad \bar{p}_{n+1}^{(q)} = \bar{r}_{n+1}^{(q)} + \beta_n^{(q)} (I - \omega_n A) \bar{p}_n^{(q)}. \tag{30}$$

В силу ортогональных свойств (7) для векторов невязок и коррекции и
терационные параметры $\alpha_n^{(q)}$ и $\beta_n^{(q)}$ могут быть переписаны в следующей едино
образной форме (см. вывод для q=0 в [4,12]):

$$\alpha_n^{(q)} = \rho_n^{(q)} / \sigma_n^{(q)}, \quad \beta_n^{(q)} = \alpha_n^{(q)} \rho_{n+1}^{(q)} / (\omega_n \rho_n^{(q)}), \\
\rho_n^{(q)} = (\bar{r}_n^{(q)}, (A^T)^q r^0), \quad \sigma_n^{(q)} = (A \tilde{p}_n^{(q)}, (A^T)^q p^0).$$
(31)

Далее следует определить дополнительные параметры ω_n в многочленах $\eta_{n+1}(t)$. Один из простейших выборов ω_n заключается в организации шага наискорейшего спуска для нормы невязки, полученной до умножения на матрицу $I - \omega_n A$. Первое из уравнений (30) может быть переписано в виде

$$\bar{r}_{n+1}^{(q)} = \bar{r}_n^{(q)} - \alpha_n^{(q)} A \bar{p}_n^{(q)} - \omega_n A s^n = (I - \omega_n A) s^n,$$

$$s^n = \bar{r}_n^{(q)} - \alpha_n^{(q)} A \bar{p}_n^{(q)}, \quad \bar{r}_0^{(q)} = r^0.$$
(32)

Тогда условие минимизации $\frac{\partial \|\bar{r}_{n+1}^{(q)}\|^2}{\partial \omega_n} = 0$ дает оптимальное значение ω_n в следующей форме:

$$\omega_n = (As^n, s^n) / (As^n, As^n). \tag{33}$$

Наконец, следует выписать формулу для нового итерационного приближения $u_{n+1}^{(q)}$, которая получается из выражения (32) для невязки:

$$u_{n+1}^{(q)} = u_n^{(q)} + \alpha_n^{(q)} \bar{p}_n^{(q)} + \omega_n s^n, \quad \bar{r}_n^{(q)} = f - A u_n^{(q)}.$$
(34)

После объединения предыдущих соотношений мы получаем унифицированное представление для BiCGStab и BiCRStab при q=0 и q=1 соответственно:

$$\begin{aligned} r^{0} &= f - Au^{0}, \quad r_{0}^{(q)} = p_{0}^{(q)} = r^{0}, \quad n = 0, 1, \dots, \\ \alpha_{n}^{(q)} &= (r^{n}, (A^{T})^{q}r^{0}) / (Ap^{n}, (A^{T})^{q}r^{0}), \quad u_{0}^{(q)} = u^{0}, \\ s^{n} &= r_{n}^{(q)} - \alpha_{n}^{(q)}Ap_{n}^{(q)}, \quad \omega_{n} = (As^{n}, s^{n}) / (As^{n}, As^{n}), \\ u_{n+1}^{(q)} &= u_{n}^{(q)} + \alpha_{n}^{(q)}p_{n}^{(q)} + \omega_{n}s^{n}, \quad r_{n+1}^{(q)} = s^{n} - \omega_{n}As^{n}, \\ \beta_{n}^{(q)} &= \left[\alpha_{n}^{(q)}(r^{n+1}, (A^{T})^{q}r^{0})\right] / [\omega_{n}(r^{n}, (A^{T})^{q}r^{0}], \\ p_{n+1}^{(q)} &= r_{n+1}^{(q)} + \beta_{n}^{(q)}(p_{n}^{(q)} - \omega_{n}Ap_{n}^{(q)}). \end{aligned}$$
(35)

4. Численные результаты. Проведем сравнительный анализ эффективности шести рассмотренных итерационных «решателей» на представительном наборе СЛАУ, получаемых из трехмерной задачи Дирихле для диффузионно-конвективного уравнения

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + p \frac{\partial u}{\partial x} + q \frac{\partial u}{\partial y} + r \frac{\partial u}{\partial z} = f(x, y, z),$$

$$(x, y, z) \in \Omega = [0, 1]^3, \quad u|_{\Gamma} = g(x, y, z).$$
(36)

Аппроксимация данной краевой задачи осуществляется с помощью конечно-объемной схемы экспоненциального типа [18] на кубических сетках с шагами h = 1/(M + 1), где число разбиений в каждом измерении выбиралось равным M = 32, 64, 128, 256. Получаемые семидиагональные матрицы с порядками $(M - 1)^3$ являются монотонными для любых значений конвективных коэффициентов p, q, r, которые в экспериментах выбирались постоянными или переменными, положительными или отрицательными. В целом рассмотрено 10 различных комбинаций p, q, r, для которых результаты расчетов со стандартной двойной точностью представлены ниже в табл. 1–9. Во всех экспериментах использовался критерий окончания итераций $(r^n, r^n) \leq (f, f)\varepsilon^2$ при $\varepsilon = 10^{-7}$, что обеспечивало относительную ошибку итерационного решения примерно 10^{-6} .

В (36) были выбраны простейшие функци
и $f,\,g,$ обеспечивающие точное решение краевой задач
иu(x,y,z)=1.Начальное значение u^0 во всех и
терационных процессах использовалось равным

$$u^{0}(x, y, z) = x^{2} + y^{2} + z^{2}.$$
(37)

Отметим, что поведение итерационных алгоритмов зависит от характера начальной ошибки $u - u^0$, однако в проведенных многочисленных расчетах с другими начальными приближениями u^0 , которые мы не приводим, сравнительные свойства сходимости рассмотренных методов остаются примерно одинаковыми.

Итерационные методы в подпространствах Крылова реализовывались с предобусловливающей матрицей вида

$$B = (G - L)G^{-1}(G - U), \quad G = \frac{1}{\omega}D - \theta S, \quad Se = \left(\frac{1 - \omega}{\omega}D + LG^{-1}U\right)e, \quad (38)$$

где D,~L и U суть диагональная, нижняя треугольная и верхняя треугольная части исходной матрицыA=D-L-U;~G и S— диагональные матрицы; e— вектор с единичными компонентами; ω и θ — релаксационный и компенсирующий параметры соответственно.

В действительности решатели применяются к предобусловленной СЛАУ

$$\bar{A}\bar{u} = \bar{f} = (I - \bar{L})^{-1}G^{-1/2}f, \quad \bar{u} = (I - \bar{U})G^{-1/2}u,$$

$$\bar{A} = (I - \bar{L})^{-1} - (I - \bar{U})^{-1} - (I - \bar{L})^{-1}(2I - \bar{D})(I - \bar{U})^{-1},$$

$$\bar{L} = G^{-1/2}LG^{-1/2}, \quad \bar{U} = G^{-1/2}UG^{-1/2}, \quad \bar{D} = G^{-1/2}DG^{-1/2}.$$

(39)

Реализация итерационных шагов осуществляется с помощью экономичной модификации Айзенштата, в которой умножение на предобусловленную матрицу \bar{A} требует примерно такого же объема арифметических операций, что и умножение на исходную матрицу A:

$$\bar{A}v = (I - \bar{L})^{-1} [v - (2I - \bar{D})w] + w, \quad w = (I - \bar{U})^{-1}v.$$
(40)

В представленных результатах использовались варианты крыловских итераций с периодическими рестартами через каждые m шагов: на каждой итерации с номером $n_l = lm, l = 0, 1, 2, \ldots$, вектор невязки вычисляется не из рекуррентных соотношений, а из исходного предобусловленного уравнения, т. е. $r^{n_l} = f - \bar{A} \bar{u}^{n_l}$, после чего процесс биортогонализации возобновляется.

В каждой клетке таблиц представлены количества итераций для значений параметров рестартов m = 100, 20, 10 сверху вниз соответственно. В табл. 1–6 для простоты используются итерационные параметры $\omega = \theta = 1$. Результаты для предобусловленных методов ВСС и ВСК содержатся в табл. 1, 2.

Таблица 1

						p, q, r				
Ν	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\begin{array}{c} 16,16,\\ 16\end{array}$	$ \begin{array}{c} 64, 64, \\ 64 \end{array} $	64, 64, -64	64, -64, -64	1 - 2x, 0, 0
32	7 7 7	13 13 14	22 20 21	23 24 26	20 22 23	14 14 14	7 7 7	31 31 31	$30 \\ 28 \\ 28$	$26 \\ 26 \\ 27$
64	10 10 10	20 20 25	$30 \\ 32 \\ 31$	$35 \\ 37 \\ 42$	32 29 30	21 20 21	$ \begin{array}{c} 11 \\ 11 \\ 10 \end{array} $	45 45 80	49 41 78	$38 \\ 39 \\ 44$
128	$\begin{array}{c} 20\\ 20\\ 21 \end{array}$	34 33 38	$\begin{array}{c} 42\\ 44\\ 42 \end{array}$	$51 \\ 55 \\ 65$	43 43 44	$35 \\ 32 \\ 31$	$21 \\ 20 \\ 20$	$78 \\ 85 \\ 138$	$75 \\ 98 \\ 177$	$55 \\ 59 \\ 67$
256	$38 \\ 41 \\ 31$	52 48 47	$58 \\ 64 \\ 61$	74 86 104	58 61 70	$52 \\ 49 \\ 62$	41 43 32	$ 108 \\ 142 \\ 244 $	$ \begin{array}{r} 108 \\ 148 \\ 265 \end{array} $	79 90 108

Результаты для метода BCG, $\omega = \theta = 1$

т	a	б	л	и	п	a	2
-	c.	0	01	**	щ	0	-

Результаты для метода BCR, $\omega = \theta = 1$

N 32 64		p, q, r												
Ν	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\begin{array}{c} 16,16,\\ 16\end{array}$	64, 64, 64, 64	64, 64, -64	64, -64, -64	1 - 2x, 0, 0				
32	7 7 7	13 13 14	21 20 20	23 23 25	20 20 27	$ \begin{array}{c} 13 \\ 13 \\ 14 \end{array} $	$\begin{array}{c} 6\\ 6\\ 6\end{array}$	$30 \\ 28 \\ 32$	29 28 31	$25 \\ 25 \\ 27$				
64	10 10 10	20 20 22	$30 \\ 28 \\ 28$	33 35 39	29 29 29	19 19 20	11 11 10	44 42 68	48 41 80	$35 \\ 37 \\ 42$				
128	19 19 18	31 29 33	$ \begin{array}{r} 41 \\ 39 \\ 40 \end{array} $	48 53 61	43 41 41	$32 \\ 30 \\ 34$	19 19 18	108 82 178	78 102 233	$51 \\ 56 \\ 64$				
256	$\begin{array}{c} 37\\ 33\\ 27\end{array}$	$50 \\ 43 \\ 41$	$58 \\ 60 \\ 58$	70 78 101	58 56 66	$50 \\ 46 \\ 45$	$39 \\ 41 \\ 31$	109 173 189	$ \begin{array}{r} 105 \\ 185 \\ 282 \end{array} $	75 87 106				

Как видно из табл. 1, 2, число итераций в методе BCR несколько меньше, чем в BCG. При p = q = r = 0 решаемые СЛАУ являются симметричными и данные методы переходят в «классические» алгоритмы сопряженных градиентов CG и сопряженных невязок CR. Отметим, что с ростом n для последнего характерно монотонное убывание нормы невязки, а для CG — осциллирующее.

В табл. 3, 4 даны аналогичные результаты для предобусловленных сдвоенных методов бисопряженных градинетов и невязок. Символ ∞ здесь означает расходимость итераций, которое иногда имеет место в силу нарушения численной устойчивости алгоритмов к погрешностям машинных округлений.

r										
N 32						p, q, r				
Ν	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\begin{array}{c} 16,16,\\ 16\end{array}$	$ \begin{array}{c} 64, 64, \\ 64 \end{array} $	64, 64, -64	64, -64, -64	$1 - 2x, \\ 0, 0$
32	3 3 3	9 9 9	13 13 14	$\begin{array}{c} 14\\14\\16\end{array}$	14 14 14	8 8 8	3 3 3	$16 \\ 16 \\ 17$	$ \begin{array}{c} 14 \\ 14 \\ 15 \end{array} $	$ \begin{array}{c} 17 \\ 17 \\ 19 \end{array} $
64	6 6 6	$\begin{array}{c} 14\\14\\16\end{array}$	18 18 19	$23 \\ 25 \\ 25$	18 18 19	$ \begin{array}{c} 13 \\ 13 \\ 12 \end{array} $	$\begin{array}{c} 6\\ 6\\ 6\end{array}$	$24 \\ 24 \\ 52$	$22 \\ 24 \\ 41$	$\begin{array}{c} 27\\ 30\\ 28 \end{array}$
128	$ \begin{array}{c} 16 \\ 16 \\ 21 \end{array} $	$20 \\ 22 \\ 39$	$25 \\ 33 \\ 39$	$\infty \\ \infty \\ 38$	26 28 34	$ \begin{array}{r} 19 \\ 19 \\ 23 \end{array} $	$ \begin{array}{r} 16 \\ 16 \\ 16 \end{array} $	$38 \\ 41 \\ 367$	$38 \\ 54 \\ \infty$	$ \begin{array}{r} 43 \\ 39 \\ 54 \end{array} $
256	31 37 48	$\begin{array}{c} 30\\ 44\\ 44 \end{array}$	$37 \\ 43 \\ 94$	∞ ∞ 66	38 43 53	$29 \\ 37 \\ 55$	$ \begin{array}{r} 34 \\ 38 \\ 31 \end{array} $	$61 \\ 224 \\ 144$	$\begin{array}{c} 70 \\ 200 \\ \infty \end{array}$	68 72 72

Результаты для метода CGS, $\omega = \theta = 1$

Таблица 4

Таблица З

	p, q, r												
Ν	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\begin{array}{c} 16,16,\\ 16 \end{array}$	$ \begin{array}{c} 64, 64, \\ 64 \end{array} $	64, 64, -64	64, -64, -64	1 - 2x, 0, 0			
32	3 3 3	9 9 9	12 12 11	14 14 14	11 11 18	8 8 8	3 3 3	$15 \\ 15 \\ 19$	$14 \\ 14 \\ 17$	17 17 15			
64	6 6 6	$13 \\ 13 \\ 13$	18 18 16	21 21 22	18 18 16	12 12 11	6 6 6	$23 \\ 22 \\ 38$	$23 \\ 23 \\ 31$	$24 \\ 20 \\ 25$			
128	14 14 11	20 20 19	$25 \\ 21 \\ 30$	${\infty \atop 28 \atop 30}$	$\begin{array}{c} 26\\ 24\\ 24\\ 24\end{array}$	19 19 18	15 15 11	$38 \\ 37 \\ 68$	$37 \\ 44 \\ 58$	$39 \\ 30 \\ 30 \\ 30$			
256	$31 \\ 23 \\ 15$	$30\\24\\24$	37 33 36	$\begin{array}{c}\infty\\40\\42\end{array}$	$\begin{array}{c} 30\\ 34\\ 40 \end{array}$	28 24 27	$33 \\ 23 \\ 15$	58 78 92	69 87 87	$58\\44\\46$			

Результаты для метода CRS, $\omega = \theta = 1$

Как отсюда следует, метод CRS более устойчив в сравнении с CGS, а также обеспечивает хорошую сходимость итераций при средних значениях параметра рестарта ($m \approx 20$). С ростом m количество итераций теоретически должно уменьшаться, однако практически иногда наблюдается их возрастание.

В табл. 5, 6 приведены результаты для двух стабилизированных алгоритмов. Из них видно, что предобусловленные методы BiCGStab и BiCRStab демонстрируют хорошую устойчивость и скорость сходимости итераций для всех рассмотренных значений конвективных коэффициентов $p,\,q,\,r,$ рестартового параметраmи числа шагов сеткиM.

	p, q, r													
Ν	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\begin{array}{c} 16,16,\\ 16 \end{array}$	64, 64, 64, 64	64, 64, -64	64, -64, -64	1 - 2x, 0, 0				
32	$\begin{array}{c} 4\\ 4\\ 4\end{array}$	9 9 9	12 12 13	16 16 16	12 12 13	8 8 8	$\begin{array}{c} 4\\ 4\\ 4\end{array}$	18 18 18	$ \begin{array}{r} 16 \\ 16 \\ 17 \end{array} $	$ \begin{array}{c} 17 \\ 17 \\ 16 \end{array} $				
64	6 6 6	12 12 13	$16 \\ 16 \\ 17$	$\begin{array}{c} 24 \\ 24 \\ 24 \end{array}$	18 18 20	$12 \\ 12 \\ 13$	6 6 6	$28 \\ 28 \\ 35$	27 28 33	22 23 24				
128	11 11 11	$ \begin{array}{c} 17 \\ 17 \\ 20 \end{array} $	$24 \\ 23 \\ 25$	38 31 33	$25 \\ 24 \\ 27$	$ \begin{array}{r} 16 \\ 16 \\ 18 \end{array} $	9 9 9	$45 \\ 51 \\ 71$	$43 \\ 57 \\ 87$	$33 \\ 32 \\ 35$				
256	$ \begin{array}{c} 16 \\ 16 \\ 15 \end{array} $	$23 \\ 24 \\ 27$	$34 \\ 35 \\ 35$	$55\\46\\46$	33 36 37	$25 \\ 25 \\ 25 \\ 25$	$ \begin{array}{r} 16 \\ 16 \\ 16 \end{array} $		74 131 139	$52 \\ 52 \\ 49$				

Результаты для метода BiCGStab, $\omega = \theta = 1$

Таблица (ł	j	j	,
-----------	---	---	---	---

	p, q, r													
N	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\begin{array}{c} 16,16,\\ 16 \end{array}$	$ \begin{array}{c} 64, 64, \\ 64 \end{array} $	64, 64, -64	64, -64, -64	1 - 2x, 0, 0				
32	$\begin{array}{c} 4\\ 4\\ 4\end{array}$	9 9 9	12 12 14	$ \begin{array}{c} 17 \\ 17 \\ 16 \end{array} $	12 12 14	8 8 8	$\begin{array}{c} 4\\ 4\\ 4\end{array}$	18 18 18	$ \begin{array}{c} 16 \\ 16 \\ 17 \end{array} $	$ \begin{array}{r} 16 \\ 16 \\ 16 \end{array} $				
64	6 6 6	12 12 13	16 16 18	26 25 22	17 17 18	$ \begin{array}{c} 12 \\ 12 \\ 13 \end{array} $	6 6 6	29 28 33	27 29 32	$25 \\ 26 \\ 24$				
128	9 9 9	17 17 17 19	$25 \\ 24 \\ 29$	$ \begin{array}{r} 40 \\ 32 \\ 35 \end{array} $	$26 \\ 25 \\ 25 \\ 25$	17 17 19	9 9 9	$\begin{array}{c} 44\\ 48\\ 65 \end{array}$	$43 \\ 54 \\ 66$	$37 \\ 32 \\ 36$				
256	$ \begin{array}{c} 16 \\ 16 \\ 15 \end{array} $	$\begin{array}{c} 24 \\ 24 \\ 25 \end{array}$	34 32 32	53 45 48	$36 \\ 34 \\ 49$	$23 \\ 25 \\ 27$	$ \begin{array}{c} 16 \\ 16 \\ 17 \end{array} $	69 82 118	77 110 99	$53 \\ 48 \\ 49$				

Результаты для метода BiCRStab, $\omega=\theta=1$

Поскольку скорость сходимости итераций рассмотренных алгоритмов зависит от свойств предобусловливающей матрицы B из (38) и предобусловленной системы (39), представляет интерес вопрос об автоматизации выбора итерационных параметров, адаптированных к конкретным СЛАУ. Как отмечалось в [18], алгоритмы их оптимизации представляются слишком трудоемкими, поэтому мы приведем только результаты применения эмпирического приема, заключающегося в выборе релаксационного параметра ω (при фиксированном значении компенсирующего параметра θ) из условия (Be, e) = (Ae, e), которое приводит к формуле

$$\omega = \frac{(e,e) - \sqrt{(e,e)^2 - 4(\bar{L}\bar{U}e,e)(e,e)}}{2(\bar{L}\bar{U}e,e)}.$$
(41)

Таблица 5

Здесь в правой части использовались значения параметров $\omega=\omega_0=1$ и $\theta=0,975.$ Полученные результаты для метода ВСR представлены в табл. 7.

		Т	аблица 7
Результаты для метода	BCR с выбором ω по	формуле (41), $\omega_0 =$	$1, \theta = 0,975$

						p, q, r				
Ν	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\begin{array}{c} 16,16,\\ 16 \end{array}$	64, 64, 64, 64	64, 64, -64	64, -64, -64	1 - 2x, 0, 0
32	6 6 6	$\begin{array}{c} 14\\14\\13\end{array}$	21 22 21	22 22 24	21 21 23	$\begin{array}{c} 14\\14\\13\end{array}$	$\begin{array}{c} 6\\ 6\\ 6\end{array}$	29 29 28	$30 \\ 27 \\ 27 \\ 27$	$23 \\ 24 \\ 24$
64	10 10 10	22 21 21	$30 \\ 26 \\ 27$	30 31 33	$28 \\ 26 \\ 30$	21 21 24	10 10 10	$\begin{array}{c} 44\\ 43\\ 64 \end{array}$	$45 \\ 41 \\ 84$	31 32 34
128	$\begin{array}{c} 22\\ 20\\ 20\end{array}$	$37 \\ 30 \\ 35$	$ \begin{array}{r} 40 \\ 36 \\ 36 \end{array} $	40 42 45	$38 \\ 36 \\ 37$	$33 \\ 34 \\ 41$	19 19 22	$73 \\ 74 \\ 124$	$75 \\ 81 \\ 147$	$\begin{array}{c} 42\\ 43\\ 46\end{array}$
256	$\begin{array}{c} 45\\ 41\\ 36 \end{array}$	59 69 50	$54 \\ 53 \\ 56$	54 58 68		$59 \\ 50 \\ 52$	$ 42 \\ 44 \\ 35 $	$ \begin{array}{r} 106 \\ 188 \\ 235 \end{array} $	$ \begin{array}{r} 109 \\ 213 \\ 236 \end{array} $	$56 \\ 60 \\ 69$

Аналогичные данные для метода CRS приведены в табл. 8 с использованием дополнительного приема. А именно, при каждом рестарте первая итерация реализуется с помощью простого алгоритма минимальных невязок по формулам

$$u^{n+1} = u^n + \alpha_n r^n, \quad r^n = f - Au^n, \quad n = n_l = lm, \quad l = 0, 1, \dots,$$

$$r^{n+1} = r^n - \alpha_n Ar^n, \quad \alpha_n = (Ar^n, r^n)/(Ar^n, Ar^n).$$
 (42)

Мотивировкой этого приема является сглаживание начальных осцилляций в поведении нормы невязки, которое зачастую наблюдается в экспериментах с методом CRS.

Таблица 8 Результаты для метода CRS по формулам (41), (42), $\omega_0 = 1, \theta = 0,975$

N 32 64						p,q,r				
Ν	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\begin{array}{c} 16,16,\\ 16 \end{array}$	64, 64, 64, 64	64, 64, -64	64, -64, -64	1 - 2x, 0, 0
32	$\begin{array}{c} 4\\ 4\\ 4\end{array}$	11 11 11	12 12 12	13 13 13	10 10 10	$ \begin{array}{r} 15 \\ 15 \\ 15 \end{array} $	$\begin{array}{c} 4\\ 4\\ 4\end{array}$	21 21 21	$15 \\ 15 \\ 15 \\ 15$	$\begin{array}{c} 14\\14\\14\end{array}$
64	6 6 6	19 19 19	$14 \\ 14 \\ 15$	17 17 21	17 17 17	13 13 13	$\begin{array}{c} 6\\ 6\\ 6\end{array}$	54 54 54	$43 \\ 43 \\ 43$	19 19 19
128	10 10 10	19 19 19	29 29 29	22 23 25	23 23 21	18 18 18	11 11 11	$55 \\ 55 \\ 47$	88 88 75	$27 \\ 24 \\ 25$
256	$31 \\ 31 \\ 31 \\ 31$	49 49 49	62 62 62	31 32 34	42 32 37	$54 \\ 54 \\ 54$	$20 \\ 20 \\ 20 \\ 20$	97 97 97	$149 \\ 149 \\ 141$	32 33 37

Для сравнения эффективности рассмотренных выше алгоритмов в табл. 9 мы даем аналогичные результаты для описанного в [12] метода полусопряженных невязок SCR, который минимизирует нормы невязок в подпространствах Крылова, но требует значительных ресурсов для хранения и вычисления координирующих векторов.

37						p,q,r				
Ν	-64, -64, -64, -64	-16, -16, -16, -16	-4, -4, -4, -4	0, 0, 0, 0	4, 4, 4, 4	$\substack{16,16,\\16}$	64, 64, 64, 64	64, 64, -64	64, -64, -64	$1 - 2x, \\ 0, 0$
32	6 6 6	13 13 13	18 18 19	22 22 24	18 18 18	12 12 12	5555	$25 \\ 29 \\ 38$	24 27 36	$\begin{array}{c} 23\\ 24\\ 24\end{array}$
64	9 9 9	19 19 20	26 26 26	30 31 33	$25 \\ 26 \\ 26$	19 19 19	9 9 9	$35 \\ 55 \\ 68$	$35 \\ 56 \\ 79$	$31 \\ 32 \\ 34$
128	$ \begin{array}{r} 16 \\ 16 \\ 16 \end{array} $	29 30 31	$35 \\ 35 \\ 37$	$\begin{array}{c} 40\\ 42\\ 47 \end{array}$	36 36 38	29 31 32	$ \begin{array}{r} 16 \\ 16 \\ 16 \end{array} $	53 114 118	$53 \\ 132 \\ 145$	$\begin{array}{c} 42\\ 43\\ 48 \end{array}$
256	$29 \\ 30 \\ 30$	$42 \\ 49 \\ 51$	$50 \\ 52 \\ 57$	54 60 70	50 52 60	$ \begin{array}{r} 43 \\ 50 \\ 49 \end{array} $	29 29 30	79 210 188	79 244 266	$56 \\ 61 \\ 72$

Таблица 9 Результаты для метода SCR по формулам (39)–(41), $\omega_0 = 1, \theta = 0,975$

Приведенные экспериментальные результаты позволяют сделать следующие выводы.

1. Предложенные методы бисопряженных невязок расширяют класс итерационных методов в подпространствах Крылова и в целом обладают большей устойчивостью в сравнении с аналогичными известными алгоритмами бисопряженных градиентов.

2. Для рассмотренного представительного класса сеточных диффузонноконвективных краевых задач методы бисопряженных направлений с используемыми предобусловливающими матрицами демонстрируют высокую эффективность в широком диапазоне изменения конвективных коэффициентов и числа узлов сетки.

3. Исследованные варианты алгоритмов с разными параметрами рестартов m обнаруживают слабую зависимость числа итераций от значения m, что позволяет рекомендовать их средние значения $m \approx 50$ без практического риска потери эффективности.

4. Хотя данные методы и не обладают вариационными свойствами при решении несимметричных СЛАУ, они оказываются вполне конкурентноспособными с методом SCR, обеспечивающим минимизацию нормы невязки, поскольку сравнительное увеличение количества итераций компенсируется экономичностью реализации каждой итерации.

5. Эмпирический прием выбора релаксационного параметра ω позволяет заметно повысить скорость сходимости итераций, хотя вопрос о его оптимизации требует дальнейших исследований.

Автор выражает искреннюю благодарность Е. А. Ицкович за проведение численных расчетов.

ЛИТЕРАТУРА

- 1. Фаддеев Д. К., Фаддеева В. Н. Вычислительные методы линейной алгебры. М.: Физматгиз, 1960.
- 2. Axelsson O. Iterative Solution Methods. Cambridge: Univ. Press, 1994.
- 3. Golub G. H., Van Loan C. Matrix Computations. Baltimore: John Hopkins Univ. Press, 1996.
- 4. Saad Y. Iterative Methods for Sparse Linear Systems. N. Y.: PWS Publ., 1996.
- 5. *Ильин В. П.* Методы неполной факторизации для решения алгебраических систем. М.: Наука, 1995.
- Ильин В. П. Методы и технологии конечных элементов. Новосибирск: Изд. ИВМиМГ СО РАН, 2007.
- 7. *Ильин В. П.* Об итерационном методе Качмажа и его обобщениях // Сиб. журн. индустр. математики. 2006. Т. 9, № 3. С. 39–49.
- 8. Ильин В. П. О методах сопряженных и полусопряженных направлений с предобусловливающими проекторами // Докл. РАН. 2008. Т. 419, № 3. С. 303–306.
- Saad J., Schultz M. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems // SIAM J. Sci. Statist. Comput. 1986. V. 7. P. 856–869.
- Stewart G. W. Conjugate direction methods for solving systems of linear equations // Numer. Math. 1973. V. 21. P. 285–297.
- 11. Juan J. Y., Golub G. H., Plemmons R. J., Cecilio W. A. G. Semi-conjugate direction methods for real positive definite systems. Stanford Univ. Tech. Rep. SCCM-02-02, 2003.
- 12. Ильин В. П., Ицкович Е. А. О методах полусопряженных направлений с динамическим предобусловливанием // Сиб. журн. вычисл. математики. 2007. Т. 10, № 4. С. 41–54.
- Lanczos C. Solution of systems of linear equations by minimized iterations // J. Res. Nat. Bureau of Standards. 1952. N 49. P. 33–53.
- Fletcher R. Conjugate gradient methods for indefinite systems // Proc. of the Dundee Biennal Conf. on Numerical Analysis. N. Y.: Springer Verl., 1975. P. 73–89.
- Sonneveld P. CGS, a fast Lanczos-type solver for non-symmetric linear systems // SIAM J. Sci. Statist. Comput. 1989, V. 10(1). P. 36–52.
- 16. Van der Vorst H. A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems // SIAM J. Sci. Statist. Comput. 1992. V. 12. P. 631–644.
- 17. Graves-Morris P. R. The breakdowns of BiCGStab // Numer. Algorithms. 2002. V. 29. P. 97–105.
- Andreeva M. Yu., Il'in V. P., Itskovich E. A. Two solvers for nonsymmetric SLAE // Bull. Novosibirsk Comput. Center. Ser. Num. Anal. 2004. N 12. P. 1–16.

Статья поступила 1 августа 2008 г.

Ильин Валерий Павлович Институт вычислительной математики и математической геофизики СО РАН пр. Лаврентьева, 6 630090 г. Новосибирск Новосибирский госуниверситет ул. Пирогова, 2 630090 г. Новосибирск E-mail: ilin@sscc.ru