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Abstract. There are constructed formulas for the numerical differentiation of functions of
one variable with large gradients. Formulas are based on the fitting to the singular component
responsible for the large gradients of the function. The singular component is considered as a
function of the general form. The error estimates of the difference formulas for calculating first
and second derivatives are obtained. The results of the calculations are given.

1. Introduction
It is known that the solutions of singularly perturbed problems that simulate convective-diffusion
processes with predominant convection, have large gradients in the boundary layer region.
Formulas of numerical differentiation based on Lagrange polynomials unacceptable in the case
of functions with large gradients in the boundary layer [1]. In this connection the problem of
constructing numerical differentiation formulas that take into account the asymptotic behavior of
a differentiable function in the boundary layer [2] is urgent. For example, solutions of singularly
perturbed problems have large gradients in the region of the boundary layer.

In [3] the question of constructing approximation schemes using the finite volume method
is considered, taking into account the well-known asymptotic behavior of the solution of two-
dimensional singularly perturbed elliptic problem. To approximate the fluxes, it is proposed
to apply a formula that is exact on the singular component of the solution. In [4] built an
interpolation formula with an arbitrarily specified number of interpolation nodes, exact on
the singular component. Differentiation of the constructed interpolant produces numerical
differentiation formulas that are exact on the singular component. differentiable function.

In [3] the question of constructing approximation schemes using the finite volume method
is considered, taking into account the well-known asymptotic behavior of the solution of two-
dimensional singularly perturbed elliptic problems. To approximate the fluxes, it is proposed
to apply a formula that is exact on the singular component of the solution. In [4] built an
interpolation formula with an arbitrarily specified number of interpolation nodes, exact on
the singular component. Differentiation of the constructed interpolant produces numerical
differentiation formulas that are exact on the singular component of differentiable function.

In this paper, we study the numerical differentiation formulas based on fitting to the
component responsible for the large gradients of the function.



Mechanical Science and Technology Update

IOP Conf. Series: Journal of Physics: Conf. Series 1260 (2019) 042003

IOP Publishing

doi:10.1088/1742-6596/1260/4/042003

2

We assume that for the function u(x) the following decomposition is valid

u(x) = p(x) + γΦ(x), x ∈ [a, b], (1)

where p(x) is a regular component with bounded derivatives up to a certain order, Φ(x) is a
singular component with large gradients in a some region. The component Φ(x) is assumed to
be known, p(x) and γ are not specified.

For example, the solution of the singularly perturbed boundary value problem has the
decomposition (1) [2, 5] with Φ(x) = e−mx/ε, where m > 0, ε ∈ (0, 1], x ∈ [0, 1].

The solution of the problem

u′′ +
1
x

u′ − b(x)u = f(x), ε < x < 1, u(ε) = A, u(1) = B

has the decomposition (1) with Φ(x) = lnx, x ∈ (ε, 1], γ = εu′(ε). Here b(x) ≥ 0, ε ∈ (0, 1].
By C and Cj we mean positive constants independent of the singular component Φ(x), of

its derivatives and of the grid step. In cases of exponential boundary layer and logarithmic
singularities, these constants do not depend on small parameter ε and grid step. Different
quantities we can limit by one constant C.

2. Fitting a formula to a singular component
Let the function u(x) be representable as (1) and given at nodes of a uniform grid. Application
to a function with large gradients of classical interpolation formulas, formulas of numerical
differentiation and integration can lead to significant errors [1, 6]. Denote by I(u, x) the
interpolation, numerical differentiation or integration operator. Let Ih(u, x) be the classical
formula for the approximation of I(u, x), based on the use of Lagrange polynomials. Then

|I(u, x)− Ih(u.x)| ≤ |I(p, x)− Ih(p, x)|+ |γ||I(Φ, x)− Ih(Φ, x)|. (2)

We define an adaptive formula that is exact on the component Φ(x) :

IΦ(u, x) =
Ih(u, x)
Ih(Φ, x)

I(Φ, x). (3)

We assume that Ih(Φ, x) 6= 0. This restriction can be achieved by choosing the regular component
p(x). The formula (3) was applied in [3] for solving the problem of numerical integration. Easy
to get an estimate

∣∣∣IΦ(u, x)− I(u, x)
∣∣∣ ≤ ∣∣∣Ih(p, x)− I(p, x)

∣∣∣ + |Ih(p, x)|
∣∣∣I(Φ, x)− Ih(Φ, x)

Ih(Φ, x)

∣∣∣. (4)

From the comparison (2) and (4) it follows that the formula IΦ(u, x) is more accurate if
|Ih(p, x)| � |Ih(Φ, x)|.

3. Adaptive formulas for numerical differentiation
3.1. Formula with two nodes for calculating the first derivative
Let Ωh be a uniform grid of interval [a, b]:

Ωh = {xn : xn = a + nh, n = 0, 1, . . . , N, xN = b}, ∆n = [xn−1, xn].

We assume that a function u(x) of the form (1) is given at the nodes of mesh Ωh, un = u(xn).
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We now show the ineffectiveness of applying the classical formula for the derivative in the
case of a function of the form (1). Let’s set Φ(x) = lnx, x ∈ [ε, 1]. Let be ε = h. Then
ε|(u1 − u0)/h − u′(ε)| = 1 − ln 2. So, for h → 0, the relative error of the classical formula for
the first derivative does not decrease if ε = h. The problem of constructing special formulas for
numerical differentiation of functions of the form (1) is urgent.

Now we’ll obtain an adaptive formula for numerical differentiation based on formulas (3).
Let us Ih(u, x) = (un − un−1)/h, x ∈ [xn−1, xn]. Suggesting Φ′(x) 6= 0, and using (3), we get
the formula that is exact on the singular component γΦ(x) :

u′(x) ≈ L′
Φ,2(u, x) =

un − un−1

Φn − Φn−1
Φ′(x), x ∈ [xn−1, xn]. (5)

Suppose that
|Φ′(x)| ≤ Bn, x ∈ [xn−1, xn].

Lemma 1 Suppose that for some constant Gn

xn∫
xn−1

|Φ′′(s)| ds

Bn|Φn − Φn−1|
≤ Gn. (6)

Then ∣∣∣L′
Φ,2(u, x)− u′(x)

Bn

∣∣∣ ≤ Gn

xn∫
xn−1

|p′(s)| ds +
1

Bn

xn∫
xn−1

|p′′(s)| ds, x ∈ [xn−1, xn]. (7)

Proof. Taking into account that the formula (5) is exact on Φ(x), we obtain

L′
Φ,2(u, x)− u′(x) =

pn − pn−1

Φn − Φn−1

[
Φ′(x)− Φn − Φn−1

h

]
+

(pn − pn−1

h
− p′(x)

)
. (8)

Using the estimate ∣∣∣Φ′(x)− Φn − Φn−1

h

∣∣∣ ≤ xn∫
xn−1

|Φ′′(s)| ds,

we have (7) from (8). The lemma is proved.
Remark 1. Let us consider the case of exponential boundary layer when Φ(x) = e−mx/ε,

ε, m > 0, x ∈ [0, 1]. Let’s set Bn = m/ε. Then the estimate (6) will be fulfilled if Gn = 1. From
(7) for some constant C we obtain

ε
∣∣∣L′

Φ,2(u, x)− u′(x)
∣∣∣ ≤ Ch, x ∈ [xn−1, xn]. (9)

Remark 2. Let us Φ(x) = lnx, x ∈ [ε, 1]. We define Bn = 1/xn−1 and obtain

xn∫
xn−1

|Φ′′(s)| ds

Bn|Φn − Φn−1|
=

1− xn−1/xn

ln xn
xn−1

≤ 1.

We obtain that the condition (6) is fulfilled when Gn = 1. In this case we obtain an estimate of
the error (9).
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3.2. Difference formula for the second derivative
Write the classical difference formula to calculate the second derivative, using the values of the
function at the three grid nodes:

u′′(x) ≈ un+1 − 2un + un−1

h2
, x ∈ [xn−1, xn+1]. (10)

It can be shown that in the case of a function of the form (1) the relative error of the formula
(10) can be of the order of O(1). Based on the formula (3), we obtain the difference formula
that is exact on the singular component γΦ(x) :

u′′(x) ≈ L′′
Φ,3(u, x) =

un+1 − 2un + un−1

Φn+1 − 2Φn + Φn−1
Φ′′(x), x ∈ [xn−1, xn+1]. (11)

Below we assume that

Φ′′(x) 6= 0, x ∈ (xn−1, xn+1), |Φ′′(x)| ≤ Dn, x ∈ [xn−1, xn+1]. (12)

Lemma 2 Suppose that for some constant Gn:

h

Dn

xn+1∫
xn−1

|Φ′′′(s)| ds

|Φn+1 − 2Φn + Φn−1|
≤ Gn. (13)

Then∣∣∣L′′
Φ,3(u, x)− u′′(x)

Dn

∣∣∣ ≤ 3Gn

2

xn+1∫
xn−1

|p′′(s)| ds +
3

2Dn

xn+1∫
xn−1

|p′′′(s)| ds, x ∈ [xn−1, xn+1]. (14)

Proof. Taking into account that the formula (11) is exact on Φ(x), we obtain

L′′
Φ,3(u, x)− u′′(x) = L′′

Φ,3(p, x)− p′′(x) =

= (pn+1 − 2pn + pn−1)
[ 1
Φn+1 − 2Φn + Φn−1

Φ′′(x)− 1
h2

]
+

(pn+1 − 2pn + pn−1

h2
− p′′(x)

)
. (15)

We write the first term of the formula (15) as

Q1 = (pn+1 − 2pn + pn−1)
Φ′′(x)− (Φn+1 − 2Φn + Φn−1)/h2

Φn+1 − 2Φn + Φn−1
. (16)

Using (13), from (16) we get

∣∣∣ Q1

Dn

∣∣∣ ≤ 3Gn

2

xn+1∫
xn−1

|p′′(s)| ds. (17)

For the second term in (15) we have

∣∣∣pn+1 − 2pn + pn−1

h2
− p′′(x)

∣∣∣ ≤ 3
2

xn+1∫
xn−1

|p′′′(s)| ds. (18)

From (15), (17), (18) we obtain (14). The lemma is proved.
Remark 3. By analogy with the remarks 1, 2 based on estimates (14) it can be shown that

in cases Φ(x) = e−mx/ε and Φ(x) = lnx for some constant C the following error estimate holds

ε2
∣∣∣L′′

Φ,3(u, x)− u′′(x)
∣∣∣ ≤ Ch.
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3.3. Three-node formula for the first derivative
On the interval [xn−1, xn+1], we write out a three-node formula for the first derivative:

L′
Φ,3(u, x) =

un+1 − un−1

2h
+

un+1 − 2un + un−1

Φn+1 − 2Φn + Φn−1

[
Φ′(x)− Φn+1 − Φn−1

2h

]
. (19)

The formula (19) is exact on singular component Φ(x).

Lemma 3 Let the following conditions be true

Φ′′(x) 6= 0, |Φ′′′(x)| ≤ q|Φ′′(x)|, x ∈ (xn−1, xn+1). (20)

Then ∣∣∣L′
Φ,3(u, x)− u′(x)

∣∣∣ ≤ 7
4
h

xn+1∫
xn−1

[
q|p′′(s)|+ |p′′′(s)|

]
ds. (21)

Proof. We write the error in the form

L′
Φ,3(u, x)− u′(x) = L′

Φ,3(p, x)− p′(x) =
(
L′

Φ,3(p, x)− L′
3(p, x)

)
+

(
L′

3(p, x)− p′(x)
)

(22)

and estimate each term, where L′
3(p, x) is three-node polynomial formula for the first derivative.

We use the condition (20) to estimate the first term:∣∣∣L′
Φ,3(p, x)− L′

3(p, x)
∣∣∣ ≤ 7

4
|pn+1 − 2pn + pn−1|×

×

xn+1∫
xn

(xn+1 − s)|Φ′′′(s)| ds +
xn∫

xn−1

(s− xn−1)|Φ′′′(s)| ds∣∣∣ xn+1∫
xn

(xn+1 − s)Φ′′(s) ds +
xn∫

xn−1

(s− xn−1)Φ′′(s) ds
∣∣∣ ≤ 7

4
qh

xn+1∫
xn−1

|p′′(s)| ds.

The estimate of the second term in (22) is known. It proves the lemma.
It follows from lemma 3 that in cases Φ(x) = e−mx/ε and Φ(x) = lnx, x ≥ ε > 0 the following

error estimate is valid

ε
∣∣∣L′

Φ,3(u, x)− u′(x)
∣∣∣ ≤ Ch

xn+1∫
xn−1

[
|p′′(s)|+ ε|p′′′(s)|

]
ds.

4. The formula for the derivative in two-dimensional case
Let for a sufficiently smooth function u(x, y) in the region Ω = [0, 1] × [0, 1] the following
representation is true:

u(x, y) = p(x, y) + γ(y)Φ(x), (23)

where p(x, y) is a regular component with bounded derivatives up to some order, Φ(x) is a
known function with large gradients. The functions p(x, y), γ(y) in the decomposition (23) are
not specified. Such a decomposition is valid for the solution of the elliptic problem with a
boundary layer with respect to the variable x [7].

Let Ωh be the rectangular grid of the domain Ω :

Ωh = {(xi, yj), xi = ih1, i = 0, 1, . . . , N1, xj = jh2, j = 0, 1, . . . , N2}.

Set the cell Ki,j : Ki,j = [xi, xi+1]× [yj , yj+1].
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We assume that the function u(x, y) of the form (23) is given at nodes of the uniform grid
Ωh and construct a formula of numerical differentiation in the cell Ki,j .

Based on the differentiation of a two-dimensional interpolant that is exact on Φ(x), we
construct a new formula for calculating the derivative

∂u

∂x
(x, y) ≈ L′

Φ.x(u, x, y) =
(
ui+1,j+1 − ui,j+1 − ui+1,j + ui,j

) Φ′(x)
Φi+1 − Φi

× y − yj

h2
+

+
(
ui+1,j − ui,j

) Φ′(x)
Φi+1 − Φi

, (x, y) ∈ Ki,j . (24)

Lemma 4 Let |Φ′(x)| ≤ Bi, x ∈ [xi, xi+1] and for some constant Gi

xi+1∫
xi

|Φ′′(s)| ds

Bi|Φi+1 − Φi|
≤ Gi.

Then

1
Bi
|L′

Φ,x(u, x, y)− u′x(x, y)| ≤ 3h1 max
(s,t)

|p′x(s, t)|Gi +
2
Bi

(
max

s,t
|p′′xx(s, t)|h1 + max

s,t
|p′′xy(s, t)|h2

)
.

Remark 4. Let Φ(x) = e−mx/ε or Φ(x) = lnx. Then Bi = C/ε.
Consider the problem

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂φ2
= f(r, φ), (25)

u(ε, φ) = Ψ1(φ), u(1, φ) = Ψ2(φ), (26)

where ε ≤ r ≤ 1, 0 ≤ φ ≤ 2π, functions f(r, φ),Ψ1(φ),Ψ2(φ) are smooth enough.
The problem (25)-(26) models the steady-state filtration of the fluid to the well, while ε is

a parameter proportional to the relative diameter of the well. The solution of the problem
(25)-(26) has large gradients near the boundary r = ε and can be represented as

u(r, φ) = p(r, φ) + γ(φ) ln r,

where functions p(r, φ), γ(φ) have bounded first derivatives with respect to their arguments.
Therefore, the formula (24) can be used to calculate the derivative of u(r, φ) with respect to r.
At the same time, the error estimate holds

ε|L′
Φ,r(u, r, φ)− u′r(r, φ)| ≤ C(h1 + h2), (r, φ) ∈ Ki,j , i, j = 0, 1, . . . , N − 1.

5. Numerical results
Consider the function

u(x) = cos(πx) + e−x/ε, 0 ≤ x ≤ 1, ε > 0.

Table 1 shows the norm of error

∆ = ε max
n
|u′(xn)− L′

3(u, xn)|, 0 ≤ n ≤ N

of polynomial three-node formula for the first derivative. The error is not ε-uniform.
Table 2 shows the norm of error for the constructed formula (19). The second order of

accuracy is confirmed, which corresponds to the estimate (21).
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Table 1. The error of the classic three-node formula

ε N
10 102 103 104 105 106

1 5.04e− 2 5.07e− 4 5.07e− 6 5.07e− 8 5.39e− 10 3.27e− 10
10−1 2.06e− 2 1.36e− 3 1.63e− 5 1.66e− 7 1.67e− 9 3.65e− 11
10−2 5.14e− 4 2.37e− 2 1.37e− 3 1.63e− 5 1.66e− 7 1.67e− 9
10−3 5.14e− 5 2.24e− 6 2.37e− 2 1.36e− 3 1.63e− 5 1.66e− 7
10−4 5.14e− 6 5.17e− 8 2.27e− 6 2.37e− 2 1.37e− 3 1.63e− 5
10−5 5.14e− 7 5.17e− 9 5.17e− 11 2.27e− 6 2.37e− 2 1.37e− 3

Table 2. The error of the three-node formula (19)

ε N
10 102 103 104 105 106

1 5.39e− 2 5.42e− 4 5.42e− 6 5.42e− 8 5.75e− 10 7.35e− 11
10−1 1.66e− 2 1.72e− 4 1.72e− 6 1.72e− 8 1.74e− 10 3.13e− 11
10−2 4.80e− 3 1.59e− 4 1.64e− 6 1.65e− 8 1.65e− 10 3.80e− 12
10−3 4.81e− 4 4.93e− 5 1.60e− 6 1.64e− 8 1.65e− 10 1.85e− 12
10−4 4.81e− 5 4.93e− 6 4.93e− 7 1.59e− 8 1.64e− 10 1.66e− 12
10−5 4.81e− 6 4.93e− 7 4.93e− 8 4.93e− 9 1.59e− 10 1.65e− 12

6. Conlusion
Developed adaptive formulas for the numerical differentiation of a function of one variable with
large gradients. By construction, the formulas are exact on the singular component, which is
responsible for the large gradients of the function. The constructed formula of the first order
of accuracy was generalized to the two-dimensional case. Estimates of errors of the constructed
formulas are obtained. It is confirmed by results of numerical experiments.
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