
Journal of Mathematical Sciences, Vol. 249, No. 2, August, 2020

ITERATIVE SOLUTION OF SADDLE-POINT SYSTEMS
OF LINEAR EQUATIONS

V. P. Il’in∗ and G. Y. Kazantcev† UDC 519.6

The paper considers preconditioned iterative methods in Krylov subspaces for solving systems of
linear algebraic equations (SLAEs) with a saddle point arising from grid approximations of three-
dimensional boundary-value problems of various types describing filtration flows of a two-phase
incompressible fluid. A comparative analysis of up-to-date approaches to block preconditioning of
SLAEs under consideration, including issues of scalable parallelization of algorithms on multi-
processor computing systems with distributed and hierarchical shared memory using hybrid pro-
gramming tools, is presented. A regularized Uzawa algorithm using a two-level iterative process is
proposed. Results of numerical experiments for the Dirichlet and Neumann model boundary-value
problems are provided and discussed. Bibliography: 15 titles.

1. Introduction

The paper considers the problem of solving a saddle-point system of linear algebraic equa-
tions (SLAE) of the form

Ku ≡
[
A BT

B −C

] [
ua
uc

]
=

[
fa
fc

]
≡ f, (1)

where A and C are a symmetric positive definite (s.p.d.) and a symmetric positive semidefinite
square matrices of orders N1 and N2, respectively; K ∈ RN,N , N = N1+N2. The matrix K is
nonsingular if C is positive definite on the kernel of BT , and it is singular if C and BT share a
common null space. These issues are important for many electrophysical, hydro-gas-dynamic,
and other applications, especially, those arising in approximating multidimensional mixed
formulations for boundary-value problems by finite difference, finite volume, finite element
methods, and discontinuous Galerkin algorithms [1]. In particular, of special interest are the
so-called saddle-point systems of the form (1) with C = 0, originating from optimization
problems.

More specifically, we consider SLAEs of the form (1) that arise from a finite element ap-
proximation of a two-dimensional or a three-dimensional Neumann problem for the two-phase
filtration in a mixed formulation using the Raviart–Thomas basis functions on a regular rectan-
gular grid [2]. In this case, the matrix A is tridiagonal, and the matrix BT has one-dimensional
kernel spanned by the vector e = {1}, consisting of unit components. The matrix C can be
zero or have a special form (see below). If a SLAE of the form (1) is singular, then the vector
of the right-hand side f is assumed to be orthogonal to the kernel for the algebraic system to
be consistent.

Methods for solving the saddle-point SLAEs form a separate part of computational algebra
and have a fairly long history. An analysis of the literature concerning these issues can be
found in the survey [3] and in the monograph [4], as well as in more recent publications [5–8].
The main approaches consist in constructing an easily invertible preconditioning matrix M ,
providing for a significant reduction of the condition number of the productM−1K as compared

∗Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk State Uni-
versity, e-mail: ilin@sscc.ru.

†Novosibirsk State University, e-mail: Kazancev.grigorij@gmail.com.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 482, 2019, pp. 135–150. Original article
submitted October 14, 2019.

1072-3374/20/2492-0199 ©2020 Springer Science+Business Media, LLC 199

DOI 10.1007/s10958-020-04934-7



to the original matrix K, and also in using an iterative process in the Krylov subspaces

Kn+1(K,M, r0) = Span{r0,M−1Kr0, . . . , (M−1K)nr0}, r0 = f −Ku0.

When implementing such algorithms on heterogeneous multiprocessor computing systems
(MCS) with cluster-type architecture, it is of great practical importance to achieve a high
performance of computational experiments, including scalable parallelization of methods and
their mapping onto computer platforms with distributed and hierarchical shared memory. To
this end, in general, hybrid programming tools are used for transmitting inter-node messages
and multi-threaded computations on multi-core CPU devices (MPI and OpenMP systems,
respectively), as well as vectorization of operations based on a system of instructions such
as AVX, and application of ultrafast graphics accelerators (GPGPU or Intel Phi). The main
purpose is to reduce losses of communication operations, which are not only slow, but also
highly energy-consuming. In this connection, data structures for large sparse matrices (of
orders up to 1010 and more) that arise in real-life applications are of importance. These and
other technological problems have been investigated in numerous papers considering software
for problems of numerical linear algebra (see the surveys [9, 10]).

This paper presents a comparative experimental investigation of some algorithms for solv-
ing three-dimensional filtration problems with model initial data. In Sec. 2, we consider a
number of modern preconditioned block methods for solving saddle-point problems. Section 3
deals with algorithmic features of solution of the boundary-value problems in question, includ-
ing issues of parallel efficiency of iterative methods. Section 4 contains results of numerical
experiments, demonstrating the efficiency of the methods proposed. In conclusion, some prac-
tical issues and prospects of improving the performance of algorithms for solving saddle-point
problems and also directions for further research are discussed.

2. Block preconditioned methods in Krylov subspaces

Using the Schur complement

S = C +BA−1BT , (2)

the coefficient matrix of system (1) is factorized as

K =

[
A 0
B −S

] [
I A−1B−1

0 I

]
. (3)

If we replace the matrices A and S in (3) by their approximations (preconditioners) Ma and
Ms, then we obtain a preconditioner for the matrix K in the form of its incomplete block
factorization

M1 =

[
Ma 0
B −Ms

] [
I M−1

a BT

0 I

]
. (4)

The less accurate approximation of K using only the left or right factor from (4) yields the
incomplete block triangular preconditioner

M2 =

[
Ma BT

0 −Ms

]
(5)

or the incomplete Uzawa preconditioner

M3 =

[
Ma 0
B −Ms

]
. (6)

Every step of the corresponding iterative processes can be represented as a sequence of stages,
at which only one block component of the solution sought is recomputed (for this reason, these
methods are sometimes referred to as segregation techniques). In a somewhat more general

200



form, such a stationary algorithm (to this point, without Krylov acceleration) is represented
by the following three stages (see [5]):

ûn+1
a = una +Q(1)

a (fa −Auna −BTunc ),

un+1
c = unc −M−1

s (fc −Bûn+1
a +Cunc ),

un+1
a = ûn+1

a +Q(2)
a (fa −Aûn+1

a −BTun+1
c ).

(7)

Here, Q
(1)
a and Q

(2)
a are some approximate inverses or generalized inverses of the above precon-

ditioner Ma. In particular, if Q
(1)
a = M−1

a , Q
(2)
a = 0 or Q

(1)
a = 0, Q

(2)
a = M−1

a , then from (7) we
obtain either the Uzawa algorithm with the preconditioner M3 from (6) (the third stage being
omitted, i.e., un+1

a = ûn+1
a ), or the incomplete block triangular preconditioner M2 from (5)

(the first stage in (7) being omitted, i.e., un+1
a = una).

If the matrix Qa = Q
(1)
a +Q

(2)
a −Q

(2)
a AQ

(1)
a is nonsingular, then to the iterative process (7)

there corresponds the preconditioner

M =

[
I 0

BQ
(1)
a I

] [
Q−1

a 0
0 −Ms

] [
I Q

(2)
a BT

0 I

]
. (8)

In the special case where Q
(1)
a = Q

(2)
a = M−1

a , from (8) we obtain the so-called symmetrized
incomplete Uzawa method with the preconditioner

M =

[
I 0

BM−1
a I

] [
Ma(2Ma −A)−1Ma 0

0 −Ms

] [
I M−1

a BT

0 I

]
. (9)

Now consider the case where the matrices BT and C share a common null space. Let
V ∈ RN2,Nk , Nk ≤ N2, be a rectangular matrix whose Nk columns form an orthogonal basis
of the kernel N (BT ). In this case, for Eqs. (1) to be compatible, the subvector fc must be
orthogonal to the kernel in question (i.e., V T fc = 0), and the matrix C is positive definite on
the set N (BT )\R(V ) only.

In such a situation, we consider an iterative process of the form (7) in which the matrices
C and M−1

s are replaced by

C̄ = C + V V T and M̄−1
s = (I − V V T ) + V V T , (10)

respectively, and the initial guesses for the resulting successive approximations ūna , ūnc are
chosen as follows:

ū0a = u0a, ū0c = (I − V V T )u0c . (11)

The resulting iterative method is said to be regularized. The matrix

S̄ = C̄ +BA−1BT = S + V V T (12)

is symmetric positive definite, C̄ is an s.p.d. matrix on the null space of BT , and the matrix
M̄s is s.p.d. simultaneously with Ms.

Using the symmetry of the matrix C and the relations

CV = 0, V TC = 0, BTV = 0, V TB = 0,

it is nondifficult to prove, by induction, that for all n,

ūna = una , ūnc = (I − V V T )ūna .

Thus, in the exact arithmetic, the original iterative algorithm (7) and its regularized version
converge (or diverge) simultaneously.

201



A wide class of iterative algorithms for solving saddle-point SLAEs is obtained by using
block diagonal preconditioners. In [7], in particular, it is shown that if a preconditioner of the
form

M =

[
A+BTL−1B 0

0 L

]
(13)

is used, where L ∈ RN2,N2 is an arbitrary nonsingular matrix, then the spectrum of the product
M−1K consists of only two distinct values λ+ = 1 and λ− = −1, where the first one is of
multiplicity N1, and the second one is of multiplicity N2.

Note also that for solving a SLAE of the form (1) with C = 0 one can propose a method,
which is sufficiently close (in algorithmic terms) to using a preconditioner of the form (13).
This method consists in constructing a linear combination of the block rows of system (1),[

A+BTL−1B BT

B 0

] [
ua
uc

]
=

[
fa +BTL−1fc

fc

]
, (14)

where L, as in (13), is an arbitrary s.p.d. matrix. In this way, we obtain the following
algorithm, which will be called the regularized Uzawa method:

K̄uc ≡ BĀ−1BTuc = BĀ−1(f0 +BTL−1fc)− fc, (15)

Ā = A+BTL−1B.

Formulas (14) and (15) cover a wide range of different algorithms corresponding to different
choices of the matrix L. This approach is sometimes referred to as the gradient regularization
because the matrix BT is usually obtained from an approximation of the gradient operator,
see (25) below.

In the case where both the initial matrix K and the preconditioner M are symmetric, the
iterative conjugate direction method for solving Eqs. (1) is as follows [11]:

r0 = f −Ku0, p0 = M−1r0;

n = 0, 1, · · · :
un+1 = un + αnp

n, αn = σn/ρn, σn = (KγM−1rn, rn),

rn+1 = rn − αnKpn, ρn = (Kpn,Kγpn),

pn+1 = M−1rn+1 + βnp
n, βn = σn+1/σn. (16)

Here, γ = 0 and γ = 1 correspond to the conjugate gradient and conjugate residual methods,
respectively, which minimize the functional

Φ(γ)
n = (Kγ−1rn, rn)

in the Krylov subspaces

Kn+1(K,M, r0) = Span{p0,M−1Kp0, . . . , (M−1K)np0}.
3. Implementation of the algorithms on a rectangular grid

First consider, in more detail, the matrix structures and some features of implementation
of the algorithms in the case where C = 0 in (1) and a rectangular computational domain is
used. If one uses a uniform grid with step sizes hx, hy,

xi = x0 + ihx, i = 1, 2, . . . , Nx, yj = y0 + jhy, j = 1, 2, . . . , Ny, (17)

and lower-order Raviart–Thomas basis functions, then A is a block diagonal matrix of the
form

A =

[
Ax 0
0 Ay

]
, Ax = block-diag{Ax

j }, Ay = block-diag{Ay
i }.

202



Here, Nx and Ny are the numbers of grid cells along the corresponding coordinates, i.e.,

Ax ∈ R ̂N1, ̂N1 , N̂1 = (Nx − 1)Ny, Ây ∈ R ̂N2, ̂N2 , N̂2 = Nx(Ny − 1),

where Ax
j and Ay

i are strictly diagonally dominant tridiagonal matrices of orders Nx − 1 and

Ny − 1, respectively (in this version, the matrix dimensions are indicated for the Dirichlet
problem). In the simplest model case, their nonzero entries, up to symmetric diagonal scaling,
are of the form {1, 4, 1}. The matrix BT is bidiagonal and can be represented as

BT =

[
BT

x

BT
y

]
, BT

x ∈ R ̂N1,N , BT
y ∈ R ̂N2,N , N = NxNy,

where, up to scaling, the nonzero entries of Bx = {Bx
i } and By = {By

j } are equal to {−1, 1}.
The components of the subvectors ua and uc in the algebraic system (1) can be correlated
with the edge and volume types of grid points, which are indicated in Fig. 1 by “×” and “◦,”
respectively. Physically, they correspond to the substance flows and pressure. In Fig. 1, we
also indicate the links among nodes of different types.

Fig. 1. The structure of internode links for a two-dimensional rectangular grid.

In the three-dimensional case, for a regular grid with parallelepiped finite elements the
matrices A and B have the following forms:

A =

⎡
⎣Ax 0 0

0 Ay 0
0 0 Az

⎤
⎦ , BT =

⎡
⎣B

T
x

BT
y

BT
z

⎤
⎦ , Az = block-diag{Az

k}. (18)

Here, it is natural to assume that the definition of the two-dimensional grid (17) is supple-
mented by discretizing the third coordinate, zk = z0 + khz, k = 1, 2, . . . , Nz.

By eliminating the subvector

ua = A−1(fa −BTuc)

from the first block row of system (1), one can reduce the Uzawa algorithm to solving the
reduced system of order N1

Suc = f, S = BA−1BT ∈ RN1,N1 , f = BA−1fa − fc.

If the matrix A is of the form (18) and the diagonal blocks Ax
i , A

y
j , A

z
k are tridiagonal, then

the implementation of this method based on the formulas of the conjugate direction method
(16) (in this case it is necessary to replace A with S and set M = I) is trivially carried out

203



by solving systems with bidiagonal matrices. However, if we pass to the regularized Uzawa
method (17), then the multiplication by the matrix Ā−1 (even in the simplest case where the
matrix L is diagonal) implies the necessity of developing two-level iterative processes. The
same also concerns algorithms using preconditioners of the form (13).

In the case of a singular system (15), we consider an iterative algorithm using a deflated
version of the conjugate gradient method. For generality, let V ∈ RN,m be a rectangular
matrix whose columns form a basis of a certain m-dimensional deflation space. In the simplest
case where m = 1, the vector V = e spans the one-dimensional null space of the matrix BT .

At the first step of the deflation algorithm, an initial guess u0 is chosen from some orthog-
onality conditions. For an arbitrary vector u−1

c , set

u0c = u−1
c + V c̄, c̄ ∈ Rm, (19)

r0 = r−1 −AV c̄, r−1 = f −Au−1.

The coefficient vector c̄ in (19) will be determined from the overdetermined system of linear
algebraic equations

AV c̄ = r−1, (20)

which is formally obtained from (19) by setting r0 = 0. Upon multiplying both sides of Eq. (20)
by the transposed matrix V T , we obtain

c̄ = (V TAV )+V T r−1. (21)

Here, (V TAV )+ ∈ Rm,m is the generalized inverse matrix, which can be computed, for exam-
ple, by using the Greville formula [12] or by applying the QR-decomposition (if the matrix A
is nonsingular, then (V TAV )+ = (V TAV )−1). The initial direction vector p0 is determined
by the formula

p0 = r0 − V (V TAV )+V TAr0 = Bdr
0, where Bd = I − V (V TAV )+V TA. (22)

In this case, we obtain the following deflated orthogonality relations:

V T r0 = 0, V TAp0 = 0, (23)

V TABd = 0, BdV = 0,

where Bd is a deflated preconditioning matrix.
In order to ensure that the subsequent approximations possess necessary orthogonality prop-

erties, the iterative process is carried out in accordance with the following formulas of the
deflated conjugate gradient method, see [13]:

un+1 = un + αnp
n, αn = σn/ρn,

rn+1 = rn − αnAp
n, ρn = (Apn, pn), (24)

pn+1 = B−1
d rn+1 + βnp

n, βn = σn+1/σn, σn = (B−1
d rn, rn).

In this case, the following conditions are fulfilled:

V T rn = 0, V TApn = 0.

Note that if two preconditioners M and Bd from (16) and (24) are used, then one must pass
to the methodology of multi-preconditioned iterative processes in Krylov subspaces (see [14]).

Scalable parallelization of the iterative processes in question on a multiprocessor comput-
ing system (MCS) of cluster architecture with distributed and hierarchical shared memory
is carried out by applying hybrid programming. The latter includes tools for transmitting
interprocessor messages (MPI system), multi-thread computations on multi-core CPUs using
the OpenMP system, and vectorization of operations using an AVX type instruction system.

204



For simplicity, the usage of graphics accelerators (such as GPGPU or INTEL Phi) is not
considered.

Quantitatively, the performance of parallel computing on p arithmetic devices, or cores when
solving a problem or implementing an algorithm A is characterized by the two coefficients: the
speed up and the efficiency of a processor used:

Sp(A) = T1(A)/Tp(A), Ep(A) = Sp(A)/p.

Here, Tp(A) is the operating time of an MCS with p processors, which includes the times for
performing arithmetic operations and data transmission, i.e.,

Tp(A) = T a
p (A) + T c

p (A).

Roughly, the latter times for p = 1 can be evaluated by the formulas

T a
1 (A) = τaQa, T c

1 = τ0 + τcQc,

where τa is the average time of performing an arithmetic operation; τ0 is the delay time (set up)
of one interprocessor communication; τc is the time of transmission of a real number, and Qa

and Qc are the total numbers of arithmetic and communication operations performed. Since,
for the existing computing systems, τa � τc � τ0, from qualitative considerations it follows
that in order to improve the performance of computations, one must reduce, first of all, the
number of data transmissions and the total amount of data to be sent. Also it is necessary to
bear in mind that the communication operations are more time- and energy-consuming than
the arithmetic operations. This factor is very important from the standpoint of operating
costs of supercomputers. In order to evaluate the execution time of programs more accurately,
it is necessary to take into account that the values of τa for different arithmetic operations
and the times of data exchanges among different memory levels (CPU registers, different level
caches, the total RAM of a computing node) vary considerably. In view of the complexity of
real architectures, numerical experiments are the main tool used in a comparative study of the
performance of software implementations of different algorithms.

Technological principles of parallelization of numerical solution of large SLAEs are consid-
ered in [9]. The main tool for achieving high performance is the additive domain decomposition
method [14], both in its geometric and algebraic versions. This method is based on a balanced
partitioning of a grid computational domain into subdomains, on each of which an auxiliary
algebraic subsystem is considered. For these subsystems, the corresponding MPI-processes
(Message Passing Interface) at node clusters with shared memory are organized. Typically,
the general computational scheme is the two-level block Schwarz–Jacobi method in Krylov
subspaces. The algebraic subsystems in the subdomains are solved concurrently on multi-core
CPUs (Central Processor Units) with shared memory, and the “inner” parallelization is ef-
fected by means of multi-thread computations (using systems such as Open MP). If one takes
into account fine features of the data structure, then an additional acceleration can be achieved
by optimizing exchanges between the registers of the arithmetic device and the cache memory
of a lower level by using an instruction system such as AVX (Advanced Vector Extension).
It should also be mentioned that a significant improvement of the performance of a software
code can be achieved by using ready-made software operations from SPARSE BLAS, efficiently
applied in INTEL MKL [15].

4. Numerical results

In order to illustrate the efficiency of the iterative algorithms under study, we focus on the
mathematical model of filtration of a two-dimensional incompressible fluid [2], in which the

205



total flow velocity 	w and pressure p satisfy (the gravity being neglected), in a bounded domain
Ω, the relations

	w + κ grad p = 0, div 	w = 0. (25)

Here, the coefficient κ characterizes the material properties of a medium, associated with
its permeability, porosity and other parameters, which can be discontinuous and highly con-
trasting. We assume that on the boundary of the computational domain, some boundary
conditions for the velocity are given (for details, see [2]), and the scalar function of pressure
is determined up to a constant. Upon reducing relations (25) to the variational formulation
with the lower-order Raviart–Thomas basis functions, we obtain a system of the form (1),
in which, for the model initial data, the matrices A and B have the simple block form (18).
The diagonal blocks Ax

i and Bx
j of these matrices vary in dependence of the type of boundary

conditions. For example, for the Neumann problem these blocks are as follows:

Ax
i =

1

6

⎡
⎢⎢⎢⎢⎣

4 1 0
1

. . .
. . .

. . .
. . . 1

0 1 4

⎤
⎥⎥⎥⎥⎦ ∈ RNx+1,Nx+1, Bx

j =
1

h

⎡
⎢⎢⎢⎢⎣

−1 0
1

. . .

. . . −1

0 1

⎤
⎥⎥⎥⎥⎦ ∈ RNx+1,Nx . (26)

In the case where the Dirichlet conditions are given on one or two sides along a certain
coordinate, the numbers of columns in these matrices decrease by one or two, respectively,
and the value of the corresponding angular entries of the matrices Ax

i changes from 4 to 2.
The matrices Ay

j , A
z
k, B

y
j , and Bz

k are defined similarly.
In the tables below, we present results of numerical solution of the Dirichlet and Neumann

boundary-value problems with model initial data that have a simple analytical solution. In the
cubic computational domain, the input equations (25) were approximated on cubic grids with
the numbers of nodes Nx = Ny = Nz = 16, 32, 64. The coefficients and normalization of the
equations were chosen in such a way that the coefficient matrices of the SLAEs to be solved
were of the form (26). The computations were carried out in the standard double-precision
arithmetic. For both outer and inner iterations, we used the stopping criterion

(rn, rn) ≤ ε2(f, f), ε = 10−7.

The computations were carried out for the regularized Uzawa method (15) with the matrix
L−1 = θI and different values of the parameter θ. Actually, we used the formulas of the
unpreconditioned conjugate gradient method (16), in which γ = 0, M = I, and the matrix K
was changed for K̄ defined in (15).

In Table 1, we present numerical results for the Neumann problem with the values θ =
0.0, 0.1, 0.2, 0.3, 0.6 on the grids with cell numbers N = 163, 323, and 643. In every cell of the
table, the top value is the number of outer conjugate gradient iterations, and the bottom one
is the total number of inner iterations.

As can be seen from Table 1, in the Uzawa method without regularization the numbers
of both outer and inner iterations grow approximately linearly as the value of Nx increases.
Regularization significantly reduces the computation time, however, only up to a certain value
of the parameter θ (for θ > 0.6 the process behaves unpredictably).

Similar data for the Dirichlet problem on the same grids are presented in Table 2.
For both the Dirichlet and Neumann problems, the numbers of iterations of the classical

(nonregularized) Uzawa method grow approximately linearly as Nx increases. On all the grids,
the optimal value of the parameter is θ ≈ 0.9. In general, the number of outer iterations for
the Dirichlet problem is less than for the Neumann problem. Note that in both tables, the
numbers of inner iterations in the columns corresponding to θ = 0 are provided for pure

206



Table 1. Numerical results for the Neumann problem.

N \ θ 0 0.1 0.2 0.3 0.6
23 5 4 4 3

163 258 80 64 64 48
47 5 5 4 36

323 565 160 160 128 96
100 4 4 4 3

643 1228 256 256 256 192

Table 2. Numerical results for the Dirichlet problem.

N \ θ 0 0.1 0.2 0.9
21 5 4 3

163 282 80 64 47
45 5 4 3

323 618 160 128 95
96 5 4 3

643 1318 320 256 191

theoretic interest only because, in this case, the matrix Ā is tridiagonal, whence its inversion
can be effected by a direct method.

5. Conclusion

This research was aimed at developing numerical algorithms for solving saddle-point SLAEs
and at applying them in modeling real-life filtration processes on modern MCS. The present
paper compares some promising approaches to constructing preconditioners in Krylov sub-
spaces, discusses issues of scalable parallelization of algorithms for solving multidimensional
filtration problems, and also provides preliminary experimental results for model problems.
Our road map includes increasing the convergence rate of iterative methods and also rising the
performance of the software developed in the KRYLOV library [10], providing an integrated
environment for solving linear algebraic problems (as part of the basic modeling system BSM).

Within the integrated environment proposed, we are planning to carry out a comparative
analysis and testing of different methods on real-life problems with singularities.

This work was supported by the Russian Foundation for Basic Research (project No. 19-11-
00048.)

Translated by the authors.

REFERENCES

1. V. P. Il’in, Mathematical Modeling. Part 1. Continuous and Discrete Models [in Russian],
SB RAS, Novosibirsk (2017).

2. M. M. Ivanov, I. A. Kremer, and Yu. M. Laevsky, “On an upflow scheme for solving
filtration problem,” Sib. Electron. Mat. Izv., 16, 757–776 (2019).

3. M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,”
Acta Numer., 14, 1–137 (2005).

4. Yu. V. Bychenkov and E. V. Chizhonkov, Iterative Methods for Solving Saddle-Point
Problems [in Russian], BINOM, Moscow (2010).

207



5. Y. Notay, “Convergence of some iterative methods for symmetric saddle point linear sys-
tems,” Matrix Anal. Appl., SIAM, 40, No. 1, 122–146 (2018).

6. R. Estrin and C. Greif, “SPMR: A family of saddle-point minimum residual solvers,”
SIAM J. Sci. Comp., 40, No. 3, 1884–1914 (2018).

7. C. Greif and M. Wathen, “Conjugate gradient for nonsingular saddle-point systems with
a maximally rank-deficient leading block,” J. Comput. Appl. Math., 358, 1–11 (2019).

8. P. E. Popov and A. A. Kalinkin, “The method of separation of variables in a problem with
a saddle point,” Russ. J. Numer. Anal. Math. Model., 23, No. 1, 97–106 (2008).

9. V. P. Il’in, “Problems of parallel solution of large systems of linear algebraic equations,”
Zap. Nauchn. Semin. POMI, 439, No. 6, 112–127 (2015).

10. V. P. Il’in, “On an integrated computational environment for numerical algebra,” Com-
mun. Comput. Inf. Sci., 1063, 91–106 (2019).

11. V. P. Il’in, Methods and Technologies of Finite Elements [in Russian], ICMMG SB RAS,
Novosibirsk (2007).

12. F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1958).
13. Y. L. Gurieva and V. P. Il’in, “On coarse grid correction methods in Krylov subspaces,”

Zap. Nauchn. Semin. POMI, 463, 44–57 (2017).
14. V. P. Il’in, “Multi-preconditioned domain decomposition methods in the Krylov sub-

spaces,” LNCS, 10187, 95–106 (2017).
15. Intel Math Kernel Library. Reference Manual, http://software.intel.com/sites/

products/documentation /hpc/composerxe/enus/mklxe/mk-manual-win-

mac/index.html]

208


	Abstract
	1. Introduction
	2. Block preconditioned methods in Krylov subspaces
	3. Implementation of the algorithms on a rectangular grid
	4. Numerical results
	5. Conclusion
	REFERENCES

