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PROJECTION METHODS IN KRYLOV SUBSPACES

V. P. Il’in∗ UDC 519.6

The paper considers preconditioned iterative methods in Krylov subspaces for solving large systems
of linear algebraic equations with sparse coefficient matrices arising in solving multidimensional
boundary-value problems by finite volume or finite element methods of different orders on unstruc-
tured grids. Block versions of the weighted Cimmino methods, based on various orthogonal and/or
variational approaches and realizing preconditioning functions for two-level multi-preconditioned
semi-conjugate residual algorithms with periodic restarts, are proposed. At the inner iterations
between restarts, additional acceleration is achieved by applying deflation methods, providing low-
rank approximations of the original matrix and playing the part of an additional preconditioner.
At the outer level of the Krylov process, in order to compensate the convergence deceleration caused
by restricting the number of the orthogonalized direction vectors, restarted approximations are cor-
rected by using the least squares method. Scalable parallelization of the methods considered, based
on domain decomposition, where the commonly used block Jacobi–Schwarz iterative processes is
replaced by the block Cimmino–Schwarz algorithm, is discussed. Hybrid programming technologies
for implementing different stages of the computational process on heterogeneous multi-processor
systems with distributed and hierarchical shared memory are described. Bibliography: 20 titles.

1. Introduction

In 1937, a Polish mathematician C. Kaczmarz presented in [1] an iterative method for
solving systems of linear algebraic equations (SLAEs), having a remarkable generality and an
elegant geometric interpretation. Every equation of the system

(Au)i ≡
N∑

j=1

ai,juj = fi, i = 1, 2, . . . , N, (1)

can be associated with a hyperplane in the N -dimensional spaceRN . Given an arbitrary initial
guess u0, which is the radius vector of a point in RN , we determine the orthogonal projection
u11 = P1(u

0) onto the first hyperplane, where P1 is the corresponding projection operator.
Next we project the point obtained onto the second hyperplane and find u12 = P2(u

1
1). The

process is continued until the values

u1i = Pi(u
1
i−1), i = 2, . . . , N, (2)

are computed. The vector u1 = (u11, . . . , u
1
N )T obtained in this way is called the first iterative

approximation of the Kachmarz algorithm, which can be written in the form

un+1
i = P1(u

n), un+1
i = Pi(u

n
i−1), i = 2, . . . , N,

un+1 = (un+1
1 , un+1

2 , . . . , un+1
N ), n = 0, 1, . . . .

(3)

If SLAE (1) has a unique solution, then all the related hyperplanes intersect at a point u, to
which the sequence of the points un+1

i obviously converges.
In 1938, an Italian mathematician G. Cimmino [2] suggested an iterative algorithm, which is

also based on orthogonal projections onto hyperplanes, but projection operations are performed
simultaneously rather than successively. In other terms, the point u0 is projected onto all the
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hyperplanes, and a new approximation is determined by averaging all the values u1i = Pi(u
0).

As a result, Cimmino’s method can be described as follows:

un+1 =
1

N

N∑

i=1

Pi(u
n), i = 0, 1, . . . . (4)

For many years, the projection methods of Kaczmarz and Cimmino have remained almost
unnoticed in the literature on numerical methods, especially, in monographs and textbooks,
except for a brief presentation in [3]. Note also that the paper [1] was published in English for
the second time in 1993. In 1985, V. Hackbusch [4] demonstrated that the Kaczmarz algorithm
coincided with the point Gauss–Seidel iterative method (the method of successive displace-
ments) applied to the equations obtained from system (1) by the left Gaussian transformation,
i.e., by multiplying (1) on the left by the transpose AT of the coefficient matrix,

ATAu = AT f. (5)

This implies that the rate of convergence of the Kaczmarz iterative method is even slower than
that of the “slow” Seidel algorithm because the condition number of the coefficient matrix in (5)
is the squared condition number of the coefficient matrix A of the original system (1).

The Kaczmasz and Gauss–Seidel algorithms belong to the class of iterative methods of
successive displacements [3], whereas the Cimmino algorithm can be associated with the point
Jacobi method (the method of simultaneous displacements), in which all the components of a
new approximation un+1 explicitly depend on the components of the current approximation
un only. On the one hand, methods of simultaneous displacements are, in general, slower than
the corresponding methods of successive displacements. On the other hand, methods of the
first group possess the advantage of allowing for a natural parallelization when implemented
on multiprocessor computer systems.

As to the Kaczmarz method, several directions for its development were suggested in [5],
namely, the introduction of a relaxation parameter ω, which is analogous to the passage
from the Seidel method to the Successive Over Relaxation (SOR) method, the passage to
the alternating variant with the symmetrizing backward iterations – a counterpart of the
Symmetric Successive Over Relaxation (SSOR) method, and also a variational approach to
accelerating the resulting iterative method in Krylov subspaces. Obviously, the latter approach
is also applicable to the Cimmino method.

It should also be mentioned that the Kaczmarz and Cimmino methods can be generalized
to the block case, where the matrix A is partitioned into m block rows,

Aq ∈ RNq ,N , q = 1, . . . ,m, N1 + · · ·+Nm = N,

and the numbers of matrix rows in different blocks can be different. For simplicity, in what
follows we assume that all the block sizes are equal, i.e., Nq = M = N/m. Naturally, in order
to write block variants of the methods (2)–(4), it is sufficient to change the indices i and N
for q and M , respectively.

The idea of constructing orthogonal or skew projections underlies the construction of many
methods for solving systems of linear algebraic equations with symmetric or unsymmetric
matrices. To such methods one can refer various iterative processes in Krylov subspaces,
see [6, 7], which are frequently connected with variational properties of functionals, as well as
algorithms of deflation, aggregation, coarse-grid correction, and some others, which are actually
based on low-rank approximations of matrices, whose remarkable and promising properties are
presented in [8, 9].
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Note that algorithms of Kaczmarz and Cimmino types, possessing some specific projective
features, are sometimes referred to as row projection and row action methods and also as
Projected Aggregation Methods (RAM), see the surveys [10,11].

The aim of the present paper is to construct and investigate weighted Cimmino algorithms
for solving systems of linear algebraic equations with symmetric and unsymmetric matrices,
which are based on residual minimization, see Sec 2. In Sec. 3, the approaches suggested,
regarded as preconditioned iterative algorithms in Krylov subspaces, are developed. Section 4
is devoted to methods for accelerating the iterative algorithms constructed, and in the Conclu-
sion we discuss the results obtained and prospects of further investigations along the directions
under consideration.

For simplicity, below we only consider SLAEs with real square coefficient matrices, although
the methods suggested can be extended to the case of complex rectangular matrices.

2. Weighted Cimmino algorithms

Represent the original SLAE (1) in the following block form:

Aqu = fq, q = 1, . . . ,m, fq ∈ RNq , u ∈ RN ; (6)

here, we assume that m � N , and fq are the subvectors of the right-hand-side vector
f = (fT

1 , . . . , f
T
m)T . Consider the vectors ûq ∈ RN as solutions of m underdetermined and

uncoupled SLAEs
Aqûq = fq, q = 1, . . . ,m. (7)

The vectors ûq are sought for in the form

û0q = u0 +Aqǔ
0
q, ǔ0q ∈ RNq , q = 1, . . . ,m, (8)

where u0 is an arbitrary vector. By substituting representation (8) into Eqs. (7) (which actually
is the right Gaussian transformation), we obtain the following symmetric positive semidefinite
system for computing the “short” vectors ǔ0q :

Bqǔ
0
q = r0q , Bq = AqA

T
q ∈ RNq , r0q = fq −Aqu

0. (9)

The solution of (9) in terms of the generalized inverse B+
q is written as

ǔ0q = B+
q r

0
q , q = 1, . . . ,m. (10)

Note that in the case where the rectangular matrix Aq is of full rank, the matrix B+
q is

nonsingular and B+
q = B−1

q . Otherwise the generalized inverse can be computed, for instance,
applying Greville’s formula [12]. Using (8) and (10), we write the “long” vectors ûq as

û0q = u0 +AT
q B

+
q r

0
q = u0 +AT

q (AqA
T
q )

+r0q . (11)

Observe that the qth block component of the residual corresponding to the vector û0q from (11)
is zero because

r̂0q = (f −Au0q −Au0q)q = r0q −AqA
T
q (AqA

T
q )

+r0q = 0.

Now we construct an iterative process for solving SLAE (6), using an arbitrary vector u0 ∈ RN

as the initial guess. Find the first iterative approximation u1 in the form

u1 = u0 + c01û
0
1 + · · ·+ c0mû0m = u0 + V0c

0,

c0 = (c01, . . . , c
0
m)T ∈ Rm, V0 = (û01, . . . , û

0
m) ∈ RN,m.

(12)

The unknown coefficients c0q in (12) will be determined from the condition of minimization of

the residual r1 of the vector u1, i.e.,

r1 = f −Au1 = r0 −W0c
0, W0 = AV0 ∈ RN,m.
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By formally setting r1 = 0 in (13), we obtain the overdetermined system

W0c
0 = r0 (13)

for computing the vector c0. The generalized solution of (13) can be computed using, for
instance, the Singular Value Decomposition (SVD) or the QR algorithm [7]. We will look for
the normal generalized solution of SLAE (13), which has the smallest norm and minimizes the
norm of the residual r1. To this end, we apply the left Gaussian transformation,

W T
0 W0c

0 = W T r0, c0 = (W T
0 W0)

+W T
0 r0. (14)

As a result of the first iteration in accordance with (14), we find the vectors

u1 = u0 + V0(W
T
0 W0)

+W T
0 r0,

r1 = T0r
0, T0 = I − P0, P0 = W0(W

T
0 W0)

+W T
0 .

(15)

Note that P0 and T0 are orthogonal projection operators because, as is readily verified, they
satisfy the relations

P0 = P T
0 = P 2

0 , T0 = T T
0 = T 2

0 .

Thus, formulas (15) determine the iterative process

r0 = f −Au0, rn+1 = Tnr
n, Tn = I − Pn,

Pn = Wn(WnWn)
+W T

n , un+1 = un + Vn(W
T
n Wn)

+W T
n rn,

(16)

which possesses the following orthogonality properties:

Wnr
n+1 = 0, Wn = AVn, Vn = (ûn1 , . . . , û

n
m)T , n = 0, . . . ; (17)

here, ûnq ∈ RN , whereas the matrices of orthogonal projection Pn and Tn are defined by
formulas similar to (11) and (15), respectively, which result from changing the superscript “0”
for “n”. The iteration formula from (16) can be written as follows:

un+1 = un −B(1)
n A(f −Aun), B(1)

n = Vn(V
T
n ATAVn)

+V T
n . (18)

From (18) we see that this is an algorithm with dynamically varying preconditioning matrices

B
(1)
n applied to the equation obtained from the original one via the left Gaussian transformation.

Obviously, it follows that the condition number of the coefficient matrix grows quadratically.
In order to avoid this undesirable effect, one can consider another algorithm for computing the
generalized solution of the overdetermined system (1) for the coefficient vector c0. To this end,
we multiply both sides of (1) by the matrix V T

0 (rather than by W T
0 ) and obtain the equation

V T
0 AV0c

0 = V T
0 r0. (19)

Therefore, the solution is given by

c0 = (V T
0 AV0)

+V T
0 r0, (20)

whereas instead of (15) we have the relations

u1 = u0 +B
(2)
0 r0, B

(2)
0 = V0(V

T
0 AV0)

+V T
0 . (21)

Here, B
(2)
0 is a preconditioner, different from B

(1)
0 , which actually is a low-rank approximation

to the inverse (or generalized inverse) of A. It is symmetric whenever the matrix of the original

SLAE is symmetric. If the rectangular matrix V0 ∈ RN,m has rank m, then B
(2)
0 is singular or

nonsingular simultaneously with A.
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Notice that the matrices B
(1)
n from (18) are low-rank approximations (in the corresponding

bases Vn) of the matrix (ATA)+. Thus, in computing the vector c0 in accordance with (21)
instead of (16), we arrive at the following iterations:

r0 = f −Au0, rn+1 = T (2)
n rn, T (2)

n = I − P (2)
n , P (2)

n = AB(2)
n ,

un+1 = un +B(2)
n rn, B(2)

n = Vn(V
T
n AVn)

+V T
n .

(22)

Here, as is nondifficult to realize, the matrices P
(2)
n and T

(2)
n are projectors, as well as Pn

and Tn from (16); however, they are symmetric only if the original matrix A possesses this
property. In this case, the residual vectors also possess the orthogonality property (17).

3. Cimmino type methods in Krylov subspaces

Based on the projection algorithms (16) or (22), one can construct various multi-precondi-
tioned iterative methods in Krylov subspaces, possessing certain variational properties. We
will present them in a unified framework with some preconditioners Bn, which can take the

form of B
(1)
n , or B

(2)
n , or some other in every specific case. For generality, we assume that

the matrices A and Bn,l are unsymmetric. The formulas of the dynamic Multi-Preconditioned
Semi-Conjugate Direction (MPSCD) methods, see [13], which are equivalent, in the rate of
convergence, to the Flexible Generalized Minimal Residual (FGMRES) method [6], are as
follows:

r0 = f −Au0, n = 0, 1, · · · : un+1 = un + Pnᾱn,

rn+1 = rn −APnᾱn = rq −APqᾱq − · · · −APnᾱn, 0 ≤ q ≤ n,

Pn = (pn1 . . . p
n
Mn

) ∈ RN,Mn , ᾱn = (αn,1 . . . αn,Mn)
T ∈ RMn ,

(Apnk , A
γpn

′
k′ ) = ρ

(γ)
n,kδ

k,k′
n,n′ , ρ

(γ)
n,k = (Apnk , A

γpnk),

γ = 0, 1; n′ = 0, 1, . . . , n − 1; k, k′ = 1, 2, . . . ,Mn.

(23)

Here, Pn are the direction matrices, having Mn columns (direction vectors), whose number can
vary from iteration to iteration. The vectors ᾱn ∈ RMn are generalizations of the correspond-
ing scalar coefficients for the preconditioned semi-conjugate direction methods (for Mn = 1
and all n), whereas the superscript takes the values 0 and 1 for semi-conjugate gradient and
semi-conjugate residual methods, respectively. In the general case, the multi-preconditioned
direction vectors are determined (in view of the orthogonality conditions from (23)) from the
“long” recurrence relation by the formulas

p0l = B−1
0,l r

0, pn+1
l = B−1

n+1,lr
n+1 −

n∑

k=0

Mk∑

l=1

β
(γ)
n,k,lp

k
l , n = 0, 1, . . . ;

Bn,l ∈ RN,N , l = 1, . . . ,Mn; γ = 0, 1,

β̄
(γ)
n,k = {β(γ)

n,k,l} = (β
(γ)
n,k,1 . . . β

(γ)
n,k,Mn

)T ∈ RMn .

(24)

In this case, for the coefficients of the recurrence relations (24) and for the functionals of the
residual we have the following formulas: for q = 0, . . . , n,

β
(γ)
n,k,l = −(Aγpkl , AB

−1
n+1,lr

n+1)/ρ
(γ)
n,l , n = 0, 1, . . . ; k = 0, . . . , n; l = 1, . . . ,Mn.

Φ(γ)
n (rn+1) ≡ (rn+1, rn+1) = (rq, rq)−

n∑

k=q

Mn∑

l=1

(rq, Aγpkl )
2/ρ

(γ)
k,l .

(25)
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Note that if γ = 1 or A = AT , then formulas (23)–(24) ensure minimization of the functional
Φγ
n(rn) in the following Krylov subspace of dimension M = M0 + · · · +Mn, see [13]:

KM (r0, A) = Span
{
B−1

0,1r
0, . . . , B−1

0,M0
r0, . . . ,

AB−1
1,1r

0, . . . , AB−1
1,M1

r0, . . . , AB−1
n,1r

0, . . . , AB−1
n,Mn

r0
}
. (26)

For a symmetric matrix A, (24) yields a short recurrence relation for the direction vectors

(β
(γ)
n,k,l=0 for k < n), whereas for MPSCD we obtain multi-preconditioned conjugate gradient

or conjugate residual methods (for γ = 0 and γ = 1, respectively).
If the case where A �= AT , it is seemingly most reasonable to apply the Multi-Preconditioned

Semi-Conjugate Residual (MPSCR) method. In solving ill-conditioned unsymmetric SLAEs,
which requires a large number of iterations, it is necessary to shorthen long recurrences, which
are very expensive (mainly because of an increase of the storage needed). This is done either
by introducing the so-called restart procedure or by limiting the number of direction vectors
(or matrices, in the case of multi-preconditioning) to be orthogonalized, or by using both
approaches simultaneously. In all the cases, the rate of convergence slows down, sometimes
quite considerably, which is an inevitable price to pay for reducing storage requirements.

In order to overcome this difficulty, we consider application of the Least Squares Method
(LSM, [14]), confining ourselves to using restarts in their “pure” form. For simplicity, we
assume that the restarts are repeated every m iterations. This means that at every iteration
step with number

nt = mt, t = 0, 1, . . . ,

the residual vector is computed not from the recurrence relations (13) but from the original
equation, i.e.,

rnt = f −Aunt , (27)

and then the recurrence relations are used in the standard way. More exactly, it is convenient
to write such an iterative process using two superscripts, which correspond to the numbers of
successive approximations, namely,

unt = ut,0, un = ut,k, k = n− nt, n ∈ [nt, nt+1].

Here, the interrelation between neighboring restart approximations can formally be described
in terms of suitable transition operators or, in matrix-vector from, as

unt+1 = Btu
nt + gt, (28)

where Bt and gt can be written as closed-form expressions, depending on a specific iterative
method applied.

4. Methods of inner and outer acceleration

Let the restart approximations un0 , un1 , . . . , unt , n0 = 0, be already known. In order to
correct the current approximation, consider a linear combination of the form

ûnt = unt + b1v1 + · · ·+ btvt = unt + Vtb̄, b̄ = (b1, . . . , bt)
T ,

Vt = {vk = unk − unk−1 ; k = 1, . . . , t} ∈ RN,t,
(29)

and find the coefficients bn from the generalized solution of the overdetermined linear algebraic
system obtained by premultiplying Eqs. (29) by the original matrix A, i.e.,

Wtb̄ = rnt = f −Aunt , Wt = AVt. (30)

Here, as in formulas (14)–(20) for the weighted Cimmino methods, one can apply a number
of methods for solving SLAE (30), for instance, use the singular value or QR decomposition
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of the matrix Wt, or compute the generalized inverse W+
t by Greville’s formulas, or determine

the generalized normal solution by the least squares method, or reduce the problem to the less
ill-conditioned system

V T
t AVtb̄ = V T

t rnt (31)

with a square coefficient matrix. In all the cases, upon computing the vector �b and correcting
the current approximation in accordance with formula (29), the next restart begins with the
computation of the residual

rnt+1 = f −Aunt+1, unt+1 = ûnt . (32)

As is nondifficult to see, since the vectors unt in (28) are computed successively, instead of the
above approach, requiring that all the restart approximations be stored, one can use another
algorithm, which is, in a sense, a generalization of the conjugate residual method [17]. We
consider it here as a particular case of formulas (23)–(24) for γ = 1 and Mn = 1, i.e., without
multi-preconditioning. If the vectors unt and rnt are known, then the restart begins with the
formulas

unt+1 = unt + αtp
t = u0 + α0p

0 + · · ·+ αtp
t,

rnt+1 = rnt + αtAp
t = r0 − α0Ap

0 − · · · − αtAp
t,

(33)

conventional for Krylov processes. In (33), αt and pt are some coefficients and direction vectors
(as a rule, p0 = r0). Relations (33) possess the following remarkable property: If the vectors
pt satisfy the orthogonality conditions

(Apk, Apt) = ρtδk,t, ρt = (Apt, Apt), (34)

where δk,t is the Kronecker symbol, then, for any value of t, formulas (33) ensure minimization
of the residual rnt+1, provided that the coefficients αt are determined by the relations

αt = σt/ρt, σt = (Arnt , rnt). (35)

The restart direction vectors, in their turn, possess the properties (34) whenever they are
computed from the long recurrence relation

pt+1 = rnt+1 −
t∑

k=0

βt,kp
k, βt,k = (Apk, Arnt+1)/ρt, (36)

which actually realizes the Gram–Schmidt orthogonalization process. Note that in order to
ensure numerical stability in solving systems with ill-conditioned matrices, the formulas for
βt,k in (36) should be changed for the formulas of the Modified Gram–Schmidt (MGS) method,
see [17] and the references therein.

Since the restart approximations unt are connected via relation (28), which realizes m inter-
restart iterations, formulas (33)–(36) can be regarded as an outer iteration process of a general
two-level method in the Krylov subspace with a pseudopolynomial preconditioner because the
operator Bt involves, in the general case, the preconditioners Bn,l from (24).

Now consider the possibility of accelerating the above-described block iterative methods of
Krylov type based on the deflation approach suggested by Nicolaides [16] in 1987 and devel-
oped since then by many authors, see the survey [17]. In this case, in addition to traditional
variational and/or orthogonal properties of successive numerical approximations, they also sat-
isfy conditions of orthogonality to a specially selected fixed m-dimensional deflation subspace
associated with a rectangular matrix

V = (v1 . . . vm) ∈ RN,m. (37)

We start by preliminarily discussing the application of deflation to the conjugate residual
algorithm for solving a SLAE with a symmetric coefficient matrix A. In this case, first, there
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is an approach to optimizing (in a sense) the initial guess u0. Let an arbitrary vector u−1 be
given. Determine the vectors

u0 = u−1 + V c, r0 = r−1 −AV c. (38)

The vector c = (c1, . . . , cm)T of unknown coefficients occurring in (38) will be determined by
solving the overdetermined system

Wc = AV c = r−1, (39)

which is obtained by formally setting r0 = 0 in (38). Applying the least squares method to
(39), we find the normal solution

c = (W TW )+W T r−1, (40)

which ensures the smallest norm of the residual vector:

r0 = T0r
−1, T0 = I −W (W TW )−1W T ,

(r0, r0) = (r−1, r−1)− (W (W TW )−1W T r−1, r−1)

= (W TWz, z)− ((W TW )−1z, z), z = W T r−1.

(41)

In (41), the matrix T0 is a symmetric orthogonal projector with the properties

T0 = T T
0 = T 2

0 , W TT0 = T0W = 0,

i.e., the space Span(W ) belongs to the kernel N (T0). Then we define the initial direction
vector by the relations

p0 = r0 − V (W TW )−1W TAr0 = Br0, B = I − V (W TW )−1W TA, (42)

and for the vectors r0 and p0 we obtain the deflation orthogonality conditions

W T r0 = 0, W TAp0 = 0. (43)

The matrix B introduced in (42) satisfies the following readily verifiable orthogonality condi-
tions:

W TAB = 0, BV = 0.

Subsequent iterations of the corresponding Deflated Conjugate Residual (DCR) algorithm are
performed in accordance with the standard formulas of the preconditioned conjugate residual
method

un+1 = un + αnp
n, αn = σn/ρn, ρn = (Apn, Apn),

rn+1 = rn − αnAp
n, σn = (ABrn, rn),

pn+1 = Brn+1 + βnp
n, βn = σn+1/σn,

(44)

where the preconditioner B is defined in (42). This algorithm, at every iteration step, mini-
mizes the norm ||rn|| of the current residual in the preconditioned Krylov subspace

Kn(A, r0, B) = Span(r0, ABr0, . . . , (AB)n−1r0), (45)

and the vectors computed satisfy the orthogonality conditions

(ABrk, rn) = σnδk,n,

(Apk, Apn) = ρnδk,n, k = 0, 1, . . . , n− 1,

W T rn = 0, W TApn = 0, n = 0, 1, . . . .

(46)
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In this case, the following relations hold:

(rn+1, rn+1) ≤ (rn, rn)− (ABrn, rn)2

(Apn, Apn)

≤ (rk, rk)− (ABrk, rk)2

(Apk, Apk)
− · · · − (ABrn, rn)2

(Apn, Apn)
, k = 0, 1 , .., n.

(47)

It should be mentioned that the preconditioning matrix B introduced above is singular
because BW = 0. However, relations (43) and (46) imply that all the residual vectors are
orthogonal to the kernel of the matrix Ā = AB, N (Ā) = Span(W ), which ensures that the
iterations (41)–(44) converge.

The above formulas of the DCR method can be modified and simultaneously simplified if
one takes into account the specific properties of the preconditioner B, namely,

B2 = B, AB = BTA = BTAB, (48)

as is done in the DCG algorithm. More exactly, the residual vector determined in the precon-
ditioned Krylov subspaces (45) by formulas (44) is represented as

rn+1 = Pn(AB)rn = Pn(B
TAB), (49)

where Pn is a matrix polynomial of degree n. It follows that the iterations considered can be
written in the following form:

p0 = Br0, αn = σn/ρn, q0 = p0, s0 = Ap0,

un+1 = un + αnp
n, ρn = (sn, sn),

rn+1 = rn − αnAp
n, σn = (Aqn, rn), qn = Brn,

pn+1 = qn+1 + βnp
n, βn = σn+1/σn,

sn+1 ≡ Apn+1 = Aqn+1 + βns
n,

(50)

where the initial residual vector r0 is obtained from (42). Every iteration performed in accor-
dance with (50) involves one multiplication of each of the vectors qn and rn by the matrices
A and B, respectively.

Now consider a formal modification of the above algorithm, which will be referred to as the
Deflated Conjugate Direction (DCD) algorithm. Let two distinct families of vectors vk and
wk, which are the columns of some matrices

V = (v1 . . . vmv) ∈ RN,mv , W = (w1 . . . wmw) ∈ RN,mw , (51)

be given. In (51), the matrix W is a generalization of the above-considered matrix W = AV ,
and mw = mv. As above, the initial guess is chosen in accordance with the formulas

u0 = u−1 + V c, r0 = r−1 −AV c, c = (c1, . . . , cmv )
T ∈ Rmv .

However, the vector c is determined as the generalized normal solution of the SLAE

Mc ≡ W TAV c = W T r−1, c = (W TAV )+W T r−1, M ∈ Rmw ,mv , M+ ∈ Rmv,mw , (52)

which is compatible but has a rectangular coefficient matrix. In this case, the initial residual
is determined by

r0 = B̂r−1, B̂ = I −AV (W TAV )+W T , (53)

and the following orthogonality conditions are fulfilled:

W T r0 = 0, W T B̂ = 0, B̂AV = 0. (54)

The initial direction vector is determined, using a new preconditioning matrix, by the formula

p0 = B̌r0, B̌ = I − V (W TAV )+W TA, (55)
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which ensures that
V̌ = 0, W TAB̌ = 0, W TAp0 = 0. (56)

The subsequent iterations in the DCD algorithm are performed in accordance with the formulas

un+1 = un = αnp
n, αn = σn/ρn, ρn = (Apn, Apn),

rn+1 = rn − αnAp
n, σn = (AB̌rn, rn),

pn+1 = B̌rn+1 + βnp
n, βn = σn+1/σn.

(57)

Then, under conditions (52) and (53), for all n we have the following orthogonality properties:

W T rn+1 = 0, W TApn+1 = 0,

(AB̌rkrn) = σnδk,n, (Apk, Apn) = ρnδk,n, k = 0, 1, . . . , n− 1.
(58)

For mv,mv < N and for V and W introduced in (51), the matrices V T and W can be
interpreted as a restriction and a prolongation operators but relative to spaces of different
dimensions. This allows one to consider numerous formal generalizations of the deflated algo-
rithms presented.

5. Conclusion

The weighted block versions of the Cimmino iterative method naturally develop the con-
ventional representations of projection algorithms of the class under consideration, which can
efficiently be applied in solving a wide range of SLAEs with symmetric, as well as (and espe-
cially) unsymmetric matrices. The presented approaches to constructing multi-preconditioned
iterations in Krylov subspaces and also to their two-level acceleration by deflation and least-
squares methods look promising for solving ill-conditioned linear algebraic systems with large
sparse coefficient matrices. Here, as a theoretical foundation one can use the results on ana-
lyzing properties of projection and deflation methods presented in [18–20] and the references
therein.

An important feature of the iterative methods considered in this paper is their natural par-
allelism. A high scalable efficiency here can be achieved based on using domain decomposition
that realizes block variants of Cimmino–Schwartz methods in Krylov subspaces, when applying
the above-described approaches to accelerating inner and outer iterations. The two-level na-
ture of the resulting computational process provides for an efficient application of technologies
of hybrid programming on heterogeneous supercomputers with distributed and hierarchical
shared memory, including MPI processes, multithreaded computations, and vectorization of
operations. The main part here is played by intensive numerical testing, which is an object of
further investigations along these directions.

This work was supported by the Russian Foundation for Fundamental Research (projects 16-
29-15122 ofi-m and 18-01-00295).

Translated by L. Yu. Kolotilina.
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