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1 Introduction

The threat of tsunami (tidal wave) requires a study of the
impact of such events at different space scales. There are
many problems related to tsunamis and these need to be
solved to reduce their disastrous effects. The two main
issues to be addressed are:

1 real-time tsunami warnings

2 long-term hazard assessment.

Real-time tsunami warning systems are designed to
predict the basic parameters of tsunami waves based on
time (Wei et al., 2008; Titov et al., 2016a; Meenakshi
and Rodrigues, 2014). Long-term hazard assessment
and tsunami inundation mapping is required to support
preparedness measures and effective disaster reduction
(Titov et al., 2016b; Kaistrenko, 2011). Both approaches
to the numerical modelling of tsunami wave propagation
consider it a computationally intensive problem requiring
the acceleration of calculations through parallel processing.

More reliable results from tsunami propagation can be
obtained by improving the resolution of a computational
grid (tens of metres) especially for near-coast areas. Taking
account of stability conditions, the modelling process
should also be implemented with a small time step.
Doing so will result in a significant increase in the
numerical calculation time that is inadmissible in real-time
calculations. Therefore, it is necessary to conduct such
calculations with the use of computational grids whose
spatial step decreases when approaching the coast.

The usage of nested grids allows improvements and
solutions to this problem. This means that the first stage
of simulation is made on a coarse calculation grid (with a
cell size of several hundred metres). Then, as the coastline
is approached, a more refined calculation grid is used. In
this case the new grid covers only a small subarea of
the initial simulation domain. Specifically, the numerical
method MOST was designed for the splitting of difference
schemes in coordinate directions with a possibility of using
adaptive grids that become more refined in domains of
decreasing depth (Titov, 1990).

The main goal of the presented work is to design a
distributed tsunami modelling infrastructure to support
high-speed tsunami modelling on systems with limited
computational resources. Usually, these systems consist
of several personal computers supported by standard
accelerators like GPU and FPGA boards. Indeed,
this situation is typical for laboratory level numerical
experiments. The system should be capable of obtaining
a detailed distribution of the expected tsunami heights
simultaneously along the coast of several bays or ports.

An important intention is to provide high reusability
of experimental data so that modelling results obtained
for deep ocean areas can be applied to coastal areas, for
example, for investigation of the protection properties
of the artificial underwater object’s (see Hayashi
et al., 2017). The computational scheme is realised by

distributing bathymetries over computational resources
and synchronising the processing of each area using
data buffering at boundaries between areas. The paper
also describes applying this scheme to server-based
computations to create a flexible and reconfigurable
computational scheme for a changeable set of modelling
areas.

The rest of the paper is organised as follows.
In Section 2, the relevant work progress is analysed
with reference to high-performance tsunami simulations
using new and modern computing systems based on
heterogeneous computing paradigms. Section 3 explains the
mathematical model for simulating wave propagation and
data source sets needed for numerical modelling, as well
as the nested multi-grid algorithm for tsunami propagation
computation from the initial source to the coastline
involving scale switching. In Section 4, we discuss the main
elements of the designed computational architecture and the
synchronisation protocols between the system components.
The results of the numerical experiments are presented in
Section 5 and discussed in Section 6. Finally, we conclude
with remarks and comments about future work.

2 Related works

Many different works exist related to different aspects
of tsunami modelling. The presented review is oriented
to analyse the current state of parallel implementations
of modelling algorithms. Accordingly, we distinguish the
fine-grained parallelisation providing calculations on the
whole computational area, and coarse-grained (nested)
parallelisation providing calculations on the set of these
areas. We also focus on the GPU and FPGA-based
parallelisation that can be implemented as an acceleration
board to the standard PC architecture. These modules can
be used as constructive elements for the coarse-grained
computational schemes.

A review of the coarse-grained algorithms focuses on
nested computing in which computations are carried out
on a sequence of gridded geographical areas with various
resolutions, where one is embedded into another. Special
attention is paid to approaches for transition of boundaries
between modelling zones.

2.1 Fine-grained parallelisation

Cai and Langtangen (2008) suggested that complex
mathematical models and high mesh resolution should only
be used when necessary. They have developed a parallel
hybrid tsunami simulator based on mixing different models,
methods and meshes. This simulator was implemented
using object-oriented techniques, allowing the easy reuse of
existing codes. Here, high performance was not the main
goal of this research, but to focus on combining various
approaches to develop high-quality hybrid tsunami models.

Sottile et al. (2013) presented preliminary work
examining a programming methodology that provides
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Fortran programmers with access to GPU architectures.
The transformations in ForOpenCL are based on a simple
mapping from Fortran to OpenCL. Using a stencil code
solving the shallow-water fluid equations, it was shown
that the performance of the ForOpenCL compiler-generated
transformations is comparable with that of hand-optimised
OpenCL code.

Vazhenin et al. (2013) described a set of tsunami
wave modelling engines designed for several programming
platforms, including OpenMP, CELL architecture
and GPUs, allowing the flexible usage of available
computational resources. This paper also included an
analysis of the initial and output tsunami data, code design
techniques, as well as the results of some numerical
experiments and validation procedures. In the presented
work, the code of these engines is used to create a
reconfigurable and scalable structure for the nested tsunami
modelling.

Imamura et al. (2006) developed a tsunami software
package (TUNAMI-N1) with the staggered leapfrog
scheme. Gidra et al. (2011) evaluated parallelised
TUNAMI-N1 code by CUDA on NVIDIA QUADRO FX
1700. They reported results on various sizes of ocean
bathymetry data sets for 7,200 time-steps. For 1,040× 668
knots, they obtained a 5.86x speed-up in comparison with
sequential computation on a single processor.

Acuna and Aoki (2014) used Tesla M2050 GPU to
numerically solve the shallow water equations for tsunami
simulation. They used a solution based on the CIP-CSL2
semi-Lagrangian scheme and simulated the tsunami over a
large grid covering the entire Pacific ocean using a Tsubame
2.0 system with multiple GPUs. Fujita (2015) also reported
his accelerated tsunami simulation on FPGA. He manually
extracted large data flow graphs from the program and
compiled it into FPGA circuits. The size of the computation
grid is 1,040× 668 and the simulation is conducted in
7,200 steps defining one time-step as 1 second. It was
shown that an FPGA tsunami simulation is 46 times faster
than an Intel core i7 processor at 2.93 GHz.

Kono et al. (2018) developed tsunami propagation code
based on the MOST algorithm, and implemented different
parallel optimisations for GPU and FPGA. They obtained
good performance from the OpenCL kernel, on which was
implemented a tsunami simulation on an AMD Radeon
280X GPU and on FPGA using OpenCL.

2.2 Computations on nested grids

Initially, nested grids were used for the same purpose in
the calculation domain regions where the propagating wave
becomes shorter and higher. First, the method of nested
grids employed was as follows: at some moment in time
all parameters of the flow were ‘frozen’ in a subdomain.
Then an interpolation to a more refined calculation grid in
this subdomain was made. Calculations were continued in
the nested subdomain on the new grid, and possibly with
a new time step. One can continue the calculation on the
same computer (terminating the calculation in the ‘large’

domain), or transfer the data to another calculation module
(Hasan et al., 2015). Nested grids have been used by many
authors to increase the resolution of calculations in some
subdomains to estimate the wave parameters (Shigihara
and Fujima, 2012; Son et al., 2011; Karim et al., 2014;
Gusyakov et al., 2008).

These methods differ only in the ways of transferring
some of the parameters of a propagating wave (water
surface height and water flow velocity components) from
the entire calculation domain to a subdomain with a
more detailed calculation grid. In some cases a different
mathematical model is used in the subdomain and adaptive
grids with triangular cells are used by some authors (Bader
et al., 2008; Harig et al., 2008). This approach complicates
the calculation algorithm, but it does not speed up the
calculations since a step-by-step calculation is made in
the entire calculation domain that includes the subdomain
(subdomains). However, some authors do not specify how
the data are transferred from the ‘large’ domain to a
subdomain.

Köstler et al. (2017) described a prototype
implementation in Scala for a framework that enables
abstract descriptions of partial differential equations
(PDEs), their discretisation and their numerical solution
via multigrid algorithms. Two test problems illustrate the
potential of this approach for both CPU and GPU target
platforms. Indeed, this approach seems to be attractive but
it needs to be adopted to calculations with real data.

Baba et al. (2016) improved the tsunami simulation code
JAGURS for a large-scale, high-speed tsunami prediction
in the Nankai trough off the coast of Japan. They
optimised the code for velocity update and communications
using a three-dimensional torus network. Linear scaling
was obtained for the full system capability of the K
computer (82,944 nodes) in a strong test that used
100 billion finite-difference grid points. The performance
on the K computer reached up to 1.2 petaflops (11.5%
of peak speed). Communications were optimised for a
three-nested-grid model consisting of 0.68 billion-grid
points. Grid resolution of about 5m was obtained in the
area 180 km × 120 km. They successfully implemented a
large-scale tsunami simulation using this model that ran in
about 30 percent of real time.

Hayashi et al. (2018) proposed a computational
pipelined scheme of tsunamimodelling implemented on a
single computer. The possibility of storing intermediate data
on cloud-based computers is also shown. The presented
paper extends this approach by adopting it to distributed
multicomputer systems with the data-driven streamed
communication mechanism.

3 Tsunami modelling scheme

3.1 Basic tsunami wave propagation algorithm

The best known and widely used tsunami modelling tools
are TUNAMI and MOST. They calculate the long wave
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propagation in the ocean using the so-called shallow-water
differential equations:


Ht + (uH)x + (vH)y = 0

ut + uux + vuy + gHx = gDx

vt + uvx + vvy + gHy = gDy

(1)

where H(x, y, t) = η(x, y, t) +D(x, y, t), η is the water
surface displacement, D is depth, u(x, y, t) and v(x, y, t)
are the horizontal flow velocity components along the axis
x and y, and g is acceleration of gravity. As it follows from
the shallow-water model, the tsunami propagation velocity
does not depend on its length and is expressed by the
so-called Lagrange formula c =

√
g(D + η) that plays a

key role in long wave (tsunami) kinematics. The horizontal
flow velocity is calculated using wave amplitude and water
depth in the following formula

|u⃗| =
√
u2 + v2 = η

√
g

D
(2)

The numerical algorithm is based on splitting the difference
scheme, which approximates equation (1) with spatial
directions as well as permits setting boundary conditions
for a finite difference boundary value problem using a
characteristic line method. Tsunami (MOST) is used for
shallow wave equation (1) and comprises a consecutive
numerical solution of two one-dimensional systems of
equations:


Vt + UVx = 0

Ut + UUx + gHx = gDx

Ht + (UH)x = 0
Vt + V Vx + gHx = gDx

Ut + V Ux = 0

Ht + (V H)x = 0

(3)

Eigenvalues of equation (3) are real and different, and the
system can be rewritten as


V ′
t + λ1V

′
x = gDx

Pt + λ2Px = gDx

ϱt + λ3ϱx = 0

(4)

where λ1 = U , λ2,3 = U ±
√
gH are eigenvalues, V =

V ′, P = U + 2
√
gH , ρ = U − 2

√
gH are the Riemann

invariants. The characteristic line method has been used
to set the simple boundary conditions for the system. The
open boundary conditions that provide wave exit from the
computational domain without reflection can be written
as V ′ = 0, R = ±2

√
gD,R = U ± 2

√
gH (i.e., R = P or

Q). And the wave reflection boundary conditions (on
a coastline) are expressed as V ′ = 0, P = −Q. For the

numerical solution of the system, the following finite
difference scheme is used:

1

W
n+1
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1
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1

2F i −
1

F i−1

2∆x2

(5)

where

A =

λ1 0 0
0 λ2 0
0 0 λ3

 ,

1

W = (V ′, P, ϱ),
1

F = (0, gDx, gDx).

(6)

The stability condition of this scheme is ∆t ≤ ∆x/
√
gH

requiring assignment of a smaller time step if a
computational domain contains deep-water areas. As shown
above, the digital bathymetry and initial water elevation
(tsunami source) are important parameters for defining
the behaviour of tsunami waves. In order to obtain more
reliable results of the tsunami propagation (distribution of
tsunami wave heights in a shelf zone), a rather small
step in the computational grid (about tens of metres) is
necessary. If we simulate the tsunami propagation within
the whole area including both a source zone and sites of
the coast, then we need to use this small spatial grid step.
Furthermore, we will be compelled to calculate this with a
small time step to improve stability. This will bring about
a significant increase in duration of numerical calculations
that is inadmissible in real-time calculations. The problem
can be solved using the nested grid computation method
described in the next subsection.

3.2 Scale switching nested computing

The presented algorithm provides consecutive calculations
of the tsunami wave propagation in several computational
domains, where each subsequent computational area is a
subarea to the previous one, but with a smaller spatial
step. Accordingly, we consider that calculations commence
with obtaining so-called tsunami source data in which the
initial vertical water surface displacement is reflected. Wave
parameters are transferred to each subsequent subarea via
boundary conditions while interpolating these data along
the boundary on a smaller computational grid. Digital
bathymetry sets were taken or developed using different
sources. The scale-switching computations provide the
tsunami wave propagation modelling from the initial source
to the coastline. As shown in Figure 1, computations are
carried out on a sequence of grids with various resolutions
where one is embedded into another.
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Figure 1 Nested grids (see online version for colours)

Consider computations in areas B1 and B2 (Figure 2).
In the first stage of the numerical experiment, wave
propagation was simulated in the ‘large’ computational
domain, B1. In the whole process of computation, the wave
parameters (amplitude, horizontal velocity components and
geographical coordinates), buffering occurs at all grid points
along the B2 boundary areas. The data output starts from
the very first time step and continues with each time step.
Data recording can be stopped when a tsunami wave has
passed the right boundary of subarea B2 (at least the whole
wave period). The gridded bathymetries of computational
areas B1 and B2 may not be well correlated. This means
that there are almost no grid points having the same
geographic location. As already noted, the grid-step length
in these two areas may be significantly different from one
another.

Figure 2 Scale switching for B1 and B2 areas
(see online version for colours)

Let us take one column of area B1 grid points, which are
most closely situated to the right vertical boundary of B2.
The latitudes of these B1 domain grid points are saved
in 1D array lat1i, i = 1, N . Using linear interpolation the
tsunami wave parameters at B2 boundary grid-points with
the latitudes lat2j, j = 1,M are calculated.

The formulas for recalculating the wave parameters
along the B2 domain boundary are as follows:

η2j =
ηi+1(lat2j − lat1i) + η1i(lat1i+1 − lat2j)

lat1i+1 − lat1i
,

u2j =
ui+1(lat2j − lat1i) + u1i(lat1i+1 − lat2j)

lat1i+1 − lat1i

·

√
D1j
D2j

(7)

Here the parameters η2i, u2j are related to the B2
computational area, and η1j, u1i are related to area B1. If
time steps are different then wave parameters must also be
interpolated with respect to time. Thus, after recalculating
the flow parameters along B2 boundaries the calculation for
this area can be provided. A more detailed description of
this method can be found in Hayashi et al. (2015).

4 Nested modelling infrastructure and computational
schemes

4.1 Common remarks

Component-based development embodies good software
engineering practice. It is concerned with developing
standardised components based on a component model,
and composing these into application systems. Based
on this approach and the scaling algorithm presented
above, we developed a reconfigurable and scalable
structure providing coarse-grained parallelisation of the
nested tsunami modelling. Here we describe the system
components and algorithms of functioning as well as show
how to assemble the computational schemes.

4.2 Wave engine

The wave engine (WE-engine) is a component that
calculates the tsunami wave parameters as well as forms
the boundary data used for modelling on an embedded area.
Figure 3 shows the structure of the wave engine. As shown
in Figure 3, the input data are:

• the gridded bathymetry of modelling area BIN with
geographical coordinates are represented as a
two-dimensional array, and each element of which is
a value of the ocean depth

• initial tsunami displacement (ITD) is represented as
two-dimensional arrays of size BIN containing
values of amplitude and horizontal flow velocity
components
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Figure 3 Structure of a wave engine (see online version for colours)

• the gridded bathymetry of embedded area BEM

• modelling parameters such as a time-step ∆t, the
model run length defined as a number of time steps
(NTS) and number of time steps between two frames
NF

• boundary values for BIN represented as
one-dimensional arrays as described in Section 3.

The output data of the WE-engine are:

• wave data for all grid points of BIN defining
amplitude, horizontal velocity components and
geographical coordinates;

• boundary values for BEM extracted from the wave
data.

The kernel of WE-engine is the modelling engine
(ME-engine) calculating tsunami wave parameters. As
pointed out above, the ME-engine can use different
mathematical models of tsunami wave propagation as
well as be realised based on parallel architectures,
including CUDA GPU accelerators and FPGA arrays.
Here we use the standard MOST algorithm providing
calculations by equations (1)–(6). According to the
modelling area (Figure 1), it is possible to distinguish
types of WE-engines. In the initial stages of all
modelling areas there is no tsunami source (the initial
vertical water surface displacement). This appears in the
deep-water area B1, and a tsunami wave is propagated
to the coast over all nested areas. Therefore, the
first type of WE-engine requires the tsunami source
data identified in Figure 3 as the ITD. The outputs

are tsunami wave parameters (wave data) and boundary
data used for calculating the embedded area BEM . For
intermediate area B2, it is necessary to use boundaries
from the external area B1, and it is not necessary to
input ITD. That is the second type of WE-engine. The
last area of this chain is the coastal area that does not
need to output boundary data. This is considered to be
the third type of WE-engine. Figure 4 indicates the main
operations reflecting the iterative modelling process in the
wave engine.

Figure 4 Modelling process in the WE-engine
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Figure 5 Structure of a boundary engine (see online version for colours)

As shown in Figure 4, operations 1–6 are designed to
obtain parameters defining the modelling process including
the number of time steps NTS, number of frames NF,
type of ME-engine WE, bathymetry BIN parameters of
the embedded bathymetry BEM and initial vertical water
surface displacement data ITD. Operation 12 calculates
tsunami wave parameters for the current time step according
to equations (1)–(6). As pointed out above, the modelling
Engine can be realised using different architecture that
includes CUDA GPU accelerators and FPGA arrays. Here
we use our approach described in more detail in Vazhenin
et al. (2013). During operations 13–15, the frame writer
saves wave parameters for all grid points of the BIN -area
into the wave data. To reduce the volume of wave data
saves only selected frames.

Boundary reader and writer are implemented to
synchronise communications and data exchange between
engines. Operations 18 and 19 provide outputs of
boundaries to be shared with WE-engines. The stability of
the data exchange is realised by blocking access to this
record until all boundary data have been correctly saved.
Boundary data are represented as one-dimensional arrays.
Therefore, the 2D→1D adaptation extracts the boundaries
for the embedded area BEM from the 2D wave BIN -data.
This is the main part of operation 18.

Operations 10 and 11 are active for WE-engines of the
second or third type. They provide input from the boundary
data obtained from the outer area. Operations 10 and 11
support correct reading boundaries from the outer area.
This is implemented by waiting for a record of boundaries
corresponding to the current time step of modelling. The
1D→2D converter transforms the one-dimensional array of
boundaries to the two-dimensional representation.

4.3 Boundary engine

Boundary engines (BE-engine) provide interpolation
of the boundary transition between grids as well
as a synchronisation protocol for data exchange
between these components. As shown in Figure 5,
the boundary interpolator is the main component
implementing calculations according to equation (7). The
other components are the boundary reader and writer
implementing the same functions as in ME-engine.

Figure 6 Modelling process in the BE-engine

Figure 6 shows the main operations realising the
scale-switching process in the boundary engine. Operations
1–3 are to obtain components needed to implement the
scale-switching procedure including the number of time
steps NTS, and the current and embedded bathymetries
BIN and BEM . The boundary interpolator works during
operation 7. The synchronised communication and data
exchange between engines is organised via the protocol
implemented in operations 5, 6, 9 and 10. They are the
same as in the ME-engine. Operations 5 and 6 support
correct reading boundaries from the upper area BIN .
Operations 7–9 provide outputs of scaled boundaries to be
shared with WE-engines.

4.4 Distributed modelling schemes

The approach presented here allows for the creation of
flexible and reconfigurable computational schemes with a
variable set of modelling zones by sharing these data with
other chains implementing modelling for other embedded
coastal areas. The first scheme can be made using so-called
horizontal direction in order to increase a number of
embedded grids as shown, for example, in Figure 7.
Importantly, all communications and data exchanges are
implemented for each time step of modelling. Therefore, the
processing of streamed data is implemented via WE and BE
engines connected in series where the output of one element
is the input of the next one.
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Figure 7 Three-nested computational scheme

Figure 8 Calculations with three coastal areas

The extension of a number of coastal areas having
high-resolution can also be organised in a so-called vertical
direction. Figure 8 shows a type of calculation and resource
distribution for parallel modelling in three areas that are
embedded in area B2. Accordingly, WE-engines implement
the same calculations of wave parameters, but form
different boundaries defined by corresponding bathymetries.

Placing boundaries on the cloud-like storage allows for
access to the data at any time as well as dynamically
connecting important areas to a modelling process.
Importantly, the high communication speed required cannot
be reached by traditional cloud server organisation.
It should be made in order to maintain high-speed
communication channels.

5 Numerical experiments

To verify our approach, we implemented a set of numerical
experiments in a multicomputer environment. The following
four bathymetries were used in our experiment:

• The computational area B1 is the gridded 3,000 ×
3,200 knots with the resolution of around 205 * 276
m. The B1 grid covers the geographic area from
140.0025◦ to 147.4539◦ E and from 34.02200◦ N up
to 41.97305◦ N.

• The computational area B2 is 2,161 × 3,201 knots
with the resolution of around 55 * 69 m covering a
part of the Tohoku Area.

• The computational area B3 is the gridded 1,392 ×
854 knots with the resolution of around 6.9 * 8.6 m.
It covers the coast area of Onahama Bay in
Fukushima Prefecture.

• The computational area B3′ is the gridded 2,148 ×
1,074 knots with the resolution of around 13.5 *
17.2m. It covers the coast area of Oppa Bay in
Miyagi Prefecture.

The information for each model is as follows:
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• total number of steps NTS: 15,000

• time corresponding to one step(sec): 0.25

• initial displacement of tsunami (m): 2.0

• interval of model output frame output (step) NF : 200

• area corresponding to model 1: B1

• area corresponding to model 2: B2

• area corresponding to model 3: B3

• area corresponding to model 3′: B3′.

Firstly, we evaluated the computational scheme presented
in Figure 3. As pointed out above, we used the MOST
package as the basic code in our investigations. Originally,
it was written in the FORTRAN language. Using its
tsunami wave modelling code as the modelling Engine,
we re-engineered it in order to create the WE-engine. To
create the other version of the WE-engine, we also used
the CUDA-based modification of the MOST code described
in Vazhenin et al. (2013). The BE-engine was realised
using the FORTRAN code. Experiments were implemented
using one personal computer with multicore architecture. Its
standard architecture was extended by two CUDA-boards.
Characteristics of this PC are presented in Table 1.

Table 1 Calculation environment PC1

CPU Intel(R) Core(TM) i7-7700K
Number of cores 4
Number of threads 8
Clock frequency 4.20 GHz
Memory 64 GB
GPU GeForce GTX 1050 Ti (*2)
Number of GPU Cores 768
Core clock 1,290 MHz
GPU memory 4 GB

Table 2 Sequential tsunami modelling time using PC1

Name T1 T1′ T2 T2′

MODEL1 FORTRAN FORTRAN CUDA CUDA
TIME (min) 242.85 242.32 27.25 27.21
MODEL2 FORTRAN FORTRAN CUDA CUDA
TIME (min) 157.28 158.37 32.18 32.45
MODEL3 FORTRAN - CUDA -
TIME (min) 24.23 - 4.55 -
MODEL3′ - FORTRAN - CUDA
TIME (min) - 54.43 - 9.21
TOTAL 424.36 455.12 63.98 68.87
SPEED UP 1(T1) 1(T1′) 6.63(T1) 6.61(T1′)

Table 2 shows the results of numerical experiments with
so-called sequential processing of areas B1, B2 and
B3. This means that calculations in area B2 start after
finishing a whole modelling process in area B1, and area
B3 is processed after the modelling for area B2. This
demonstrates an effect of the spatial acceleration of the
modelling process using fine-grained GPU-parallelisation

by CUDA. Speedups are calculated as the relation between
the total execution time of sequential processing and the
time obtained in the current experiment. This means, for
example, that speedup is calculated as S = T1/T4 = 6.63 for
column T4. Importantly, total time is measured for a whole
process including all input/output operations.

Table 3 Streamed tsunami modelling time using PC1

Name T3 T3′ T4 T4′

MODEL1 FORTRAN FORTRAN CUDA CUDA
TIME (min) 244.58 244.65 40.47 40.16
MODEL2 FORTRAN FORTRAN CUDA CUDA
TIME (min) 244.73 245.07 46.00 47.22
MODEL3 FORTRAN - CUDA -
TIME (min) 244.85 - 46.35 -
MODEL3′ - FORTRAN - CUDA
TIME (min) - 245.43 - 47.5
TOTAL 244.85 245.43 46.35 47.5
SPEED UP 1.73(T1) 1.85(T1′) 9.16(T1) 9.58(T1′)

Table 4 Heterogeneous tsunami modelling using PC1

Name T5 T5′ T6 T6′

MODEL1 FORTRAN FORTRAN CUDA CUDA
TIME (min) 242.43 242.11 27.26 27.27
MODEL2 CUDA CUDA FORTRAN FORTRAN
TIME (min) 242.7 243.28 156.55 161.64
MODEL3 CUDA - FORTRAN -
TIME (min) 242.87 - 156.73 -
MODEL3′ - CUDA - FORTRAN
TIME (min) - 243.51 - 161.77
TOTAL 242.87 243.51 156.73 161.77
SPEED UP 1.75(T1) 1.87(T1′) 2.71(T1) 2.81(T1′)

Table 5 Optimised tsunami modelling using PC1

Name T7 T7′

MODEL1 CUDA CUDA
TIME 38.32 37.83
MODEL2 CUDA CUDA
TIME 43.83 43.98
MODEL3 FORTRAN -
TIME 44.25 -
MODEL3′ - FORTRAN
TIME - 56.58
TOTAL 44.25 56.58
SPEED UP 9.59(T1) 8.04(T1′)

In the next group of experiments, all boundary and wave
engines were launched simultaneously. In this case, all
engines are working in parallel to provide synchronisation
and boundary exchange as described in Section 4. This
produces the streaming computations in which calculations
in the current area can be executed when at least one
boundary record is ready for reading. In fact, this is
streamed with an amount of stages defined by a number of
modelling areas. Results presented in Table 3 demonstrate
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additional performance in comparison with sequential
computing.

Table 6 Calculation environment PC2

CPU Intel(R) Core(TM) i7-3820
Number of cores 4
Number of threads 8
Clock frequency 3.60 GHz
Memory 16 GB
GPU GeForce GTX 1050 Ti
Number of GPU cores 768
Core clock 1,290 MHz
GPU memory 4 GB

Table 7 Calculation environment PC3

CPU Intel(R) Xeon(R) CPU E5-2650
Number of cores 8
Number of threads 16
Clock frequency 2.00 GHz
Memory 64 GB
GPU GeForce GT 610
Number of GPU cores 48
Core clock 810 MHz
GPU Memory 1 GB

The concurrent process execution and resource management
is implemented under the control of operating systems
including processes that are executed on the GPUs. This
may decrease the efficiency of computations due to an
imbalance in using resources. As shown in Table 3, the
efficiency of pipelining is reduced for the GPU-based
engines because of the necessity of managing three
heavy-computational processes on two GPU-boards, that are
not well designed for multitask processing.

Table 4 demonstrates the possibility of heterogeneous
processing by joining the CUDA- and FORTRAN-engines
in a single computational scheme. Accordingly, the user can
optimise the execution time by balancing the computational
load between the engines. Assigning a CUDA-based engine
for modelling the most heavy-computational area can
do this, and useful when computational resources are
limited. Usually, the area BIN has a bigger size than the
embedded area BEM even if it has lower resolution. In our
experiments, area B1 is the most difficult area. The results
presented in Table 4 demonstrate the effect of using one
CUDA-based engine for area B1 (cases T6 and T6′).

Table 5 shows the most balanced computational scheme
in which each CUDA-based engine is used for modelling
tsunami waves in areas B1 and B2 correspondingly. The
calculations for the smaller area B3 are implemented using
the FORTRAN WE-engine. It is possible to see that the
execution time is comparable with the case when all
CUDA-based engines are used (cases T4 and T4′). This
situation is very useful when GPUs do not have enough
memory to implement calculations for all areas.

The next group of experiments was implemented in
a distributed environment according to the computational

scheme shown in Figure 8. We used three computers
connected locally via the standard TCP/IP protocol. The
characteristics of two additional computers are described
in Tables 6 and 7, correspondingly. For sharing boundary
data, we developed a file server PC3 based on a network
file system (NFS) that enables local users to access remote
data and files in the same way as they are accessed locally
(Tanenbaum and Bos, 2015).

Computer PC3 was used for this server creation
as well as for the modelling for area B1. The client
computer PC1 implemented calculations for areas B2
and B3, and computer PC2 was assigned to areas B2
and B3′. Calculations for all computers were initiated
simultaneously.

The results of the experiments (Table 8) show that
the proposed scheme allows for implementing tsunami
modelling simultaneously for several coastal areas. It should
also be noted that the calculator must be selected correctly
to accelerate the calculation optimally. Therefore, a special
resource management system will be useful in optimising
computational load among disparate computers including
predicting the efficiency of multi-core processing associated
with a set of tasks with varied CPU and main memory, for
example, as shown in Hasan et al. (2017).

6 Discussions

The described approach allows for joining bathymetries
with non-proportional grid steps and inconsistent bottom
reliefs in a whole computational scheme making it
significantly different from traditional methods. Using
this approach, higher model accuracy can be achieved,
because boundaries are transferred between areas in all
computational steps without any data loss during data
transitions.

As shown in section 2.2, the calculations in the
embedded (nested) areas are implemented after some
selected computational steps by freezing the wave
parameters, including surface displacement data as well as
parameters defining horizontal water flow velocity. Based
on the two-dimensional interpolation, calculations can be
continued in embedded subareas having more detailed
computational grids as well as different time steps. The
novelty of the proposed approach is that calculations of
hydrodynamic parameters can be started simultaneously
in all computational domains and implemented with
the whole time step. The one-dimensional interpolation
simplifies calculations and makes it possible to reduce
computational errors. Moreover, this approach allows the
correction of values in water flow velocity in a case
of mismatching bathymetric data between computational
grids. The calculations can also be branched at the late
stages of modelling. This allows one to also realise the
old technology by starting the embedded process from the
selected time step. Similar simultaneous calculations were
realised in Baba et al. (2016) using the K supercomputer.
The authors used the new JAGURS mathematical model
that requires additional validation procedures.
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Table 8 Streamed tsunami modelling time (min) using multi-computer with NFS

Name T8 T8′ T9 T9′ T9′∗

MODEL1 CUDA - CUDA - CUDA
PC 3 - 3 - 3
TIME 33.73 - 29.6 - 29.38
MODEL2 CUDA CUDA FORTRAN FORTRAN FORTRAN
PC 1 2 1 2 1
TIME 41.33 44.15 165.07 548.58 165.7
MODEL3 CUDA - FORTRAN - -
PC 1 - 1 - -
TIME 41.48 - 165.18 - -
MODEL3′ - CUDA - FORTRAN FORTRAN
PC - 2 - 2 1
TIME - 44.57 - 548.90 166.0
TOTAL 41.48 44.57 165.18 548.90 166.0
SPEED UP 10.23(T1) 10.21(T1′) 2.57(T1) 0.83(T1′) 2.74(T1′)

The streamed data processing is implemented via
modelling engines connected in a chain using data-driven
synchronisation between them. These engines can be
realised using different computational paradigm sequential
(FORTRAN), GPU or FPGA-based architectures. The
presented infrastructure has high flexibility and can be
dynamically reconfigured according to a variable set of
modelling zones. Further optimisation can be provided
by taking into account the specifics of concrete problems
such as a real-time tsunami warning or a long-term hazard
assessment.

To create the wave engines we used the code developed
by Vazhenin et al. (2013), which is based on the
well-validated MOST package developed at Pacific Marine
Environmental Laboratory (NOAA, Seattle, USA), and is
also used in the USA for developing inundation maps as
well as for Tsunami Inundation maps. Accordingly, the
evaluation of parallel CUDA-engines was implemented by
numerical and visual comparison with the FORTRAN-based
calculation results. For example, this engine is able to
process trans-oceanic tsunami wave propagation in less than
15 minutes (4’ mash). Maximum distortion is less than
0.001 cm compared to the FORTRAN-based engine.

The results presented confirm the possibility of
implementing high-speed computations concurrently at the
laboratory level using distributed computing in combination
with CUDA-accelerators. As shown in Section 2, modern
accelerators are mostly oriented to speedup calculations in
a whole computational area. They are much more powerful
than the coprocessors used in our experiments. This makes
it possible to significantly improve the total calculation
speed compatible with calculations on supercomputers.

7 Summary and conclusions

The tsunami modelling on nested grids allows for
decreasing the total amount of calculations by processing
only selected coastal areas. In fact, nested computing is
already used widely in numerical modelling such as weather

forecasting and tsunami warning. These applications use
highly consistent grids with proportional changing of grid
resolution. However, in comparison with those approaches,
our proposal integrates in a single modelling scheme the
bathymetry grids designed by different developers that
usually have non-proportional grid steps and differences in
bottom relief.

Our proposal can also be considered a coarse-grained
acceleration of the modelling process that is realised
by joining heterogeneous components in a streamed
computational scheme. These components can show
different performance as well as different computational
paradigms. Therefore, a special resource management
system will be useful in optimising computational load
among disparate computers including predicting the
efficiency of multi-core processing associated with a set of
tasks with varied CPU and main memory.
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