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ON COARSE GRID CORRECTION METHODS IN
KRYLOV SUBSPACES

Y. L. Gurieva∗ and V. P. Il’in∗ UDC 519.6

Two approaches using coarse grid correction in the course of a certain Krylov iterative process are
presented. The aim of the correction is to accelerate the iterations. These approaches are based on
an approximation of the function sought for by simple basis functions having finite supports. Addi-
tional acceleration can be achieved if the iterative process is restarted and the approximate solution
is refined. In this case, the resulting process turns out to be a two-level preconditioned method.
The influence of different parameters of the iterative process on its convergence is demonstrated
by numerical results. Bibliography: 6 titles.

1. Introduction

Algorithms of coarse-grid correction have originally been proposed as a method for accel-
erating iterative domain decomposition methods (DDMs), which, in their turn, provide the
main approach to scalable parallelization in solving large systems of linear algebraic equa-
tions (SLAEs) with sparse coefficient matrices arising from finite volume or finite element
approximations of multidimensional boundary-value problems on unstructured grids, see [1]
and the references therein. Parallel implementation of DDMs is traditionally carried out using
two-level Krylov processes, the outer one realizing block iterations over subdomains, and the
inner one effecting the synchronous solution of algebraic subsystems in subdomains. From
the standpoint of the overall complexity of the algorithms under consideration, it is urgent to
have a fast method for solving relatively small SLAEs in subdomains, which must be solved
repeatedly, i.e., at each outer iteration. It is quite natural to solve each of the subsystems
on its “own” multi-core processor using multithreaded computations on a shared memory.
Since, in this case, application of algorithms of incomplete triangular factorization for precon-
ditioning the inner Krylov iterations implies difficulties in parallelization [2], the present paper
considers other approaches that are based on coarse-grid correction and least squares methods
(LSMs) [3, 4].

Coarse grid correction is accomplished using finite basis functions of the first, second, and
third orders on a coarse grid, connected with a set of subdomains in the DDM concept, and
it can be interpreted, if desired, as a variant of the multigrid approach. The coefficients of a
linear combination of the basis functions are computed from the condition of residual mini-
mization for the initial SLAE in the resulting preconditioned Krylov iterations. Specifically,
we use the conjugate gradient algorithm (even for unsymmetric SLAEs) with restarts and a
periodic optimization of the solution approximations by the LSM, which actually generates a
preconditioner as a low-rank approximation of the original matrix. The approach applied can
be regarded as deflation or augmentation in the sense of extending the basis for the initial
iteration process. In order to accelerate the convergence of the algorithm, we also use an
“outer” level of acceleration by the LSM, which is based on combining residuals at “restarts.”

The paper is organized as follows. In Sec. 2, the algorithms proposed and their basic
properties are described. In Sec. 3, we discuss the construction of the basis functions. In
Sec. 4, the efficiency of the approaches suggested is investigated numerically on a series of
grid SLAEs for a two-dimensional convection-diffusion Dirichlet boundary-value problem. In
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the Conclusion, the prospects of using the iterative processes constructed in solving practical
problems are analyzed.

2. Conjugate gradient methods with coarse-grid correction of various orders

The aim of this paper is to construct and study numerically fast and parallelizable iterative
algorithms for solving large SLAEs of the form

Au = f, A ∈ RN,N , u, f ∈ RN , (1)

with sparse ill-conditioned coefficient matrices, including unsymmetric ones, which arise from
finite volume or finite element approximations of multidimensional boundary-value problems
on unstructured grids. More specifically, we consider real and not “superlarge” algebraic sys-
tems that fit into the shared memory of a single multi-core processor, so that the software
implementation of the algorithms is performed with multithreading technologies without en-
ergy consuming and relatively slow data exchanges. It is assumed, in particular, that the
approaches proposed can be used in two-level domain decomposition methods with scalable
parallelism in solving subsystems in grid subdomains.

On the one hand, we will consider an algebraic method of coarse-grid correction as a precon-
ditioning method for Krylov iterations. On the other hand, the method construction is based
on approximation principles. In abstract form, this approach is as follows. Given a system of
basis functions, or vectors φ1, . . . , φm, we will refine an approximate solution un of the linear
system (1) using the representation

�un = un + c1φ1 + · · · + cmφm = un + Φc, m � N, (2)

where c = (c1, . . . , cm)T , the subscript T means transposition, and the columns of the rect-
angular matrix Φ = (φ1 . . . φm) ∈ RN,m are the vectors φk, k = 1, . . . ,m. The corresponding
residual vector is written in the form

�rn = f − A�un = rn − Ψc, Ψ = AΦ. (3)

Then the vector c and the corresponding corrected approximate solution �un can be computed
from the condition of minimization of the residual norm ‖�rn‖2 = (�rn, �rn)1/2. By using the
LSM [4], we obtain a SLAE

�B�c = ΨTΨ�c = ΨT rn ≡ �gn, �B ∈ Rm,m, (4)

which can be regarded as a consequence of the orthogonality relation ΨT
�rn = 0, and �c is a

solution of system (4) in a generalized sense. The matrix �B is nonsingular whenever Ψ has full
rank m. In the general case, even if �B is singular, system (4) is consistent, and the vector �c
sought for can formally be defined in terms of the generalized inverse matrix B+ by the formula
�c = �B+ΨT rn. In practice, SLAE (4) can always be solved, for example, using the singular
value decomposition method [4]. Further, relations (2) and (3) are readily brought to the form

�un = un + Φ �B+ΨT rn, �B = ΨTΨ = ΦTATAΦ,

�rn = rn − Ψ(ΨTΨ)+ΨT rn = �Hrn, �H = I − AΦ(ΦTATAΦ)+ΦTAT .
(5)

Note that instead of using the LSM (4), (5), one can also use the correction obtained from the
condition of orthogonality of the residual �rn to the vectors φ1, . . . , φm. In matrix form, this is
written as ΦT

�rn = 0. Thus, as a result of (3), we obtain

�B�c = ΦTAΦ�c = ΦT rn ≡ �gn. (6)

In this case, instead of relations (5) we have

�un = un + Φ �B+ΦT rn, �B = ΦTAΦ, �rn = �Hrn, �H = I − AΦ(ΦTAΦ)+ΦT . (7)
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Recall that the two approaches considered, namely, (4), (5) and (6), (7) have different orthog-
onality properties: for the first approach, ΦTAT

�rn = 0, whereas for the second one, ΦT
�rn = 0.

It is also essential that the approaches have different optimization characteristics: relations
(4), (5) provide for minimization of the functional ((rn − AΦ�c), (rn − AΦ�c)), whereas condi-
tions (6), (7) ensure minimization of the functional (A−1(rn − AΦ�c), (rn − AΦ�c)) but only
in the case where A is a symmetric positive definite (s.p.d.) matrix. Note that in the cases
considered, the matrices �B, �B ∈ RN,N are actually low-rank approximations of the matrices
ATA and A, respectively.

So far, we have not specified by which method the vectors un and rn, to which the above-
described coarse-grid correction applies, are obtained. In general, one can choose any of the
Krylov type processes as the initial iterative algorithm. We consider the deflated conjugate
gradient method (DCG) proposed in [5] for solving SLAEs with s.p.d. coefficient matrices,
and we will apply it to unsymmetric systems as well. This algorithm is based on choosing
a rectangular deflation matrix W = (w1 . . . wk) ∈ RN,k with linearly independent columns,
which form a basis of the corresponding deflation subspace, and initial vectors u0, r0 = f−Au0,
and p0 satisfying the orthogonality relations

W T r0 = 0, W TAp0 = 0. (8)

Given an arbitrary vector u−1, conditions (8) are fulfilled if we set r−1 = f − Au−1 and

u0 = u−1 + WB−1W T r−1, p0 = r0 − WB−1W TAr0, B = W TAW. (9)

Then, for n = 0, 1, . . . , the approximate solutions are computed by the formulas

un+1 = un + αnpn, αn = ρn/(pn, Apn),

rn+1 = rn − αnApn, ρn = (rn, rn),

pn+1 = rn+1 + βnpn − WB−1WArn+1, βn = ρn+1/ρn.

(10)

In this case, for all n, the relations

W T rn+1 = 0, W TApn+1 = 0, (11)

analogous to (8), hold. In order to select the deflation vectors wk, we will use the approximation
principle of coarse-grid correction from [3], see Sec. 3 below.

Now we describe the second, outer, level of acceleration of an iterative process with restarts.
Let n0 = 0 and let nk, k = 1, . . . ,M , be the numbers of the “restart” iterations, at which the
approximate solutions and the corresponding residual vectors,

un0 , un1 , . . . , unm , rn0, rn1 , . . . , rnm, (12)

are computed. In particular, if the length of the restart period m = nk − nk−1 is constant,
then nk = km. From these vector sequences we form the rectangular matrices

Vk = (v1 = un1 − un0 . . . vk = unk − unk−1) ∈ RN,k,

Wk = (w1 = Av1 . . . wk = Avk) ∈ RN,k.
(13)

We will refine every restart approximation by using a linear combination of the previous similar
iterations in the following way:

�unk = unk + c1v1 + · · · + ckvk = unk + Vk c̄k. (14)

Here, c̄k = (c1, . . . , ck)T is the vector of unknown coefficients. The corresponding modified
residual vectors can be written in the form

�rnk
= f − A�unk

= rnk − Wkc̄k. (15)
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In order to obtain the coefficients ck by the LSM, we solve the auxiliary SLAE

Bkc̄k ≡ W TAWc̄k = W T rnk ≡ gk, Bk ∈ Rk,k, (16)

and the corrected solution is computed by formula (14).

3. Boundary-value problem and basis functions

For a convection-diffusion equation in the square domain Ω = [0, 1] × [0, 1] with bound-
ary Γ, we consider the two-dimensional boundary-value problem with the Dirichlet boundary
conditions

−∂2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω, u|Γ = 1, Γ = Ω \ Ω. (17)

Discretization is carried out by the finite volume method of the second order (for details,
see [4]) on the square grid with L+ 1 steps along the x-axis and M + 1 steps along the y-axis.
The number of unknowns in system (1), i.e., the number of computation nodes is LM if the
boundary conditions are taken into account and the boundary nodes are eliminated.

In the domain Ω, a macro-grid is constructed. Its macro-elements (subdomains) cover all
the computation nodes. The macro-grid also is a square one and is specified by the numbers
of macro-steps, Px and Py, in each of the directions. The number of subdomains in Ω is
P = PxPy. The macro-grid is constructed in such a way that its grid lines interlace the grid
lines of the original grid, whence every node belongs to exactly one subdomain. Denote the
grid macro-coordinates in the x- and y-directions by X0, . . . ,XPx and Y0, . . . , YPy , respectively.
Every subdomain is defined by four values of the macro-coordinates, or macro-vertices, and has
its own number (which corresponds to the column number of the deflation matrix W ). In this
case, the number of columns in the matrix W is equal to the number of basis functions defined
on the macro-grid, and the number of rows in this matrix equals the number of computation
nodes.

In applying coarse-grid correction, we will use basis functions of the zero, first, and second
orders. Dwell on describing the functions of the three types.

The zero-order basis functions, which form the first type, are the so-called “shelves” in the
subdomains. They are defined as follows. Let the coordinates (xi, yj) of the nth node be
known (we assume that all the nodes are ordered) and let Xk,Xk+1, Yl, Yl,+1 be the macro-
coordinates defining a certain subdomain with number p. Then for the matrix entry we have
W (q, p) = 1, provided that

Xk < xi < Xk+1, Yl < yj < Yl+1, (18)

where q = q(i, j) is the number of the matrix row and, simultaneously, that of the corresponding
node. In the matrix column that corresponds to the subdomain with number p, the number
of unit entries equals that of the nodes lying inside this subdomain, and the remaining entries
are zero. In each of the subdomains, only one basis function is nonvanishing, whence every
row of W contains a single nonzero entry.

The second type of functions consists of basis functions of the first order, the so-called
“caps”. These functions are functions with finite support bilinear in subdomains. Each of
them is a product of a linear function in x and a linear function in y, and it is defined on
its support, which is a doubled macro-edge [Xk−1,Xk+1] and [Yl−1, Yl+1], respectively. This
implies that a basis function is computed in one of the four possible ways, depending on the
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macro-cell to which the node belongs:

if Xk−1 < xi < Xk, Yl−1 < yj < Yl, then W (q, p) =
( xi − Xk−1

Xk − Xk−1

)(yj − Yl−1

Yl − Yl−1

)
;

if Xk−1 < xi < Xk, Yl < yj < Yl+1, then W (q, p) =
( xi − Xk−1

Xk − Xk−1

)(
1 − yj − Yl

Yl+1 − Yl

)
;

if Xk < xi < Xk+1, Yl−1 < yj < Yl, then W (q, p) =
(
1 − xi − Xk

Xk+1 − Xk

)(yj − Yl−1

Yl − Yl−1

)
;

if Xk < xi < Xk+1, Yl < yj < Yl+1, then W (q, p) =
(
1 − xi − Xk

Xk+1 − Xk

)(
1 − yj − Yl

Yl+1 − Yl

)
.

(19)

Each of the functions of a piecewise linear basis can be associated with one of the macro-
grid nodes, so that the total number of columns in the corresponding matrix W is equal to
(Px + 1)(Py + 1). In a separate subdomain, the desired solution is approximated by a linear
combination of four basis functions, whence every row of the corresponding deflation matrix
W has four nonzero entries.

The third type of functions consists of the second-order basis functions, which are tensor
products of one-dimensional B-splines. These functions also have finite supports, namely,
the triple macro-edges [Xk−2,Xk+1] and [Yl−2, Yl+1] in each of the directions. The spline (a
function of one variable) is “sewn” from three quadratic functions, computed in their own way
on each single macro-edge that is a part of the support. Denote these partial functions by
b1, b2, b3. Then, formally, one can write

b1(x0, x1, x2, x) =
(x − x0)
(x2 − x0)

(x − x0)
(x1 − x0)

,

b2(x0, x1, x2, x3, x) =
(x − x0)
(x2 − x0)

(x2 − x)
(x2 − x1)

+
(x3 − x)
(x3 − x1)

(x − x1)
(x2 − x1)

,

b3(x1, x2, x3, x) =
(x3 − x)
(x3 − x1)

(x3 − x)
(x3 − x2)

,

(20)

where x0, x1, x2, x3 are given coordinates of the macro-nodes, and x is the coordinate of the
computed node. Since we consider the direct product of the supports of one-dimensional
splines, the node belongs to one of the nine macro-cells that form the support of the resulting
spline. Therefore, the value of the basis spline function is computed in one of nine ways,
depending on a specific macro-cell to which the grid node with coordinates (xi, yj) belongs:

if Xk−2 < xi < Xk−1, Yl < yj < Yl+1,

then W (q, p) = b1(Xk−2,Xk−1,Xk, xi)b3(Yl−1, Yl, Yl+1, yj),
if Xk−1 < xi < Xk, Yl < yj < Yl+1,

then W (q, p) = b2(Xk−2,Xk−1,Xk,Xk+1, xi)b3(Yl−1, Yl, Yl+1, yj),
if Xk < xi < Xk+1, Yl < yj < Yl+1,

then W (q, p) = b3(Xk−1,Xk,Xk+1, xi)b3(Yl−1, Yl, Yl+1, yj),
if Xk−2 < xi < Xk−1, Yl−1 < yj < Yl,

then W (q, p) = b1(Xk−2,Xk−1,Xk, xi)b2(Yl−2, Yl−1, Yl, Yl+1, yj),
if Xk−1 < xi < Xk, Yl−1 < yj < Yl,

then W (q, p) = b2(Xk−2,Xk−1,Xk,Xk+1, xi)b2(Yl−2, Yl−1, Yl, Yl+1, yj),
if Xk < xi < Xk+1, Yl−1 < yj < Yl,

then W (q, p) = b3(Xk−1,Xk,Xk+1, xi)b2(Yl−2, Yl−1, Yl, Yl+1, yj),
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if Xk−2 < xi < Xk−1, Yl−2 < yj < Yl−1,

then W (q, p) = b1(Xk−2,Xk−1,Xk, xi)b1(Yl−2, Yl−1, Yl, yj),
if Xk−1 < xi < Xk, Yl−2 < yj < Yl−1,

then W (q, p) = b2(Xk−2,Xk−1,Xk,Xk+1, xi)b1(Yl−2, Yl−1, Yl, yj),
if Xk < xi < Xk+1, Yl−2 < yj < Yl−1,

then W (q, p) = b3(Xk−1,Xk,Xk+1, xi)b1(Yl−2, Yl−1, Yl, yj). (21)

4. Numerical experiments

Below, we present results of numerical experiments on solving the boundary-value prob-
lem (17) for various numbers of nodes, values of the convective coefficients, numbers of sub-
domains, and parameters of restarts. The experiments were aimed at studying the rate of
convergence of iterations for relatively small two-dimensional grid boundary-value problems.
For this reason, they were conducted in a sequential mode. The exact solution of the system
was u = 1. As the base iterative method for solving SLAE (1), the deflated conjugate gradient
method was chosen, the stopping criterion being ‖rn‖2 ≤ 10−7‖f‖2. Upon the termination
of iterations, the error of the approximate solution δ = ‖1 − un‖∞ was computed. In all the
computations, the initial guess was u0 = x2 + y2. In Tables 1–5 below, the piecewise constant
basis functions were used.

In every cell of the following Table 1, the number of iterations and the maximal error norm
are indicated. The columns correspond to the restart values m = 8, 16, 32, 64, and the rows
correspond to the total number of nodes N = 162, 322, 642, 1282. In Table 1, as well as in the
subsequent two Tables 2 and 3, the results correspond to application of the DCG algorithm
using formulas (10) and the one-level least-squares method applied for refining the restart
approximations in accordance with (7).

Table 1. Numerical results for the number of subdomains P = 2 × 2 and the
convective coefficients p = q = 0.

N \ m 8 16 32 64
162 55 48 39 36

4.2 · 10−7 1.4 · 10−7 1.3 · 10−7 7.1 · 10−8

322 157 101 86 73
1.1 · 10−6 5.9 · 10−7 5.2 · 10−7 2.2 · 10−7

642 517 282 189 161
2.7 · 10−6 2.0 · 10−6 8.8 · 10−7 9.2 · 10−7

1282 1798 965 514 344
7.7 · 10−6 5.4 · 10−6 4.7 · 10−6 2.9 · 10−6

As is seen from the data presented, the resulting error is acceptable and matches the stop-
ping criterion used. This shows a satisfactory stability of the algorithms investigated. This
conclusion is also confirmed by other numerical experiments.

Table 2 provides the results for the same data as in Table 1, except for the number of
subdomains, which is equal to P = 4 × 4, 8 × 8, 16 × 16. These three numbers correspond to
the three numbers of iterations indicated (from left to right) in every cell of the table.

In the next Table 3, the results are provided for the same data as in Table 2, except for
the values of the convective coefficients from the problem (17), which are nonzero, namely,
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Table 2. The results of experiments for the number of subdomains P = 4 × 4,
8 × 8, 16 × 16 and convective coefficients p = q = 0.

N \ m 8 16 32 64
162 27 14 1 26 14 1 26 14 1 26 14 1
322 60 28 14 52 26 14 50 26 14 48 26 14
642 172 61 27 105 50 26 94 49 26 92 48 26
1282 563 171 60 306 102 49 193 92 49 175 91 47

p = q = 4. Note that in this case, the iterative process sometimes diverges for large periods
of restarts (in Table 3, this is indicated by the symbol “∞”). Recall that for unsymmetric
SLAEs, the “pure” DCG method does not necessarily converge, and the LSM has a stabilizing
effect for relatively small m only. The difference in the number of iterations for zero and
nonzero values of p and q proves to be insignificant and oscillates. Observe that if the number
of subdomains is equal to that of nodes, then the process converges in one iteration because,
in this case, the matrix W is square, and the method turns out to be a direct one.

Table 3. The results of experiments for the number of subdomains P = 4 × 4,
8 × 8, 16 × 16 and convective coefficients p = q = 4.

N \ m 8 16 32 64
16 43 25 1 71 39 1 167 98 1 517 198 1
32 69 51 25 94 115 49 198 516 99 651 ∞ 259
64 150 74 51 132 119 131 188 455 840 398 ∞ ∞
128 440 158 74 289 145 125 249 238 716 356 3288 ∞

Tables 4 and 5 present data similar to those provided in Tables 2 and 3, with the difference
that the two-level LSM is applied, i.e., the restart approximations are additionally corrected
in accordance with formulas (13)–(16).

Table 4. The results of experiments for the number of subdomains P = 4 × 4,
8 × 8, 16 × 16, convective coefficients p = q = 0, and the two-level LSM
acceleration.

N \ m 8 16 32 64
162 27 14 1 26 14 1 26 14 1 26 14 1
322 53 27 14 49 26 14 50 26 14 48 26 14
642 98 55 26 97 49 26 94 49 26 92 48 26
1282 185 98 55 177 98 48 181 92 49 177 91 47

As one can see, using the LSM for the second level, one can significantly reduce the number
of iterations and ensure convergence in all the cases. The results presented also show that as
the number of subdomains increases, the number of iterations decreases almost linearly. The
influence of the length m of the restart period on the rate of convergence is not crucial, and
it manifests itself in different ways: for symmetric SLAEs, the number of iterations generally
decreases, as m grows, whereas for unsymmetric systems it increases.

Tables 6 and 7 provide similar data on the efficiency of applying piecewise-linear basis
functions computed by formulas (19).
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Table 5. The results for the two-level LSM acceleration for p = q = 4.

N \ m 8 16 32 64
162 38 23 1 67 37 1 135 97 1 324 195 1
322 71 45 22 89 85 37 169 164 97 394 450 194
642 139 73 45 140 109 95 178 212 163 342 393 392
1282 281 415 72 273 152 111 275 238 208 346 463 400

Table 6. The results of computations using the piecewise-linear basis (19) and
the two-level LSM acceleration for p = q = 0.

N \ m 8 16 32 64
162 24 12 1 22 12 1 21 12 1 21 12 1
322 45 26 12 45 27 11 42 25 11 41 25 11
642 81 49 27 81 48 27 83 50 26 78 47 26
1282 153 90 49 145 93 49 150 92 51 152 92 49

Table 7. The results of computations using the piecewise-linear basis (19) and
the two-level LSM acceleration for p = q = 4.

N \ m 8 16 32 64
162 27 14 1 36 17 1 54 20 1 84 20 1
322 47 27 12 51 30 12 72 40 12 104 68 12
642 88 50 27 87 52 27 97 60 32 142 81 32
1282 160 96 51 159 96 51 166 96 52 181 113 65

Comparing the results presented in Tables 6 and 7 with those in Tables 4 and 5, we see that
as the order of the basis functions increases by one, the number of iterations reduces by about
10% in the case of symmetric SLAEs and almost twice in the case of unsymmetric systems,
i.e., in presence of convection.

5. Conclusion

The approximation principles proposed for constructing coarse-grid correction with two-level
application of the least-squares method appear to be a promising approach to accelerating the
convergence of iterative processes in Krylov subspaces, which additionally provides for the
possibility of using multi-preconditioning algorithms. It is necessary to make a comment
concerning parallelization of the algorithms suggested, which is related to fast and efficient
computation of the matrices �B and �B. If we have a system of equations of order N ≈ 106

or higher, the number of subdomains is relatively small (P ≈ i · 10, i = 1, 2, . . . ), and the
number of restarts is m ≈ i · 10, i = 1, 2, . . . , then, in order to compute the entries of the
matrix B, one must multiply “long” matrices W by the matrix A repeatedly. This process can
be significantly accelerated by performing this multiplication in parallel, e.g., by using efficient
functions from the MKL INTEL library. The same concerns the computation of the entries
of the matrix W via repeated computations of inner products of vectors, which can be done
concurrently on various devices of a multiprocessor computer system.
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