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Abstract. This paper is devoted to the conception and general struc-
ture of the integrated computational environment for constructing multi-
dimensional large grids (with 1010 nodes and more) for high-performance
solutions of interdisciplinary direct and inverse mathematical mod-
elling problems in computational domains with complicated geometri-
cal boundaries and contrast material properties. This includes direct
and inverse statements which are described by the system of differential
and/or integral equations. The constructed computational grid domain
consists of subdomains featuring a grid, which may be of different types
(structured or non-structured); discretization at the internal boundaries
can be consistent or non-consistent. The methodology of such quasi-
structured meshes makes it possible to use various algorithms and codes
in the subdomains, as well as different data structure formats and their
conversion. The proposed technologies include grid quality control, the
generation of dynamic grids adapted to singularities of input geomet-
ric data of structures and multigrid approaches with local refinements,
taking into account information about the solution to be obtained. The
balanced grid domain decomposition, based on hybrid programming at
the heterogeneous clusters with distributed and hierarchical shared mem-
ory, supports scalable parallelization. In addition, the paper outlines the
technological requirements to provide a successful long-life cycle for the
proposed computational environment. In a sense, the considered devel-
opment presents a stable software ecosystem (integrated grid generator
DELAUNAY) for supercomputing modelling in the epoch of big data
and artificial intellect.
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1 Introduction

Grid generation is an important stage of mathematical modelling of real pro-
cesses and phenomena in various applications. In the ideology of the Integrated
Computational Environment (ICE, [1]) for mathematical modelling, the dis-
cretization of the original problem to be solved follows after the geometrical
and functional modelling and precedes the approximation and algebraic solution
steps. The mesh quality defines the efficiency of the numerical methods for differ-
ential and/or integral equation systems, or corresponding variation statements.
There are many papers and books on mesh constructing algorithms (see [1,9],
for example). Also, many conferences, special journal issues and internet sites
deal with these problems [10,11] and numerous program implementations for
grid generation, commercial or free available packages, such as Netgen [18] and
Gmesh [12]. Also, in gas-oil applications, PEBI (Perpendicular Bisection [20])
and Corner Point [21] are popular discretization approaches.

Grid problems include many mathematical and technological issues. Numer-
ical approaches to the discretization of computational domains are based on
the conformal and non-conformal mapping [2], variational principles [4], differ-
ential geometry methods [1], self-organizing neural networks for unsupervised
learning [6], and various empirical algorithms [3,4,7,8]. Grid quality estimation
and an approach to control, improve and optimize the mesh are very important
questions. Also, there are many open problems in this respect, and a formulaic
definition of the optimal grid has not been established yet. In a sense, the prob-
lem to construct a good mesh can be more difficult than to solve the original
boundary value problem as a means of simple discretization.

From the practical point of view, the ultimate success of the grid generation
consists in the mesh data structure (MDS). It must support different advanced
discretization approaches: local mesh refinement based on a posteriori or/and a
priori analysis of the solution to be sought, multi-scale and super-element algo-
rithms, multigrid methodologies, as well as the domain decomposition methods
(DDM), which are intended for providing the scalable parallelism and high-
performance computing. Here, it is important to remark that at the further
modeling stages, the parallel computations by means of synchronous solving of
the auxiliary problems in subdomains with the DDM technology require to orga-
nize a distributed data structure in advance, i.e. at the step of grid generation.

We will mainly consider stationary adaptive quasi-structured grids. Their
first characteristic feature means that the vertices of a computational domain
coincide with the grid nodes. Also, in this case, we assume that the edges and
faces of the computational domain coincide, or “almost coincide” with the grid
faces, respectively. The term quasi-structured defines the grids which consist of
the grid subdomains that each of them presents a structured or a non-structured
grid. In the structured grid, for each mesh node, the number of the neighboring
nodes can be computed by means of a simple formula. For each mesh point
of the non-structured grid, a set of the neighboring nodes can be defined by
enumeration only. Also, each grid subdomain can consist of different types of
mesh elements.
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We will further describe the conception of the integrated computational envi-
ronment for generating a wide class of quasi-structured grids. In general, the
properties of grids are defined by their MDS. Let us consider the numerical
solution of the multidimensional and multi-disciplinary initial boundary value
problems (IBVPs) in the computational domain with complicated contrast mate-
rial properties and geometry with piecewise smooth multi-connected boundaries.
We suppose that the grid generation is performed once, in advance to the general
computational process. Of course, in some problems, it is necessary to construct
dynamic meshes, but such computing tasks require further research.

In the inverse problems, input data are presented in the parametrized form,
and we must find the solution which would provide the minimum of the pre-
scribed objective functional, under some additional constraints. In these cases,
the optimization methods include solving a set of the direct problems which use,
probably, different grids. Such cases take place, for example, in the actual shape
optimization problems which are connected with the geometrical and topological
modifications of a computational domain.

The numerical solution of IBVPs is based on the approximation principles:
finite difference, finite volume, finite element, discontinuous Galerkin methods of
various order of accuracy as well as collocation and the least squares approaches.
So, the grid generation stage of a mathematical simulation has an intermediate
place between the geometrical modeling and approximation steps. Also, from the
practical point of view, it is important to introduce a concordance between MDS
and CAD products (CAE, CAM, PLM, etc.) which have an essential market and
popular data formats.

In general, the grid issues include a large set of mathematical problems, algo-
rithms, computational and program technologies which would hardly be unified
in the single software product. So, we consider the concept of the integrated
instrumental surrounding for the new generation of the grid constructing tool
which presents not the group project but community project. The projects of
FOAM, DUNE (Distributed Unified Numerical Environment), INMOST (the
development of Marchuk Institute of Numerical Mathematics, RAS) and BSM
[3,22–24,29] are some examples of such an integrated approach.

The considered numerical methods and technologies are implemented in the
framework of the integrated grid generator DELAUNAY which is a separate
part of BSM [22] and interacts with other subsystems responsible for the corre-
sponding modeling stages just via data structures. In particular, DELAUNAY is
constructed with the native CAD system HERBARIUM [25]. More exactly, the
input data for grid constructing are presented by the geometrical and functional
data structures (GDS and FDS) which are formed by the subsystem VORONOI
responsible for constructing a continuous model of the original problem and
CAD system usage. In other words, DELAUNAY presents a library of grid gen-
erators, which not only contains its own algorithms but can also efficiently use
external program products. The grid construction (MDS, together with GDS
and FDS) results in a discretized model for the BSM approximation stage, i.e.
the CHEBYSHEV subsystem [24].
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The content of this paper is as follows. Section 2 reviews a formal statement
of the continuous direct and inverse problems to be solved. Section 3 describes
grid objects, structures and their specifications, as well as main mesh operations
which are necessary to be implemented in the numerical methods. Section 4
discusses the conception, main components and technical requirements for the
integrated grid generation environment.

2 Formal Statement of the Interdisciplinary Direct
and Inverse Problems

Since our end goal is to discretize direct and inverse IBVPs, we need to consider,
from the formal point of view, specifications of the problems to be solved.

Let there be NΩ subdomains Ωk in the closed computational domain Ω̄ with
the boundary Γ

Ω̄ = Ω
⋃

Γ =
NΩ⋃

k=1

Ω̄k, (1)

and it is necessary to find the vector solution u = {uμ, μ = 1, ..., m̄} to satisfy
the differential equation

Lu(x, t) = f(x, t), x ∈ Ω, (2)

as well as the boundary and initial conditions

lu = g(x, t), x ∈ Γ, u(x, 0) = u0(x), (3)

where x = (x1, ..., xd) and t are the spatial and temporal independent vari-
ables, respectively. Here Ω is an open one-connected bounded domain in the
d-dimensional euclidean space (d = 1, 2, 3), L and l are the operators of the
original equation and the boundary condition. For example, operator L can have
the form

L = A
∂

∂ t
+ ∇B∇ + C∇ + D. (4)

Here A,B,C,D are the matrices, which entries depend on the time t and Carte-
sian or some other type of the coordinate x. In the nonlinear case, the matrix
and the right-hand side f in (2) can also depend on the unknown solution u.
In the interdisciplinary problem, the unknown functions uμ present the fields
of different physical nature: velocities, pressure, temperature, densities, etc. The
boundary Γ of the computational domain is presented by two parts, on each one
of them the boundary conditions of the first (Dirichlet), the second (Neumann)
or the third type (Robin) are given:

u = gD, x ∈ ΓD, DNu + AN∇nu = gN , x ∈ ΓN , (5)

where ∇n denotes the external normal derivative on ΓN , and AN ,DN are, in
general, the matrix of coefficients, in general. Let us remark that at the joint
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boundary of the contacted subdomains, some internal (interface) conditions can
be given. The initial boundary value problem (IBVP) is called the interdisci-
plinary (or multi-physical) for the case m̄ > 1 in the sense that every scalar
function uμ corresponding to a different physical subdomain and different equa-
tions in system (1) describes various phenomena. Equation (2) can be have a
different form in different subdomains Ωk. Usually it means that we have differ-
ent material properties in various computational subdomains.

Equations (1)–(5) describe the direct IBVPs. But in real cases the ultimate
goal of the research consists in solving inverse problems, which means, for exam-
ple, the identification of the model parameters, the optimization of some pro-
cesses, etc. The universal optimization approach to solving the inverse problems
is formulated as minimization of the objective functional

Φ0(u(x, t, popt)) = minpΦ0(u(x, t, p)), (6)

which depends on the solution u and on some vector parameter p which is
included in the input data of the direct problem. The constrained optimization
is carried out under the linear conditions

pmin
k ≤ pk ≤ pmax

k , k = 1, ...,m1, (7)

and/or under the functional inequalities

Φlu(x, t, p)) ≤ δl, l = 1, ...,m2. (8)

Formally, the direct problem can be considered as the state equation and can be
written down as follows:

Lu(p) = f , p = {pk} ∈ Rm, m = m1 + m2. (9)

There are two main kinds of optimization problems. The first one consists
in the local minimization. This means that we look for a single minimum of the
objective function in the vicinity of the initial guess p0 = (p01, ..., p0m). The sec-
ond problem is more complicated and presents the global minimization, i. e. the
search for all extremal points of Φ0(p). The usual way to find the solution of
the inverse problem consists in solving a set of direct problems with different
parameter values.

We suppose that the subdomains Ωk are one-connected and have no inter-
sections. Its boundary can be presented in the form

Γk = Γ
(e)
k

⋃
Γ

(h)
k =

⋃

k′∈ωk

Γk,k′ , Γk,k′ = Ω̄k

⋂
Ω̄k′ = Γk,k′ k, k′ = 1, ..., NΩ .

(10)
Here ωk is a set of subdomain numbers which are neighboring to ωk, and Γ

(e)
k

and Γ
(h)
k are the surface segments, which belong to external and internal parts of

Γ respectively. Formally, we can write Γ
(e)
k = Γk,0, i.e. the index “0” denotes the

number of external subdomains. Each fragment Γk,k0 presents the joint boundary
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of the contacted subdomains, without any boundary condition in the statement
of the original IBVP.

In general, the computational domain Ω consists of the following geo-
metric objects: subdomains or macro-volume, Ωk, k = k1, ..., NΩ , the ver-
tices Vp = (xp, yp, zp), p = 1, ..., NV , the surface segments (macro-faces)
Fq, q = 1, ..., Nf , and macro-edges (curvilinear fragments) El, l = 1, ..., Nf .
For the analytical description of the geometric primitives the global and local
coordinate systems are defined (Cartesian, cylindrical or spherical). In many
cases, it is convenient to describe the line or surface segments in the parametric
form:

x = x(τ), y = y(τ), or x = x(τ (1), τ (2)), y = y(τ (1), τ (2)), z = z(τ (1), τ (2)).
(11)

For particular situations, there are a lot of different approaches, to describe geo-
metric objects. An advanced simulation system should have various possibilities
for efficient representations and the converters of the input formats.

The connections between geometric objects are described by means of inci-
dent matrix with bit entries:

MV E = {mV E
i,j : i = 1, ..., NV ; j = 1, ..., NE} – (vertices – edges),

MEF = {mEF
i,j : i = 1, ..., NE ; j = 1, ..., NF } – (edges – faces),

MFΩ = {mFΩ
i,j : i = 1, ..., NF ; j = 1, ..., NΩ} – (faces – subdomains).

In total, configuration information on the computational domains is included
in geometric data structure (GDS). The functional description of the IBVPs (the
system of equations, to be solved. the boundary conditions, and their coefficients)
is presented in the functional data structure (FDS), see [6] for details. Gener-
ally speaking, this input (for DELAUNAY) information presents the continuous
model of the problem to be solved. It is formed by the VORONOI system, which
is responsible for the geometric and functional modeling in BSM.

Let us remark, that some of the input data can be given in parametrized
form, in order to solve the inverse, or the set of direct problems. In such cases
the additional information to organize the computational experiments should be
given.

3 Grid Objects, Operations and Data Structure

In this section, we define the main specifications of the grids, the operations
with the mesh objects. as well as principles of the constructing the mesh data
structure.

3.1 Main Grid Notions and Specifications

The discretization of the computational domain Ω consists in the construction of
the grid computational domain Ωh, which includes the following mesh objects,
similar to the “macro-objects” of Ω:
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grid subdomain Ω̄h
k : Ω̄h =

⋃
k

Ω̄h
k , Ω̄h

k = Ωh
k

⋃
Γk, k = 1, ..., Nh

Ω , Ωh
k ≈ Ωk,

grid subdomain boundaries: Γh
k,k′ = Ω̄h

k′
⋂

Ω̄h
k , Γh

e =
⋃
k

Γh
k,0, Γh

k ≈
Γk, k, k′ = 1, ..., Nh

Γ ,

grid nodes: V h
p = V h

e,e′ ≡ Ēh
e

⋂
Ēh

e′ = (xp, yp, zp), Vl,l′,l′′ ≡
F̄h

l

⋃
F̄h

l′
⋃

F̄h
l′′ , p = 1, ..., Nh

V ,

grid edges: Eh
s = Eh

l,l′ ≡ F̄h
l

⋂
F̄h

l′ , s = 1, ..., Nh
E ,

grid faces: Fh
l = Fh

l = Fh
m,m′ ≡ T̄h

m

⋂
T̄h

m′ , l = 1, ..., Nh
F ,

grid (finite) volumes, or elements: Th
m,m = 1, ..., Nh

T , Ω̄h =
⋃
m

T̄h
m,

where Nh
Ω , Nh

Γ , Nh
V , Nh

E , Nh
F , Nh

T means the total numbers of the grid subdo-
mains, boundaries, nodes, edges, faces, and volume elements respectively.

The grid objects have the following topological connections. The mesh
domain and subdomains are the unions of the corresponding elements. The
mesh faces are the joint boundaries of the contacted finite elements. The grid
edges present the intersection of the neighboring faces. The nodes are the joint
points of the intersected edges or faces. Similar to macro-object, we can define
rectangular matrice of the different types, which characterize the connections
between the grid objects. For example, a node-edge matrix is Mh

V,E = {mV,E
i,j , i =

1, ..., NV
N , j = 1, ..., Nh

E} where each bit entry mV,E
i,j = 1 if the j-th grid edge is

connected to the i-th grid node, and mV,E
i,j = 0 otherwise. In a similar way, we

can define a node-volume matrix Mh
V,T = {mV,T

i,j , i = 1, ..., Nh
V , j = 1, ..., Nh

T },

an edge-force matrix Mh
E,F = {mV,T

i,j , i = 1, ..., Nh
E , j = 1, ..., Nh

F }, as well as
other types of the matrix: Mh

S,T ,Mh
V,F , Mh

F,E = (Mh
E,F )T , etc. All types of

grid objects have their own global and local (on subdomains) numbering, as well
as the functions for their remembering. The geometric and topological speci-
fication of the object can be formed via the MDS. It also includes necessary
connections with the functional data structure for defining the type of an equa-
tion and the values of its coefficients in each element Th

m, as well as for describing
the boundary conditions at the grid faces Fh

l .

3.2 Grid Operations and Data Structure

Advanced numerical methods of mathematical modelling are based on the com-
plicated matrix transformations, which are connected with the graph structure
of a grid. The main consuming step of the numerical simulation is to solve
a system of linear algebraic equations (SLAEs) which is repeated many times
if the original problem is inverse or non-stationary and non-linear. The mod-
ern large SLAE can be characterized as a sparse matrix of order 109 or higher
and the medium number of non-zero entries which are about 100 in each row.
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The arithmetic operations must be done in the standard double precision format
(64 bits, or 8 bytes).

The high performance solution in such cases is provided by means of scal-
able parallelizm based on the domain decomposition approaches. The advanced
numerical tools include the two-level multi-preconditioned iterative methods in
the Krylov subspaces. At the upper level, the distributed version of the addi-
tive block Swarz algorithm is implemented with the help of the MPI (Message
Passing Interface between cluster nodes) functions. The lower level consists of
the synchronous solution to the auxiliary SLAEs in subdomains using the multi-
thread computing (Open MP technologies) and vectorization of the operations
by AVX instruments. Also, some auxiliary algebraic subsystems can be solved
by means of special algorithms on the super-fast graphic accelerators (GP GPU
or Intel Phi).

For the real mathematical problems, which are solved on a non-structured
grid, an important circumstance for implementation of the algebraic methods is
that the matrices are presented in the compressed sparse formats, such as CSR,
because the allocation of the non-zero matrix entries in the rows corresponds to
the connection of the respective grid nodes to their neighbors. In this case, only
non-zero matrix entries and references between them are saved. It is obvious
that such forced technologies make access to matrix values in memory too slow
and expensive.

The considered approach defines the matrix portrait which is isomorphic, in
a sense, to the graphic structure of a non-structured grid. So, the algebraic data
structure (ADS) which is the base for iterative algorithms is fairly similar to the
MDS, and the CSR format can be the base for the grid data structure because
each matrix row corresponds to a mesh node or another primitive.

In some cases, the situation is more complicated. If we solve an interdisci-
plinary problem which is described by a system of partial differential and/or
integral equations, then after discretization in each grid node, several unknown
variables can be defined, and we have to generalize the CSR format to the block
one (BCSR).

Because of a big volume of the grid data structure, the domain decomposition
techniques must be implemented at the mesh generation stage. It should include
a description of the grid computational subdomains and a description of the
MDS informational arrays in the memory of the corresponding cluster node.
This means that the corresponding approximation stage will be done efficiently
in parallel. From the algorithmic point of view, the decomposition is performed in
two steps. The first one consists in disassembling the mesh computational domain
into parts without intersections. At the second stage, the grid subdomains are
extended to a necessary number of mesh layers. By the end of this stage, we must
obtain the distributed MDS for decomposition with parameterized overlapping
of the subdomains. At the following modeling steps, it will be the base for the
parallel implementation of the total computational process.

Also, at this step, the multigrid data structure is performed if needed. The-
oretically, this approach provides the optimal in order algebraic solvers. The
complementation technology requires forming a hierarchical data structure for
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a set of embedded grids. Computational schemes in these cases are rich in var-
ious numerical operations: pre-smoothing and post-smoothing, restriction and
prolongation, course grid correction, etc. Automatic construction of such algo-
rithms is a highly intellectual problem, and the grid transformation support is
very important in such a challenging task.

In recent decades, the advanced approaches have appeared for solving multi-
scale problems based on super-element technologies and constructing the immer-
sion type meshes, which are aimed at the application of a special type of non-
polynomial basis functions. In such cases, a special kind of MDS is required to
take into account the geometric details of the under-cell scale.

The above brief review of the grid construction problems reflects many math-
ematical issues. In particular, there are valuable computational geometry tasks,
see [26,27]. Automatic construction of mesh algorithms and their mapping on
the computer architecture present a challenging intellectual problem of great
practical importance. In fact, we need to create a mathematical knowledge base
with expandable sets of computational methods and technologies. A prototype
of such a base is presented in [28].

4 ICE Structure and Technical Features

We will consider the ICE for the grid generation as a DELAUNAY subsystem of
the Basic System of Modeling (BSM [15]). In fact, it presents a library for grid
generation and transformation algorithms, as well as a set of system instruments
for data processing and for supporting the external and internal communications.
Because of the rich functionality and a large volume of the ICE code, the follow-
ing technical requirements must be provided in order to ensure an efficient long
life cycle of the proposed applied program product for the grid generation.

– Flexible extendability of the IBVPs to be solved by means of the BSM as well
as a manifold of applicable numerical methods and technologies for the grid
generation without program limitations on the degrees of freedom (d.o.f.) and
the number of computer nodes, cores and other hardware.

– Adaptation to the evolution of computer architectures and platforms; auto-
matic mapping of the algorithm structures onto hardware configuration.

– Compatibility of the flexible data structures with the conventional formats to
provide the efficient re-use of the external products for grid generation, which
presents great intellectual potential.

– High-performance of the developed software, scalable parallelism based on
the hybrid programming tools, minimization of expensive communications,
and code optimization on the heterogeneous multi-processor supercomputers
with distributed and hierarchical shared memory.

– Multi-language interaction and consistency of various program components,
enabling working contacts for different groups of developers, as well as creat-
ing friendly interfaces for the end users of different professional background.
The considered integrated program environment must have valuable system
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support, aimed at the maintenance, collective operations, information secu-
rity and further high productive development. The corresponding intelligent
instruments and big data support must constitute the infrastructure to sup-
port the following system procedures.

– Automatic verification and validation of the codes, as well as testing and
comparative experimental analysis of the algorithms.

– Generating the multi-variant program configurations for a specific application
by assembling the functional modules.

– Data structures control and transformations to provide the internal compo-
nent compatibility and re-using of the external products.

– Deep learning of the grid generation issues: creating a knowledge database on
mesh constructing methods, grid quality analysis, automatic selection of the
available algorithms based on cognitive technologies.

5 Conclusion

The conception, main components and data structure of the integrated compu-
tational environment for constructing a wide class of multi-dimensional quasi-
structured grids have been considered. The objective of the development is to
provide high-productive program tools for the modern supercomputers with a
long life cycle aimed at efficient support of the mathematical modelling in various
applications.
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