
Parallel approaches and technologies

of domain decomposition methods ∗

Y.L.Gurieva1), V.P.Il’in1,2)

1)Institute of Computational Mathematics

and Mathematical Geophysics SB RAS, e-mail:yana@lapasrv.sscc.ru
2)Novosibirsk State University, e-mail:ilin@sscc.ru

Abstract

The efficiency of two-level iterative processes in the Krylov subspaces is investigated
as well as their parallelization in solving large sparse non-symmetric systems of linear
algebraic equations arising from grid approximations of two-dimensional boundary value
problems for diffusion-convection equations with different coefficient values. A special
attention is being given to optimization of the subdomain intersection size, to the types of
boundary conditions on adjacent boundaries in the domain decomposition method, and
to the aggregation (or coarse grid correction) algorithms. An outer iterative process is
based on the additive Swartz algorithm, while a parallel solution of subdomain algebraic
systems is affected by the direct or the preconditioned Krylov method. A crucial point
in a programming realization of these approaches is a technology of forming the so-called
extended algebraic subsystems in the compressed sparse row format. A comparative anal-
ysis of the influence of various parameters is carried out based on numerical experiments
data. Some issues related to the scalability of parallelization are discussed.

Keywords: domain decomposition, parallel two-level methods, Krylov subspaces,
preconditioning matrices, aggregation algorithms, subdomain intersections, interface con-
ditions

1 Introduction

Creating parallel iterative algorithms to solve grid systems of linear algebraic equations
(SLAEs) arizing from finite element or finite volume approximations of boundary value
problems is based on decomposition of a computational domain and represents a manifold
mathematical and technological problem. On the one hand, a high convergence rate of an
applied iterative process should be provided, so that a large number of the algorithmic
approaches exists. On the other hand, the final performance of a computational tool
is largely determined by a formed data structure and program implementation of the
algorithms on a multiprocessor computer system [1].

∗The work is supported by Russian Science Foundation grant N 14-11-00485. The experimental segment of
the paper is supported by the RFBR grant N 14-07-0128.

1

The objective of this paper is to experimentally investigate an impact on the paral-
lelization scalability of three algorithmic factors: the size of intersections of the adjacent
subdomains, the type of iterated boundary conditions on their inner boundaries, and ap-
plication of aggregation (or a coarse grid correction) methods [2]. A rather simple but
representative SLAE family was choosen as a methodical test suit, namely, five-point
approximations of the linear diffusion-convection equations on a uniform grid in a rect-
angular domain [3], [4]. It is somewhat an idealized situation that allows one to clearly
describe computating information issues arising as well as the ways to resolve them.

When solving in parallel very big sparse SLAEs with the orders of about 109, a two-
level iterative process in the Krylov subspaces is one of the main computational tools. It
uses a block Jacobi method, which is an additive Swartz method, as its preconditioner.

Section 2 contains the formulation of the initial problems and a description of the
computational methods to solve them. Section 3 deals with presentation of some algo-
rithms and technologies for “extended” subdomains, which are the basis for the domain
decomposition parallelization. The results of numerical experiments for different initial
data and algorithmic parameters are discussed in the last section.

2 Problem statement and description of parallel

algorithms

Let the Dirichlet problem for the diffusion-convection equation

−∂
2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω,

u|Γ = g(x, y),
(1)

be solved in a computational domain Ω = (ax, bx)× (ay, by), where Γ is a boundary of Ω,
and the convection coefficients p, q are, for simplicity, given values.

The given boundary value problem is approximated on a uniform grid

xi = ax + ihx, yj = ay + jhy,
i = 0, 1, ..., Nx + 1; j = 0, 1, ..., Ny + 1;
hx = (bx − ax)/(Nx + 1), hy = (by − ay)/(Ny + 1),

(2)

by a five-point scheme of the form

(Au)l = ul,lul + al,l−1ul−1 + al,l+1ul+1 + al,l−Nx
ul−Nx

+ al,l+Nx
ul+Nx

= fl, (3)

where l is a “global”, or continuous, number of an inner grid node:

l = l(i, j) ≡ i+ (j − 1)Nx = 1, ..., N = NxNy. (4)

A particular view of the coefficients can be different, and specific formulae versions can be
found in [3], [4]. Equations (3) are written for the inner grid nodes, moreover, for the nodes
near the boundary, whose numbers are from a set of the indices i = 1, Nx or j = 1, Ny,
the values known from the boundary conditions of the solution are substituted into the
corresponding equations and moved to their right-hand sides, so that the corresponding
coefficients al,l′ in (3) be equal to zero. SLAE (3) is written down in a vector-matrix form
as

Au = f, A = {al,l′} ∈ RN,N , u = {ul}, f = {fl} ∈ RN . (5)

2

Hereinafter, we will denote by Ω not only the computational domain but a set of grid
nodes (xi, yj) ∈ Ω as well (we will use the term “grid computational domain”), as well as
sets of the indices l = 1, ..., N , of vectors u, f of dimension N .

We now decompose the domain Ω, i.e. let it be at first represented as a union of
identical (for simplicity) non-intersecting rectangle subdomains:

Ω =

P⋃

s=1

Ωs, P = PxPy,

each containing an equal number of grid nodes

M = mxmy, Nx = Pxmx, Ny = Pymy, N = PM.

One can consider that the subdomains form a two-dimensional macrogrid, where each
macrovertex can be numbered by a pair of indices p, q (similarly to the grid node indices
i, j), and a “continuous” number of a subdomain is defined as

s = s(p, q) ≡ p+ (q − 1)Px = 1, ..., P,
p = 1, ..., Px; q = 1, ..., Py .

(6)

Thus, a subdomain with the number s(p, q) contains the grid nodes with the following
indices:

i = Ip−1 + 1 ≡ (p− 1)mx + 1, ..., pmx ≡ Ip,
j = Jq−1 + 1 ≡ (q − 1)my + 1, ..., qmy ≡ Jq,

(7)

where Ip and Jq are the begin numbers of the grid nodes in x and y directions in the
(p, q)-th subdomain, and the global grid numbers l(i, j) are calculated with the help of
(4). Every subdomain Ωs has its own four faces which form in the aggregate a boundary
that does not pass through the grid nodes.

We now turn from continuous numbering of nodes to their subdomain by the sub-
domain ordering: at first, we number all the nodes in Ω1, then in Ω2, etc. The vector
components u, f are ordered correspondingly, so that the original SLAE (3) takes the
following block-matrix form:

As,sūs +
∑

s′∈Qs

As,s′ ūs′ = fs, s = 1, ..., P. (8)

Here ūs ∈ RNs means a subvector of the vector u, whose components correspond to
the nodes from the subdomain Ωs, and Qs means a set of numbers of the subdomains
adjacent to the subdomain Ωs. Hereinafter we assume that a local node ordering in
every subdomain is a natural one: local pairs of indices i′ = 1, ...,mx; j

′ = 1, ...,my are
introduced and a continuous number is determined by the formula l′ = i′ + (j′ − 1)mx

similar to (4). If the subdomain number equals s(p, q), then a reordering of the nodes
from the local to the global ordering is done with the help of the values introduced in (6)
according to the relations i = i′ + Ip−1, j = j′ + Jq−1.

Let us note that the formalism given above pertains to a grid domain decomposition
without subdomains overlapping and without usage of separator nodes common to ad-
jacent subdomains. However, to rise the generality and an efficiency of the algorithms
discussed below it is necessary to move to constructing the “extended” subdomains with
intersections.

3

Let ωl denote a gird stencil or a set of nodes adjacent to the l-th node, i.e. a set of
numbers of the sought for solution components involved in the corresponding l-th equation
of form (3). For a grid subdomain Ωs, let us denote by Γs = Γ0

s its boundary, i.e. a set
of the nodes external to Ωs such that at least one of their neighboring nodes lies in
Ωs (Ω̄s = Ω̄0

s = Ωs ∪ Γ0
s is a closure of the grid subdomain Ωs). Further let Γ

1
s denote the

first extended boundary or the first external front Ω̄s, i.e. a set of the nodes which do not
lie in Ω̄s but have at least one neighbour node from Ω̄s (Ω̄1

s is the first extension of Ω̄0
s).

Let us similarly define the next subsequent stages of a grid subdomain extension and call
the number of such stages ∆ a parameter of the extended subdomain Ω̄∆

s = Ω∆
s

⋃
Γ∆
s ,

where the nodes from Γ∆
s do not belong to Ω∆

s whose number of nodes is denoted by
N̄s. An illustration of an extended subdomain with the parameter ∆ = 3 is presented in
Figure 1.

Figure 1: An example of subdomain extension

When building an iterative Swartz process in grid sundomains, it is possible to take
differently into account the interface links between adjacent subdomains. Let the l-th
node be a near-boundary one in the subdomain Ω∆

s , i.e. l ∈ Γ∆−1
s . Let us write down the

corresponding equation of the algebraic system in the following form:

(al,l + θl
∑

l′ 6=Ω∆
s

al,l′)u
n
l +

∑

l∈Ω∆
s

al,l′u
n
l′ = fl +

∑

l′ /∈Ω∆
s

al,l′(θlu
n−1
l − un−1

l′).
(9)

Here n is iteration number and the terms which have the same coefficients are both added
to the right-hand and left-hand sides of relation (9) and which contain a factor θl being an
iterative process parameter (Figure 2). Let us note that the case θl = 0 can be interpreted
as using the Dirichlet boundary condition when solving an auxiliary subproblem in Ωs.
Similarly, the case with θl = 1 relates to the Neumann condition, and the value θl ∈ (0, 1)
— to the boundary condition of the third type (or the Robin condition).

In a matrix form, the given algorithm can be presented as a block Jacobi method

B̄s(ũ
n+1
s − ũns) = f̃ns − (Āũn)s ≡ r̃ns . (10)

Here the subvectors ũns and f̃ns are from the extended subdomains and have the dimensions
N̄s, and B̄s ∈ RN̄s,N̄s are the preconditioning matrices whose diagonal entries depend on
the values of the parameters θl.

The iterative process, presented in the form of (10), is underdetermined as unknowns
of ũn+1

s have non-unique values in the intersections of the subdomains. We will use a

4

Figure 2: A grid stencil of a near-boundary node

restricted additive Swartz (RAS) method when the next iterative solution is uniquely
defined as un+1 =

⋃
s
un+1
s , where un+1

s ∈ Ωs are a set of values of subvector ũn+1
s , which

is defined in the extended subdomain Ω̄s but whose nodes belong to Ωs (for the s-th
subdomain, a restriction operator Rs can be defined as Rs : Ω̄s → Ωs). The RAS method
can be written in the following form

un+1 = un +B−1
rasr

n,

B−1
ras = RÂ−1W T , Â =W T AW = block-diag {As ∈ RN̄s,N̄s}, (11)

W = [w1...wP] ∈ RN,P being a rectengular matrix, whose each column ws has ones in the
nodes from Ω̄s and has zeros otherwise. Let us note that generally even if the original
SLAE is symmetric, a preconditioning matrix Bras from (11) is not a symmetric one.
In addition, the inversion of the blocks As of the matrix Â is actually reduced to the
solution of independent subsystems in the corresponding subdomains which is the basis
for parallelization of the additive Swartz or the block Jacobi method.

The rate of convergence of the given iterative process depends on the number of the
subdomains, or more precisely, on the diameter of a graph representing a macrogrid
formed by decomposition. This can be clearly explained by the fact that by a single
iteration the solution perturbation in one subdomain is transmitted only to neighbouring,
or adjacent, subdomains. To speed up the iterative process, it is natural to use at every
step not only the nearest but also the remote subdomain couplings. For this purpose,
different approaches are used in decomposition algorithms: methods of deflation, coarse
grid correction, aggregation, etc., which to some extent are close to the multigrid principle
as well as the low-rank approximations of matrices, see numerous publications cited at a
special site [10].

We will consider the following approach based on an interpolation principle. Let Ωc

be a coarse grid with the number of nodes Nc ≪ N in the computational domain Ω,
moreover, the nodes of the original grid and the coarse grid may not match.

Let us denote by ϕ1, ..., ϕNc
a set of basis interpolating polynomials of order M on

the grid Ωc which are supposed to be finite and without loss of generality forming an
expansion of the unit, i.e.

Nc∑

k=1

ϕk(x, y) = 1.

5

Then a sought for solution vector of SLAE (5) can be represented in the form of an
expansion in terms of the given basis:

u = {ui,j ≈ uci,j =
Nc∑

k=1

ckϕk(xi, yj)} = Φû+ ψ, (12)

where û = {ck} ∈ RNc is a vector of the coefficients of the expansion in terms of the
basis functions, ψ is an approximation error, and Φ = [ϕ1...ϕNc

] ∈ RN,Nc is a rectangular
matrix with every k-th column consisting of the values of the basis function ϕk(xi, yj) at
the nodes of the original grid Ω (most of the entris of Φ equal zero in virtue of the finiteness
of the basis). The columns, or the functions ϕk, can be treated to be orthonormal but
not necessarily. If at some k-th node Pk of the coarse grid Ωc only one basis function is a
nonzero one (ϕk(Pk′) = δk,k′), then ûk = ck is the exact value of the sought for solution at
the node Pk. With substitution of (12) into the original SLAE, one can obtain the system

AΦû = f −Aψ, (13)

and if to multiply it by ΦT one can obtain

Âû ≡ ΦTAΦû = ΦTf − ΦTAψ ≡ f̂ ∈ RNc . (14)

Assuming further that the error ψ in (12) is sufficiently small and omitting it, one can
obtain a system for an approximate coarse grid solution ǔ:

Âǔ = ΦT f ≡ f̌ . (15)

If the matrix A is a non-singular matrix and Φ is the full-rank matrix(the rank is
much less than N), we assume these facts to hold further, then from (14) we have

u ≈ ũ = Φǔ = ΦÂ−1f̂ = B−1
c f,B−1

c = Φ(ΦTAΦ)−1ΦT ,

moreover for the error of the approximate solution we have

u− ũ = (A−1 −B−1
c)f. (16)

The error of the approximate solution can also be presented via the error of the ap-
proximation ψ. Subtracting equations (14) and (15) term by term we have

Â(û− ǔ) = −ΦTAψ

that yields the required equation:

u− ũ = Φû+ ψ − Φǔ = ψ −B−1
c Aψ.

The matrix B−1
c introduced above can be regarded as a low rank approximation to

the matrix A−1 and used as a preconditioner to build an iterative process. In particular,
for an arbitrary vector u−1 we can choose an initial guess as

u0 = u−1 +B−1
c r−1, r−1 = f −Au−1. (17)

In doing so, the corresponding initial residual r0 = f −Au0 will be orthogonal to a coarse
grid subspace

Φ = span {ϕ1, ..., ϕNc
} (18)

6

in the sense of fulfilling the condition

ΦT r0 = ΦT (r−1 −AΦÂ−1ΦT r−1) = 0. (19)

The relations given in [7] are the basis for the conjugate gradient method with deflation,
wherein an initial direction vector is chosen by the formula

p0 = (I −B−1
c A)r0, (20)

which ensures that the following orthogonality condition holds:

ΦTAp0 = 0. (21)

Further iterations are implemented using the relations:

un+1 = un + αnp
n, rn+1 = rn − αnAp

n,
pn+1 = rn+1 + βnp

n −B−1
c Arn+1,

αn = (rn, rn)/(pn, Apn), βn = (rn+1, rn+1)/(rn, rn).

(22)

In this method, which we will refer to as DCG, at every step the following relations
hold:

ΦT rn+1 = 0, ΦTApn+1 = 0. (23)

If now we turn back to the additive Swartz method (11), we can try to accelerate
it by the coarse grid preconditioner B−1

c (in addition to the preconditioner B−1
ras). We

will consider this point in a more general formulation assuming that matrix A is a non-
symmetric one and that there are several but not only two preconditioning matrices.
Moreover, the preconditioners can change from iteration to iteration what corresponds to
the so-called dynamic or flexible preconditioning.

To solve a SLAE with a non-symmetric matrix A, let us build a family of multi-
preconditioned semi-conjugate residuals, which are based on a union of two ideas presented
in [5], [6].

Let r0 = f − Au0 be an initial residual of the algebraic syatem, and B
(1)
0 , ..., B

(m)
0 –

be a set of some non-singular easily inversible preconditioning matrices. Using them, let
us define a rectangular matrix composed of the initial direction vectors p0k, k = 1, ...,m:

P0 = [p01 · · · p0m] ∈ RN,m, p0l = (B
(l)
0)−1r0, (24)

which are assumed to be linearly independent.
Let us note that it is easy to generalize the considered algorithms to the block iterative

methods in the Krylov subspaces when not a single but m different initial guesses u0l are
taken. Then the initial direction vectors in (24) can be defined as

p0l = (B
(l)
0)−1r0l , r

0
l = f −Au0l , l = 1, ...,m,

however we will not dwell further on this issue.
Successive approximations un and the corresponding residuals rn = f − Aun will be

sought for with the help of the recursions

un+1 = un + Pnᾱn = u0 + P0ᾱ0 + ...+ Pnᾱn,
rn+1 = rn −APnᾱn = r0 −AP0ᾱ0 − ...−APnᾱn.

(25)

7

Here ᾱn = (α1
n, ..., α

m
n)T are m-dimensional vectors. The direction vectors pnl forming

the columns of the rectangular matrices Pn = [Pn
1 · · ·Pn

m] ∈ RN,m will be defined as
orthogonal ones in the sence of satisfying the relations

P T
n A

TAPk = Dn,k = 0 for k 6= n, (26)

where Dn,n is a symmetric positive definite matrix if the matrices Pk have the full rank
as is supposed.

It is obvious that under conditions (26) the residuals satisfy the equalities

(rn+1, rn+1) = (r0, r0)−
−

n∑
k=0

[2(r0, APkᾱk)− (APkᾱk, APkᾱk)].
(27)

From here it follows that under the condition of a minimum of the functional

∂(rn+1, rn+1)/∂α
(l)
k = 0, k = 0, 1, ..., n; l = 1, ...,m,

for the “vector coefficients” ᾱn the following formula is valid:

ᾱn = (D−1
n,n)

−1P T
n A

T r0. (28)

For such values of ᾱn it is easy to check that the vectors pnk , r
n
k satisfy the semi-conjugation

condition, i.e.

P T
k A

T rn+1 = 0, k = 0, 1, ..., n. (29)

In this case, the following relations are valid for the functionals of the residuals:

(rn+1, rn+1) = (rn, rn)− (Cnr
0, r0) =

(r0, r0)− (C0r
0, r0)− ...− (Cnr

0, r0), Cn = PnAD
−1
n,nA

TP T
n .

(30)

We will look for the matrices composed of the direction vectors from the recurrent
relations

Pn+1 = Qn+1 +

n∑

k=0

Pkβ̄k,n, (31)

where the auxiliary matrices

Qn+1 = [qn+1
1 ...qn+1

m], qn+1
l = (B

(l)
n+1)

−1rn+1, (32)

are introduced, B
(l)
n+1 are the preconditioning matrices and β̄k,n are the coefficient vectors

which are defined after substitution of (31) into orthogonality conditions (26) by the
formula

β̄k,n = −D−1
k,kP

T
k A

TAQn+1. (33)

Let us consider the relations

QT
kA

T rn = (P T
k A

T −
k−1∑

j=0

β̄Ti,kP
T
i A

T)(r0 −
k−1∑

i=0

APiᾱi), (34)

with the help of (31) and (25). It follows from these relations that if k = n, the equality

QT
nA

T rn = P T
n A

T r0,

8

holds thus allowing us to obtain a new formula instead of (28):

ᾱn = D−1
n,nQ

T
nA

T rn.

And if k < n, the property of semiconjugacy of the residuals follows from (34):

QT
kA

T rn = 0, k < n, (35)

which gave the name of the method under considerstion.

3 Some features of parallel implementation tech-

nologies

The objectives of this paper are: verification, testing, and a comparative analysis of the
efficiency of different algorithms of solving big sparse SLAEs aimed at their optimization
and including into the KRYLOV library [11] of parallel algebraic solvers. The main
requirements to develop a proper software are high and scalable performance and no
formal restrictions on the orders of the SLAEs to be solved and on the number of the
processors or computational cores used. Let us note that according to [8] a strong and
a weak scalability can be distinguished. The first notion describes a decrease in the
execution time of one big problem with an increase of the number of computing devices,
while the second notion stands for approximate preservation of the solution time, while
increasing the dimension (the number of degrees of freedom) of the problem and the
number of devices.

The algorithms were coded with taking into account the architecture of the SSCC
SD RAS cluster [12] (where KRYLOV library is available) but without GPGPU usage as
their effective utilization in the considered domain decomposition methods has its own
technological computational complexity and requires a special study.

Computations are carried out in the following natural way: if a computational domain
is divided into P subdomains than the solution is performed on P + 1 CPUs (one is the
root processor and any of the rest processors corresponds to its own subdomain), and the
same number of MPI processes are formed as well. The solutions to auxiliary algebraic
subsystems in the subdomains are simultaneously obtained on the multicore CPUs with
the usage of multithread OpenMP calculations.

As algorithms from KRYLOV library are designed to solve big sparse SLAEs arising
from an approximation of multidimensional boundary value problems on non-structured
grids, then the well-known compressed sparse row (CSR) format of the matrix storage is
used to keep non-zero matrix entries. In doing so, the global matrix A is formed on the
root processor at the preliminary stage, and then the distributed storage of the block rows
Ās from (10) is performed for the s-th extended subdomains in the respective processors.

Let us note that for the examined two-dimensional grid boundary value problems, a
two-dimensional balanced domain decomposition into subdomains is considered, when for
an approximately equal number of nodes NS ≈ N/P in every subdomain the macrogrid
daimeter d (for a macrogrid composed of subdomains) is equal, approximately, to

√
P .

As the number of the iterations of the additive Swartz method even with the usage of
the Krylov methods is proportional to dγ , γ > 0, this yields a significant advantage over
one-dimensional decomposition for which d ≈ P .

9

A Scalable parallelization of the algorithms is provided by synchronization of the
calculations in subdomains by means of MPI and by minimization of the time losses during
interprocessors communication. A solution to the isolated SLAEs in Ωs is produced by the
direct or iterative method requiring (N/P)γ1 , γ1 > 0 operations at every step of the two-
level process. As it is necessary to exchange the data corresponding to peripheral nodes
of the adjacent subdomains only, the volume of such an information is much less and
proportional to (N/P)γ1/2 thus allowing one to carry out arithmetic and communication
operations simultaneously.

A high performance of the code based on the presented approach is ensured by an active
usage of the standard functions and vector-matrix operations from BLAS and SPARSE
BLAS included into MKL INTEL [9].

4 Numerical results

We present the results of methodical experiments on solving five-point SLAEs for the
Dirichlet problem in a square on the square grids with the number of nodes 1282 and 2562.
Calculations were carried out on P = 22, 42, 82 processors each of which corresponding
to one of subdomains forming the square macrigrid. Iterations over the subdomains were
reslised with the help of BiCGStab algorithm [13] with the stopping criterion

||rn||2 ≤ 10−8||f ||2.

Solving of the auxiliary subdomain subsystems was carried out by the direct algorithm
embodied in multithread program PARDISO from Intel MKL. Moreover, the most time-
consuming part of LU matrix decomposition was done only once before the iterations.

In the Table 1, each cell contains the numbers of iterations over the subdomains and the
times of SLAEs solving on the grids 1282 and 2562 (two upper and bottom pairs of figures
respectively), moreover the first and the third lines correspond to the zero convection
while the second and the fourth lines – to the convection coefficients p = q = 4) according
to the different values of overlapping parameter ∆.

The results demonstrate that with ∆ increasing up to 5 the number of the iterations
reduces 3 - 4 fold, but when the overlapping value is big the time of subdomain solving
begins to increase. So for almost all grids and the numbers of processors, the optimal ∆
value is approximately 3 – 4. If the convection coefficients p, q have nonzero values, the
number of the iterations increases by approximately 30–50%.

In the Tables below, for the sake of brevity, the results for the Poisson equation only
are presented, i.e. when there are no convection coefficients in equation (1). As the
experiments show, with the moderate values of p, q (|p| + |q| < 50) the behavior of the
iterative process varies slightly.

The Table 2 presents the numbers of the iterations for different values of θ from the
equation (9), which define the interface boundary conditions for the adjacent subdomains
(in each cell, the left and the right fugures are for the grids 1282 and 2562 respectively).

As one can see from these data, the given data for different grids and the numbers of
the subdomains contain the optimal value of θ close to one, but the gain is only within 10-
40%. These calculations were carried out without subdomain overlapping and for ∆ ≥ 1
the best θ value is zero what corresponds to the Dirichlet conditions on the adjacent
boundaries.

10

P \ ∆ 0 1 2 3 4 5

18 1.75 11 1.45 9 1.37 7 1.26 7 1.26 6 1.20

4 31 2.45 17 1.77 13 1.66 12 1.53 11 1.50 10 1.35

27 6.85 16 4.37 12 3.51 10 3.02 9 2.82 8 2.49

46 11.37 25 6.53 19 5.16 17 4.74 15 4.28 13 3.76

32 1.42 18 1.18 14 1.19 12 1.09 11 0.89 9 0.79

16 41 2.23 25 2.6 19 2.44 16 1.90 14 1.28 14 1.78

41 3.85 24 2.83 20 2.20 17 1.80 14 1.38 14 1.66

58 5.96 35 3.55 28 3.03 22 2.58 19 1.99 18 1.99

43 1.56 26 1.66 19 1.39 16 1.50 14 1.56 12 0.86

64 57 2.02 34 1.91 26 1.78 21 1.98 20 1.69 18 1.35

60 4.75 36 4.16 27 3.35 22 3.11 20 3.00 18 4.66

87 7.04 47 5.61 38 4.89 31 4.13 28 4.02 25 4.48

Table 1. The numbers of iterations and the solution times (in seconds)
on the grids 1282 and 2562

P \ θ 0 0.5 0.6 0.7 0.9975

4 18 27 16 26 16 24 14 23 10 12

16 32 41 28 40 27 39 27 40 31 75

64 43 60 42 56 40 55 41 55 93 86

Table 2. The number of the iterations on the grids 1282 and 2562

for different θ values

The data above show that the behavior of iterations varies slightly when the initial
error varies. The experiments given above were hold for the initial guess u0 = 0 and the
exact SLAE solution u = 1.

Table 3 shows the effect of applying two deflation methods when the conjugate gradient
method without any additional preconditioning is used, and without additive Schwarz
method for three square grids with different numbers of nodes N including. The basis
functions φk(x, y) were the bilinear finite functions. Three right columns have the number
of the iterations for the single orthogonalization of the form (17), (21) as the upper figure in
each cell while the iteration number for the orthogonalization (22), (23) on every iteration
is the bottom figure. If to compare these data with the algorithm when the deflation is not
used at all (the column with Nc = 0) one can see the acceleration up to three times when
P increases. However, it should be taken into account that an implementation of multiple
orthogonalization makes each iteration more expensive, so an additional investigation is
required to optimize the algirithms practically.

The results from Table 4 present the same data but when using the additive Swartz
method with the domain decomposition into P subdomains. The coarse grid Ωc nodes are
taken in the vicinity of the subdomain corners, i.e. when P = 22, 42, 82 the numbers of the
coarse grid nodes or the values of Nc are 32, 52 and 92 respectively. THe basis functions
φk(x, y) as in the previous series of experiments from Table 3 were the bilinear finite ones.
Every cell of Table 4 contains the numbers of the iterations carried out without deflation
as the upper figure and the numbers of the iterations for the single orthogonalization of

11

N \ Nc 0 22 42 82

176 167 166 103

642

118 87 56

338 309 255 181

1282

220 159 104

609 544 442 276

2562

376 294 190

Table 3. The deflation influence in the conjugate gradient mathod

the initial guess as the bottom figure.

N \ P 22 42 82

19 26 37

642

23 21 28

29 35 51

1282

24 26 36

38 53 71

2562

31 35 40

Table 4. Aggregation influence in additive Swartz method (the decomposition without
subdomain intersection)

The presented results for the considered grids and macrogrids have approximately the
same character as in Table 3 when the increasing of the deflation space yields to the
decreasing of the iteration number together with the increasing of the amount of compu-
tations at each step. In these experiments, the outer iterations were carried out by the
conjugate gradient method, wherein it was possible to apply it because the decomposition
was done without the subdomain intersections.

Let us note that the experiments whose data are presented in Tables 3, 4 were hold
for the initial guess u0 = 0 and the exact SLAE solution u(xi, yj) = x2i − y2j . Naturally,
the efficiency of the considered “interpolation” deflation depends on the behaviour of the
solution sought for. For example, if is of the form u(xi, yj) = x− y, then the usage of the
bilinear basis functions ϕk(x, y) for Nc ≥ 4 yields to the convergence in one iteration.

References

[1] Il’in V.P. Parallel methods and technologies of domain decomposition. – Vestnik Yu-
UrGU. Series “Computational mathematics and informatics”, N 46(305), 2012, 31-44.

[2] Toselli A., Widlund O. Domain Decomposition Methods – Algorithms and Theory.
Springer Series in Comput. Math., v. 34, 2005.

12

[3] Andreeva M.Yu., Il’in V.P., Itskovich E.A. Two solvers for nonsymmetric SLAE.–Bull.
NCC, series: Num. Anal., iss. 12, 2003, 1-16.

[4] Il’in V.P. Finite difference and finite volume methods for elliptic equations.– Novosi-
birsk, ICMMG Publisher, 2001, 318 p.

[5] Bridson R., Greif C. A multipreconditioned conjugate gradient algorithm.–SIAM J.
Matrix Anal. Appl., v. 27, N 4, 2006, 1056-1068.

[6] Il’in V.P., Itskovich E.A. On semi-conjugate directions mathod with a dynamic preson-
ditioning. – Novosibirsk, SibJIM, v. 10, N 4, 2007, 41-54.

[7] Chapman A., Saad Y. Deflated and augmented Krylov subspace technique. Numer.
Linear Algebra Applic., v. 4, N 1, 1997, 43-66.

[8] Dubois O., Gander M.J., St-Cyr A., Loisel S., Szyld D. The Optimized Schwarz
Method with a Coarse Grid Correction.–SIAM Journal on Scientific Computing, v.
34, N 1, 2012, 421-458.

[9] URL:https://software.intel.com/en-us/intel-mkl

[10] URL:http://www.ddm.org

[11] Butyugin D.S., Gurieva Y.L., Il’in V.P., Perevozkin D.V., Petukhov A.V. Function-
ality and algebraic solvers technologies in Krylov library.— Vestnik YuUrGU. Series
“Computational mathematics and informatics”, v. 2, N 3, 2013, 92-105.

[12] URL:http://www2.sscc.ru

[13] Saad Y. Iterative Methods for Sparse Linear Systems.–N.Y.:PWS Publ., 2002.

13

