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ON MULTIGRID METHODS FOR SOLVING
TWO-DIMENSIONAL BOUNDARY-VALUE PROBLEMS

Y. L. Gurieva,∗ V. P. Il’in,† and A. V. Petukhov∗ UDC 519.6

Various methods for constructing algebraic multigrid type methods for solving multidimensional
boundary-value problems are considered. Two-level iterative algorithms in Krylov subspaces based
on approximating the Schur complement obtained by eliminating the edge nodes of the coarse grid
are described on the example of two-dimensional rectangular grids. Some aspects of extending the
methods proposed to the multilevel case, to nested triangular grids, and also to three-dimensional
grids are discussed. A comparison with the classical multigrid methods based on using smoothing,
restriction (aggregation), coarse-grid correction, and prolongation is provided. The efficiency of
the algorithms suggested is demonstrated by numerical results for some model problems.

1. Introduction

Solution of systems of linear algebraic equations (SLAEs) of high order (up to 1010 and more)
with sparse ill-conditioned coefficient matrices arising from approximation of multidimensional
boundary-value problems by finite difference, finite volume, finite element, and discontinuous
Galerkin methods of various orders of accuracy on unstructured grids is an important problem
of computational algebra because it is a bottle-neck of mathematical modeling and requires
huge computer resources (the number of arithmetic operations and the memory required),
increasing nonlinearly as the system dimension grows. Multi-scale and multi-phase problems
with contrasting material properties, for which condition numbers can exceed 1013 (which
is the maximally admissible value when using the standard double-precision arithmetic), are
especially hard.

In addition to solving stationary boundary-value problems, systems of linear algebraic equa-
tions must also be solved in modeling dynamic processes using stable implicit schemes.

Modern approaches to solving SLAEs are based on preconditioned iterative methods in
Krylov subspaces, see [1–3] and the references therein. The urgent problem of scaled paral-
lelization of algorithms is mainly solved by applying additive domain decomposition methods,
whose description can be found in [3–5]. The best theoretical estimates of the amount of com-
putations are obtained for the multigrid algorithms. They appeared in the pioneering works
by R. P. Fedorenko and N. S. Bakhvalov and since then have been intensively studied by many
authors. An in-depth analysis of multigrid methods can be found in the monographs [6–7] and
many other publications, among which we mention [8–14]. These methods can be subdivided
into geometric (GMG) and algebraic (AMG) multigrid methods. The geometric methods can
effectively use interpolation approaches based on geometric characteristics of grids. On the
other hand, the algebraic methods are, in a sense, more universal because they only exploit
algebraic properties of SLAEs. In general, both approaches are interpreted as construction of
a multigrid preconditioner for an iterative Krylov type process. In this case, every step, i.e.,
application of a two-grid algorithm includes smoothing, restriction, prolongation, and coarse-
grid correction operations, which are iteratively implemented in different versions of V -cycles
or W -cycles. The transition to a multigrid version consists in applying the two-grid method
recursively.
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In this paper, a new version of the two-grid algebraic method is proposed, which can readily
be extended to the multigrid case. The main idea is to construct the restriction and prolonga-
tion operators that approximate, in a sense, a Schur complement and are similar to the Uzawa
algorithm. The main idea is exposed on the example of two-dimensional rectangular grids,
with account for the specific information structure for the objects under consideration. Also
we discuss the possibilities of extending the approach in question to nested triangular grids
and to different types of three-dimensional grids.

The paper is organized as follows. In Sec. 2, we describe the general scheme of the Uzawa
type multigrid methods. Section 3 contains a comparison of the algorithm implementation for
the two-dimensional boundary-value problem with the “classical” multigrid approaches, which
are based on the operations of restriction, smoothing, coarse-grid correction, and prolongation.
The last section presents and discusses numerical results for some model problems.

2. The general scheme of the Uzawa type multigrid methods

Consider a symmetric system of linear five-point grid equations

(Au)i,j ≡ −ai,jui−1,j − bi,jui,j−1 − ai+1,jui+1,j − bi,j+1ui,j+1 + ei,jui,j = fi,j,

i = 1, . . . L1, j = 1, . . .M1, L1M1 = N1, (1)

approximating, on a rectangular grid Ωh with N1 nodes, the boundary-value problem for an
elliptic equation in a rectangular computational domain by a finite difference, a finite volume,
a finite element, or a discontinuous Galerkin method, see [15]. Assume that a sequence of

m nested grids ̂Ω1 = Ωh, ̂Ω2 = Ω2h, . . . , ̂Ωm = Ω2m−1h is given and let the number of nodes
of the lth grid be equal to Nl = LlMl, where Ll = (Ll−1 − 1)/2 + 1 = (L1 − 1)/2l−1 + 1,
l = 1, . . . ,m− 1, and all the numbers are integers (e.g., L1 = M1 = 2m + 1).

We assume that the matrix A is positive semidefinite, all the coefficients occurring in Eqs. (1)
are nonnegative, and A is (nonstrictly) diagonally dominant, i.e.,

|ei,j | ≥ |ai,j |+ |bi,j |+ |ai+1,j |+ |bi,j+1|.
Note that for the near-boundary nodes, some coefficients are “zeroed” in order to take into
account the boundary conditions, i.e., a1,j = bi,1 = aL+1,j = bi,M+1 = 0.

The system of equations (1) is symmetrically scaled in such a way that all the diagonal
matrix entries are equal to unity. As a result, we obtain a symmetric SLAE of the form

ūi,j − āi,jūi−1,j − b̄i,jūi,j−1 − āi+1,jūi+1,j − b̄i,j+1ūi,j+1 = f̄i,j,

āi,j = ai,j(
ei,j
ei−1,j

)−1/2, b̄i,j = bi,j(
ei,j
ei,j−1

)−1/2, ūi,j = ui,je
1/2
i,j , f̄i,j = fi,je

−1/2
i,j . (2)

Fig. 1. The local node numbering for the multigrid method.
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The multigrid methods result from recursive application of the two-grid algorithm, which
is described in accordance with the notation presented in Fig. 1. In Fig. 1, the black dots
denote the nodes of the coarse grid Ω2h, whereas the circles and crosses are the nodes of the
fine grid Ωh, which are located, respectively, in the middles of the cells and at the centers of
the edges of the coarse grid Ω2h. The corresponding subsets of nodes are denoted by Ω1, Ω2,
and Ω3, and the resulting geometric types of points with respect to Ω2h will be referred to as
nodal, edge, and facial ones.

Assume that ūi,j are the values of the solution of SLAE (1) on the fine grid. Upon eliminating
the edge unknowns from SLAE (2) using relations of the form

ūi−1,j = f̄i−1,j + āi−1,jūi−2,j + b̄i−1,jūi−1,j−1 + āi,jūi,j + b̄i−1,j+1ūi−1,j+1,

ūi,j−1 = f̄i,j−1 + āi,j−1ūi−1,j−1 + b̄i,j−1ūi,j−2 + āi+1,j−1ūi+1,j−1 + b̄i,jūi,j (3)

(similar expressions are also used for ūi+1,j and ūi,j+1, where (i ± 1, j), (i, j ± 1) ∈ Ω3), we
obtain the following symmetric system of nine-point equations at the “circle” type nodes:

p0i,jui,j − p1i,jui−2,j − p2i,jui,j−2 − p3i,jui+2,j − p4i,jui,j+2 − p5i,jui−1,j−1 − p6i,jui+1,j−1

− p7i,jui+1,j+1 − p8i,jui−1,j+1 = f̄i,j, (i, j) ∈ Ωv.

Here, the coefficients introduced are determined by the following formulas:

p0i,j = 1− ā2i,j − b̄2i,j − ā2i+1,j − b̄2i,j+1,

p1i,j = āi,j āi−1,j, p2i,j = b̄i,j b̄i,j−1, p3i,j = āi+1,j āi+2,j = p1i+2,j,

p4i,j = b̄i,j+1b̄i,j+2 = p2i,j+2, p̄5i,j = āi,j b̄i−1,j + āi,j−1b̄i,j, p6i,j = āi+1,j−1b̄i,j + āi+1,j b̄i+1,j ,
(4)

p7i,j = āi+1,j b̄i+1,j+1 + āi+1,j+1b̄i,j+1, p8i,j = āi,j b̄i−1,j+1 + āi,j+1b̄i,j+1

f̃i,j = f̄i,j + āi,j f̄i−1,j + b̄i,j f̄i,j−1 + āi+1,jfi+1,j + b̄i,j+1fi,j+1.

Similar nine-point equations are also obtained for the nodes of the coarse grid, i.e., for (i, j) ∈
Ω1. Now represent the above transformations in matrix-vector form. By u1, u2, u3 we denote
the subvectors whose components correspond to the nodes of the black dot, circle, and cross
types, i.e., we set

ul = {ui,j : (i, j) ∈ Ωl, l = 1, 2, 3}.
Then the original SLAE takes the form

A1,1u1 +A1,3u3 = f1,

A2,2u2 +A2,3u3 = f2, (5)

A3,1u1 +A3,2u2 +A3,3u3 = f3.

We will assume that this system is obtained after performing the scaling operations (2). In
this case, the diagonal blocks are identity matrices (A1,1 = A2,2 = A3,3 = I); the off-diagonal
matrix entries and the components of the subvectors u1, u2, u3 are the values āi,j , b̄i,j, and ūi,j
defined in (2).

Upon eliminating the subvector u3 from (5) using the relation

u3 = A−1
33 (f3 −A3,1u1 −A3,2u2),

which follows from the last equation in (5), we arrive at the following system for the subvectors
u1 and u2:

Āu ≡
{

Ā1,1u1 + Ā1,2u2 = f̄1,

Ā2,1u1 + Ā2,2u2 = f̄2.
(6)
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Here, the new matrices and vectors are defined by the relations

Ā1,1 = I −A1,3A3,1, Ā1,2 = −A1,3A3,2, f̄1 = f1 −A1,3A
−1
3,3f3,

Ā2,1 = −A2,3A3,1, Ā2,2 = I −A2,3A3,2, f̄2 = f2 −A2,3A
−1
3,3f3. (7)

Note that the entries of the matrices Ā1,1 and Ā1,2 involve the coefficients p0i,j, p
1
i,j, . . . , p

4
i,j

and p5i,j, . . . , p
8
i,j, respectively, for (i, j) ∈ Ω1, see (4). If (i, j) ∈ Ω2, then these two groups

of coefficients correspond to the matrices Ā2,2 and Ā2,1, respectively. The matrices Ā1,1 and
Ā2,2, occurring in these relations, are five-diagonal, and they will be referred to as the Schur
complements of the first level.

Note that the diagonal blocks Āl,l in (7) are five-diagonal matrices, and their condition
numbers are independent of the grid step size h. For example, for the model problem corre-
sponding to the approximation of the Laplace operator on a square grid, in which case all the
nonzero off-diagonal entries of the matrix A equal 1/4, the eigenvalues λ of the matrices Āl,l

belong to the interval [λmin = 1/2, λmax = 1].
From the algebraic system (6) we again eliminate some unknowns. Using the second equa-

tion, we express the subvector u2 as

u2 = Ā−1
2,2(f̄2 − Ā2,1u1)

and substitute this expression into the first equation. In this way, we obtain the following
SLAE for the nodes of the coarse grid:

̂Au1 ≡ (Ā1,1 − Ā1,2Ā
−1
2,2Ā2,1)u1 = ̂f ≡ f̄1 − Ā1,2Ā

−1
2,2f̄2. (8)

Observe that the matrix ̂A, which is the second-level Schur complement, is dense. However,
multiplication of vectors by this matrix can be implemented in an efficient way. Indeed, the
most time-consuming operation here is solution of a SLAE with the well-conditioned coefficient
matrix Ā2,2, which can be done using the Chebyshev acceleration.

In order to solve SLAE (8), consider the following modified stationary Jacobi type block
method:

B(un+1 − un) = f̄ − Āun ≡ rn,

B = block− diag{ ̂Al,l : l = 1, 2}, (9)

̂Al,l = Āl,l − θDl, θ ∈ [0, 1].

Here, D is the diagonal matrix determined by the condition

Be = ̂Ae for θ = 1, i.e., De = Ā1,2Ā
−1
2,2Ā2,1e,

where e is the vector with unit components. The parameter θ should be selected in such a way

that the preconditioner B is optimized, i.e., the condition number of the matrix B−1
̂A and

the number of iterations in the algorithm (9) are minimized. (The problem of how to choose
θ in practice still needs a special investigation.) Here and below, the stopping criterion for
terminating the iterative process is as follows:

||rn||22 ≡ (rn, rn) ≤ ε2(f, f), ε � 1, (10)

where rn is the residual vector.
The iterative process (9) can be accelerated by applying a preconditioned conjugate direction

method in Krylov subspaces or a Chebyshev type spectral algorithm, which can be written in
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the following form, see [16] (in the sequel, for convenience, the vector f and the matrix A are
written without the symbol ” ∧ ”):

r0 = f −Au0, p0 = B−1r0,

n = 1, 2, · · · :
un = un−1 + αn−1p

n−1,

rn = rn−1 − αn−1Ap
n−1,

pn = B−1rn + βnp
n−1.

(11)

Here, the coefficients αn and βn in the Chebyshev algorithm are computed by the formulas

α0 = τ, αn = γnτ, βn = (γn − 1)αn−1/αn, τ = 2/(λ1 + λN ),

γn = 4/(4 − γn−1γ
2), γ0 = 2, γ = (C − 1)/(1 + C), C = λN/λ1,

(12)

where λ1 and λN are the smallest and largest eigenvalues of the matrix B−1A. In the Krylov
methods, the formulas

αn = σn/ρn, σn = (B−1rn, Aδrn), ρn = (Apn, Aδpn), βn = σn+1/σn (13)

are used. Here, δ = 1 corresponds to the conjugate residual algorithm, whereas δ = 0 corre-
sponds to the conjugate gradient algorithm.

In both cases, the number of iterations required to satisfy the stopping criterion (10) is
bounded from above as follows:

n(ε) ≤ 1 + | ln(ε/2)|√c/2, c = λN/λ1. (14)

In the case of a singular matrix A, for the conjugate direction method, the constant c in (14)
is the effective condition number, and λ1 is the smallest nonzero eigenvalue, see [17]. However,
for the method (11)–(12) to converge and the bound (14) to be valid, the linear algebraic
system to be solved must be compatible, i.e., the equality Au = f must hold for one vector u
at least.

Note that at every iteration of the form (9), algebraic systems with the matrices B and Ā2,2

must be solved, each of which is of order about four times smaller than that of the original
SLAE (1). The extremal eigenvalues λmin, λmax of these matrices, which are well-conditioned
for θ < 1, can be estimated using, e.g., the Gerschgorin circle theorem [16]. For this reason,
here it is reasonable to apply the efficient Chebyshev acceleration method, which involves no
inner products of vectors and is well parallelizable. The resulting two-level iterative process
can be optimized by selecting a suitable value of the parameter θ and an appropriate degree of
the Chebyshev polynomial. These two parameters determine the number of inner iterations,
which, in general, can vary from iteration to iteration.

Note that for the outer and inner iterative processes for solving SLAEs with the coefficient

matrices ̂A1,1 and Ā2,2 one can use distinct values ε1 and ε2 in the stopping criterion (10).
Obviously, the subvectors u2 and u3 can be computed only once upon terminating iterations
for the SLAE (8). It should also be mentioned that if at both levels of the iterative process
under consideration the conjugate direction method is applied, then, strictly speaking, even
for symmetric SLAEs it is necessary to use “flexible” preconditioning [18] with long recursions,
which makes the algorithm significantly more expensive.

The method in question is, in a sense, similar to the Uzawa algorithm because it is based on
preliminary elimination of subvectors. It can also be interpreted as a non-standard two-grid
approach, which requires solution of the subsystems for the vectors u1 and u2, corresponding
to the two coarse grids Ω1 and Ω2 with step size 2h. It is important to emphasize that if
the sparse system (8) is solved sufficiently accurately, then the subvectors u1, u2, and u3
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themselves provide a good approximate solution of the SLAE (1), which is in contrast with
the conventional multigrid method.

Based on the above-described two-grid method, multigrid iterative algorithms can readily
be constructed in a recursive manner. Indeed, in solving Eqs. (8), a coarser grid with step size
4h can be used for the subvector u1. In this case, each of the subsystems with the coefficient
matrices B and Ā2,2 reduces to two subsystems of halved order, and then the process of grid
coarsening can be continued, the number of subsystems being doubled. Thus, if an algorithm
with m levels is used, then, on the coarsest grid, it is necessary to solve 2m independent
algebraic subsystems, which can be performed concurrently on different processors. In this
way, the degree of parallelism of computations can be increased.

A similar hierarchical approach can be transferred to nested triangular grids, including
the case of finite element approximations with higher-order Lagrangian basis functions. In
this case, the block structure of the original matrix A for the two-grid version is still of the
form (5), and the subvectors u1, u2, and u3 still correspond to the node, edge, and face types of
unknowns, respectively, which are denoted by the symbols •, ◦, and ×. Therefore, the matrix-
vector form (8) of the iterative algorithm remains the same. When passing to three-dimensional
nested polygonal grids of different types (with “parallelepiped,” “tetrahedron,” “prism,” etc.
finite elements), the principles of classifying the unknowns and matrix partitioning remain the
same: in the course of hierarchical refinement of a coarse grid, the volume type nodes appear,
whence the block order of the original matrix increases by one.

3. Comparison with the classical multigrid approaches

In the up-to-date interpretation, the general two-grid AMG method can be represented as
a sequence of the following stages, see [8–10]:

1. On a fine grid Ω1, given an initial guess u01, the residual vector is computed,

r01 = f −A1u
0
1, A1 = A.

2. For the vector r01, preprocessing (preliminary smoothing) is performed, as a rule, by
carrying out a few iterations of a simple algorithm,

r11 = S1r
0
1, (15)

where S1 is an operator (or a matrix) of this stage (pre-smoothing). More specifically, this
stage is implemented in two steps. The first one computes the direction vector

Ã1p
0
1 = r01, (16)

where Ã1 is a certain approximation of the matrix A; at the second step, the corresponding
residual is computed,

r11 = f −Ap01. (17)

3. From the vector r11, corresponding to the fine grid Ω1, the residual vector r12 for the
coarse grid Ω2 is computed,

r12 = Rr11, R ∈ RN1,N2 , r12 ∈ RN2 , (18)

where R is a certain restriction operator (restriction stage).
4. On the coarse grid, the direction vector p12 is computed from the solution of the SLAE

A2p
1
2 = r12, A2 ∈ RN2,N2 , p12, r12 ∈ RN2 , (19)

where A2 is the coefficient matrix of the SLAE for the grid Ω2.
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5. The vector p12 found from the solution of system (19) is prolongated from the coarse grid
Ω2 to the fine grid Ω1 (prolongation stage),

p11 = Pp12, P ∈ RN1,N2 , p11 ∈ RN1 . (20)

6. For the vector p11, the corresponding residual vector on the fine grid is computed (residual
update),

r21 = r11 −Ap11, r11 ∈ RN1 . (21)

7. “Post-processing” is carried out for the newly obtained residual vector on the fine grid
Ω1; simultaneously, the new direction vector p21 is computed from the solution of the auxiliary

SLAE with the matrix Ã1 (the post-smoothing stage),

Ã1p
2
1 = r21. (22)

8. The resulting direction vector is obtained as the sum

p1 = p01 + p11 + p21 = Br01,

where B is the preconditioning matrix of the two-grid method under consideration.
Specific variants of multigrid approaches, which have already become classical, differ in

the ways of choosing the matrix operators that determine the successive stages of the above
computational scheme. In general, the preconditioning matrix for a two-grid method for solving
SLAE (1) can be represented in the form

B = S2PA−1
c RS1 ∈ RN1,N1 , (23)

where S1 and S2 are the pre-smoothing and post-smoothing operators defined in Ωh; R ∈
RN1,N2 and P ∈ RN2,N1 are the restriction and prolongation matrices; Ac ∈ Rn2,N2 is the
matrix that determines the coarse grid correction; N1 and N2 are the dimensions of vectors
defined on the fine and coarse grids Ωh and Ω2h, respectively. If the matrix A of the original
SLAE is symmetric, then it is natural to use a symmetric preconditioning matrix B. In this
case, it is reasonable to set P = RT , Ac = AT

c , and S1 = ST
2 = S = ST . In the special

case of the so-called Galerkin approximation, one also sets Ac = P TAP . As a result, the
preconditioning matrix has the form

B = SP (P TAP )−1P TS. (24)

Below, as an example, we consider the following version, based on the approach proposed
in [12].

Algorithm 1. In solving a nine-point symmetric SLAE approximating a two-dimensional
boundary-value problem for an elliptic equation on a rectangular grid, as a smoother one
uses the Iteration Line LU (ILLU) iterative method, which is nothing else than the implicit
incomplete factorization algorithm proposed in [19, 20]. The operation of prolongation from
a coarse grid to a fine one is based on bilinear interpolation, applied to the neighboring grid
nodes, and the restriction operator is defined by the rule R = P T . The matrix for the coarse
grid is defined by Ac = P TAP . As a result, the preconditioning matrix is of the form (24).
The multigrid method is obtained by recursively applying the two-grid algorithm m̄ times,
where m̄ is a given number. The outer iterative process is the Jacobi method (without Krylov
acceleration). On the coarsest grid, the SLAE with the coefficient matrix Ac is solved by a
direct or an iterative algorithm, which is of no practical importance for large values of m.
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4. Numerical results

In this section, we consider the results of preliminary experimental studies of the algebraic
two-grid and multigrid approaches on simple model examples, including implementation of
the described iterative algorithms for the finite difference solution of the Poisson equation in a
square computational domain on a uniform rectangular grid. The computations were carried
out for relatively small numbers of nodes equal to N = 642, 1282, 2562, 5122, 10242. For this
reason, we aimed at evaluating the mathematical efficiency of the methods in dependence
of the values of the problem and algorithms parameters rather than at achieving the best
performance. All computations were carried out in the standard double-precision arithmetic
on the Intel(R) Core(TM) i7-770HQ CPU @ 2.80 GHz 2.80 GHz computer.

In Table 1, we present the results of numerical solution of the Neumann model problem for
the Poisson equation in the square computational domain Ω = [0, 1] × [0, 1] approximated by
the standard five-point scheme [16] on square grids with N = 642, 1282, 2562, 5122, 10242

cells. We used the one-dimensional solution u = sinπx as the test one and u = 0 as the initial
guess. In this case, in accordance with [12], Algorithm 1 with m = 2, 3, 4, 5, 6 nested grids
was used. In every case, the SLAE on the coarsest grid was solved by the iterative conjugate
residual method with ε = 10−8 in the stopping criterion (10) of the iterations (11). For the
outer iterative (Jacobi) method, the same stopping criterion was used. Every cell of Table 1
contains two numbers: the total computation time (including the preparatory operations) and
the number of outer iterations.

Table 1. Numerical results for Algorithm 1.

m \ N 642 1282 2562 5122 10242

0.028 0.152 0.968 7.41 62.2
2 6 5 5 5 5

0.010 0.052 0.341 2.45 20.4
3 6 5 5 5 5

0.008 0.042 0.256 1.78 15.0
4 6 6 5 5 5

0.007 0.04 0.246 1.68 14.3
5 6 6 5 5 5

0.007 0.04 0.249 1.82 14.3
6 6 6 6 5 5

As is seen from the data presented, the number of outer iterations is practically independent
of the problem dimension and of the number of nested grids, which shows the importance of
choosing a high-quality iterative process. The total computation time decreases as the number
of grids grows, but only up to a certain limit (in the above computations, it is not advisable
to use more than five grids).

Note that the computation times in Table 1 are rather large because the contribution of
preparatory operations is essential. The overall efficiency of the algorithm in question would
increase significantly if we were solving a series of SLAEs with one and the same coefficient
matrix and many right-hand sides.

Table 2 presents similar numerical results obtained by applying the two-grid version of the
Uzawa type algorithm (6)–(13) from Sec. 2. In this case, the outer iterative process also was
carried out by the conjugate residual method, and, at every iteration, the auxiliary SLAEs
with the matrices B and Ā2,2 were solved using the Chebyshev acceleration (with fixed degrees
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of polynomials and the bounds for the matrix eigenvalues determined numerically from the
Gerschgorin circles).

Every cell of Table 2 also contains the computation time in seconds and the number of
outer iterations. The same grid sizes are considered, but the values of m, in this case, are
the orders of the polynomials used in the Chebyshev acceleration. The value of the damping
iterative parameter θ was chosen experimentally and, in the above computations, was equal to
θ = 0.975 almost everywhere (strictly speaking, its optimal value tends to unity as N grows).

Table 2. Numerical results for the Uzawa type algorithm.

m \ N 642 1282 2562 5122 10242

0.021 0.122 0.576 4.9 50.3
4 23 31 57 106 198

0.020 0.112 0.454 3.37 35.4
8 17 22 37 64 118

0.022 0.078 0.472 2.84 30.5
12 15 21 34 48 89

The above-presented preliminary results of experimental studies demonstrate the potential
of applying the Uzawa type iterative algorithm. However, the important issue of optimizing
the choice of the iterative parameters needs a special study.

This work was supported by the Russian Foundation for Basic Research (project No. 18-01-
00295).

Translated by the authors.

REFERENCES

1. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM (2003).
2. V. P. Il’in, Finite Element Methods and Technologies [in Russian], ICM & MG SBRAS
Publ., Novosibirsk (2007).
3. M. A. Olshanskii and E. E. Tyrtyshnikov, Iterative Methods for Linear Systems. Theory
and Applications, SIAM (2014).
4. V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Methods:
Algorithms, Theory and Parallel Implementation, SIAM (2015).
5. V. P. Il’in, “Problems of parallel solution of large systems of linear algebraic equations,”
Zap. Nauchn. Semin. POMI, 439, 112–127 (2015).
6. W. Hackbusch, Multi-Grid Methods and Applications (Springer Ser. Comput. Math., 4),
Springer, Berlin (1985).
7. V. V. Shaidurov, “Some estimates of the rate of convergence for the cascadic conjugate
gradient method,” Comput. Math. Appl., 31, No. 4-5, 161–171 (1996).
8. G. Lu, X. Jiao, and N. Missirlis, “A hybrid geometrical algebraic multigrid method with
semi-iterative solution,” Numer. Linear Algebra Appl., 21, No. 2, 212–258 (2014).
9. Y. Notay and A. Napov, “Further comparison of additive and multiplicative coarse grid
correction,” Appl. Numer. Math., 65, 53–62 (2013).
10. A. Napov and Y. Notay, “An efficient multigrid method for graph Laplacian systems. II:
Robust aggregation,” SIAM J. Sci. Comput., 39, No. 5, 379–403 (2017).
11. Y. Notay, “Analysis of two-grid methods. The nonnormal case,” Universite Libre de Brux-
elles, Report GANMN 18-01 (2018).

126



12. P. M. de Zeeuw, “Matrix-dependent prolongations and restrictions in a blackbox multigrid
solver,” J. Comput. Appl. Math., 33, 1–27 (1990).
13. Y. Shapira, M. Israeli, and A. Sidi, “Towards automatic multigrid algorithms for spd
nonsymmetric and indefinite problems,” SIAM J. Sci. Comput., 17, No. 2, 439–453 (1996).
14. Y. Notay, “Algebraic two-level convergence theory for singular systems,” SIAM J. Matrix
Anal. Appl., 37, 1419–1439 (2016).
15. V. P. Il’in, Mathematical Modeling. Part 1. Continous and Discrete Models [in Russian],
SD RAS Publ., Novosibirsk (2017).
16. V. P. Il’in, Finite Difference and Finite Volume Methods for Elliptic Equations [in Rus-
sian], Inst. of Math. Publ., Novosibirsk (2001).
17. R. Nabben and C. Vuik, “A comparison of deflation and coarse grid correction applied to
a porous media flows,” SIAM J. Numer. Anal., 42, 1631–1647 (2004).
18. Y. Notay, “Flexible conjugate gradients,” SIAM J. Sci. Comput., 22, No. 4, 1444-1460
(2000).
19. O. Axelsson, S. Brinkemper, and V. P. Il’in, “On some versions of incomplete block-matrix
factorization iterative method,” Catholic Univ. of Nijmegen, Preprint 8392 (1983).
20. P. Concus, G. Golub, and G. Meurant, “Block preconditioning for the conjugate gradient
method,” SIAM J. Sci. Statist. Comput., 6, No. 1, 220–252 (1985).

127


	Abstract
	1. Introduction
	2. The general scheme of the Uzawa type multigrid methods
	3. Comparison with the classical multigrid approaches
	4. Numerical results
	REFERENCES

