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Abstract. We consider several versions of incomplete nested factorization methods for solving
the large systems of linear algebraic equations (SLAEs) with sparse matrices which arise in grid
approximations of the multi-dimensional boundary value problems. Our approach is based on
the two-level iterative process in the Krylov subspaces in 3D case. Corresponding hierarchical
incomplete factorization is applied to the block tridiagonal matrix structure. At the upper
level, the diagonal blocks correspond to 2D grid subproblems which are factorized in the line-
by-line framework. Instead of the low and upper triangular matrix factors, the alternating
triangular matrices are used, which allows to apply the parallel counter sweeping approaches.
The improvement of preconditioners is made by means of generalized compensation principles.
To solve SLAE iterative conjugate direction methods in Krylov subspaces are applied. The
efficiency of the proposed methods are demonstrated on the set of representative test problems.

1. Introduction
The incomplete factorization methods both explicit and implicit constitute a classical approach
for construction of effective iterative preconditioned methods in Krylov subspaces for solving
large systems of linear algebraic equations (SLAEs) with sparse ill-conditioned matrices that
arise in grid approximations of multi-dimensional boundary value problems (BVP) using finite
difference, finite volumes, finite elements algorithms or discontinuous Galerkin methods, see [1].
The existing wide variety of relevant constructive ideas can be found in books [2]-[7] as well as
in reviews [8]-[10].

In this paper, we consider the combined use of three different algorithmic techniques for
constructing economical, easily implementable, and parallelizable iterative processes. The first
one is the nested factorization method proposed in 1981 by J. Appleyard and I. Cheshire in [11],
and then successfully applied and developed by various authors, see [12]-[16]. In particular, such
algorithms are actively used in [17] and other software packages for modeling oil production
processes. The second trick is to reorder the unknowns in tridiagonal (scalar or block) SLAEs
in such a way as to switch from ordinary recursive runs to counter sweeping [18]. Such approach
is called twisted decomposition in [16] and is considered in [19]. In particular, such approach
provides the opportunity to obtain high performance based on multi-thread technologies. The
third method used to improve the preconditioner is reconciliation of matrix row sums, or
compensation principle, which is known from [2], [4], [20], and actively used, in particular,
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in the variant of matching column matrix sums and called the low-frequency filtering method
[19].

The aim of our research is a comparative experimental analysis of the effectiveness of the
constructed algorithms using model examples for solving 2D and 3D grid boundary value
problems. In Section 2, we describe the iterative methods under consideration. Section
3 is devoted to the analysis of their computational resource consumption and scalability of
parallelization, and presents the results of numerical experiments. In conclusion, an outlook for
the methods studied and plans for future research are discussed.

2. Description of two-level methods of incomplete factorization
We consider the problems of constructing and studying fast converging and easily parallelizable
iterative methods in Krylov subspaces for solving SLAEs

Au = f, A ∈ RN,N , u, f ∈ RN , (1)

with high-order real sparse matrices (N ≈ 1010 and higher), having large condition numbers
(1013 and above), the implementation of which on modern multiprocessor computing systems
(MCS) is a lasting problem. In particular, when solving direct and inverse interdisciplinary
problems of mathematical modeling with real data including non-linear and non-stationary,
this computational stage can take about 80 % of the time of a machine experiment since here
the volumes of spent computer resources grow non-linearly with an increase in the degrees of
freedom.

We are mainly interested in SLAEs that arise from approximation of multidimensional initial-
boundary value problems with variable coefficients and contrasting material properties using the
methods of finite differences, finite volumes, finite elements, or discontinuous Galerkin algorithms
[1]. It is assumed that in such cases special techniques such as fast Fourier transform are not
directly applicable. The main approaches are based on preconditioned iterative algorithms in
Krylov subspaces. A typical form of an easily invertible preconditioned matrix is approximate
factorization of the form

B = (G+ L)G−1(G+ U), (2)

where L and U are the lower and upper triangular parts of the original matrix A = D+L+U ,
and D is some block-diagonal or diagonal matrix.

Various methods of symmetric successive over relaxation (SSOR) as well as explicit and
implicit incomplete factorization are constructed based on formulas (2), see the review in [3].
One of the general approaches to accelerating iterations is the compensation principle, or the
match of row sums which consists in selecting the matrix G in such a way to satisfy the conditions

By(l) = Ay(l), l = 1, . . . ,m, (3)

on a given set of m test vectors, see [1, 3] and the literature cited there. In some works, for
example, in [14] - [16], this technique is also called filtering.

To satisfy the conditions B ≈ A and (3), the matrix G is sought in the form

G = D − LG−1U − θS, (4)

where θ ∈ [0, 1] is some compensation parameter, the bar over the matrix means some band
approximation, and S is the block-diagonal matrix formed by the following conditions (the
implementation for m = 2 is described in [20]):

Sy(l) = (LG−1U − LG−1U)y(l), l = 1, . . . , m̄. (5)
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Let us note that if y(l) = e (e is the vector with unit elements on all positions) the condition
(2) is called row sum criteria. In some papers the column sum criteria eB = eA is used for the
non-symmetric matrices B,A instead of this one.

Note that in [16] two-thread block version of the alternating triangular factorization of the
original matrix was proposed when left and right factors in [2] are not lower or upper triangular
matrices, but they consist of block rows of different placement: some are lower triangular and
the remaining ones are upper triangular (such decomposition is called ”twisted decomposition”
by the authors, and in Russian papers this approach is traditionally called as an algorithm of
counter sweeping, see the reviews in [4, 18]).

We give a description of alternating triangular factorization methods using five-point
approximations of two-dimensional boundary value problems for diffusion-type equations on
a rectangular grid with the number of nodes N = NxNy, see [1] - [4].

With the natural ordering of the grid nodes (for definiteness, we choose their global numbering
by the index k = j + (i− 1)Ny, i = 1, . . . , Nx, j = 1, . . . , Ny), the matrix of the system takes a
block-tridiagonal form

A =


D1 U1 0
L2 D2 U2

· · · · ·
UNx−1

0 LNx DNx


· (6)

Here Di, Li = UT
i−1 are the tridiagonal and diagonal matrices.

In formulas (2), (4), the matrices L and U are defined as alternating triangular which for
Nx = 7 have the following form:

L =



0 0

L2 0 0 0
L3 0 0

L4 0 U4

0 0 U5

0 0 0 U6

0 0


, U =



0 U1

0 0 U2 0
0 0 U3

0 0 0
L5 0 0

0 L6 0 0
L7 0


. (7)

In this case, the matrix G is defined as block-diagonal, and its blocks Gi are defined as
tridiagonal calculated from counter recursions which we write for an arbitrary odd Nx = 2m+ 1

G1 = D1, Gi = Di − LiḠ
−1
i−1Ui−1 − θSi,

Siy
(l) = Li(G

−1
i−1 − Ḡ

−1
i−1)Ui−1y

(l), i = 2, . . . ,m,

GNx = DNx , Gi = Di − UiḠ
−1
i+1Li+1 − θSi,

Siy
(l) = Ui(G

−1
i+1 − Ḡ

−1
i+1)Li+1y

(l), i = Nx − 1, . . . ,m+ 2,

Gm+1 = Dm+1 − Lm+1Ḡ
−1
m Um − Um+1Ḡ

−1
m+2Lm+2 − θSm+1,

Sm+1y
(l) = [Lm+1(G

−1
m − Ḡ−1

m )Um + Um+1(G
−1
m+2 − Ḡ

−1
m+2)Lm+2]y

(l).

(8)

Here Ḡ−1
i−1 means the tridiagonal part of the matrix G−1

i−1, and in the simplest case with one

compensating or filtering vector we have l = 1 (usually y(1) = e) and two test vectors l = 1, 2,
see [20].
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When using matrix B as a preconditioner for any iterative process, it is required at each step
to solve an auxiliary system of the form

Bp = (G+ L)G−1(G+ U)p = r. (9)

Its solution can be found from equations

(G+ L)v = r, (I +G−1U)p = v, (10)

which are implemented using counter matrix sweeps according to the following formulas:

v1 = G−1
1 r1, vi = G−1

i (ri − Livi−1), i = 2, . . . ,m,

vNx = G−1
Nx
, vi = G−1

i (ri − Uivi+1), i = Nx − 1, . . . ,m+ 2,

vm+1 = G−1
m+1(rm+1 − Lm+1vm − Um+1vm+2) = pm+1,

pi = vi −G−1
i Uivi+1, i = m, . . . , 1,

pi = vi −G−1
i Livi−1, i = m+ 2, . . . , Nx.

(11)

In recursions (8) and (11), the stages of the calculations with an increasing and decreasing
index i are called direct and inverse sweeps, respectively. Obviously, their implementations can
be performed in parallel on two threads.

To solve SLAEs with symmetric positive definite matrices A and B, we use left or right
preconditioned conjugate direction methods

p0 = r0 = B−1(f −Au0), p0 = r0 = f −AB−1u0,

αi = (ri,(B
−1A)γri)B

(B−1Api,(B−1A)γpi)B
, αi =

(ri,(AB−1)γri)B−1

(AB−1pi,(AB−1)γpi)B−1
,

ui = ui−1 + αi−1pi−1, ui = ui−1 + αi−1B
−1pi−1,

ri = ri−1 − αi−1B
−1Api−1, ri = ri−1 − αi−1AB

−1pi−1,

βi = (ri,(B
−1A)γri)B

(ri−1,(B−1A)γri−1)B
, βi =

(ri,(AB−1)γri)B−1

(ri−1,(AB−1)γri−1)B−1
,

pi = ri + βipi−1, pi = ri + βipi−1,

(12)

where γ = 0 corresponds to the conjugate gradient method, and γ = 1 corresponds to conjugate
residual, see [2], [3].

Now we consider nested factorization method for solving seven-diagonal algebraic equations
approximating a three-dimensional Dirichlet boundary value problem of diffusion type in a
parallelepiped computational domain on a uniform grid in Cartesian coordinates (x = xi, i =
0, 1, . . . , Nx + 1; y = yj , j = 0, 1, . . . , Ny + 1; z = zk, k = 0, 1, . . . , Nz + 1), see [1].

We represent the matrix of the dimension N = NxNyNz in the form

A = D + L1 + U1 + L2 + U2 + L3 + U3, (13)

where D is diagonal, and Ll and Ul, l = 1, 2, 3, are the lower and upper triangular matrices. Here,
the indexes l = 1, 2, 3 correspond to the axes x, y, z, respectively. We define a preconditioning
matrix B by nested factorization of the form (9):

B = (P + L3)P
−1(P + U3) = P + L3 + U3 + L3P

−1U3,

P = (T + L2)T
−1(T + U2) = T + L2 + U2 + L2T

−1U2,

T = (M + L1)M
−1(M + U1) = M + L1 + U1 + L1M

−1U1,

(14)
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resulting in
B = M +A−D + L1M

−1U1 + L2T
−1U2 + L3P

−1U3. (15)

With the natural ordering of the grid nodes, the matrices M , T , and P are diagonal, tridiagonal,
and pentadiagonal, respectively, and the preconditioner can be defined by the formulas

M = D − L1M
−1U1 − θ1S1 − θ2S2,

B = A+ L2T
−1U2 + L3P

−1U3 − θ1S1 − θ2S2.
(16)

Here θ1 and θ2 are iterative (relaxing) parameters, and S1 and S2 are diagonal matrices
determined from the conditions for matching the row sums of matrices A and B:

S1e = L2T
−1U2e, S2e = L3P

−1U3e. (17)

The proposed three-level method of nested factorization can be structurally simplified by
reducing it to a two-level one. To do this, we rewrite the original matrix A from (13) in the
form

A = D3 + L3 + U3, D3 = D2 + L2 + U2, D2 = D + L1 + U1. (18)

In this case, D3 is a block-diagonal matrix with five-diagonal blocks D3,i of dimension NyNz,
each of which corresponds to a plane problem in the cross section x = const and has the structure
similar to that of matrix A in (6). Then the matrix P in (14) is defined by the formula

P = {Gi = D3,i − θSi}, Sie = L3,iG
−1
i−1U3,ie, (19)

which corresponds to the definition of L3P−1U3 = 0 in (14). Note that L3 and U3 can be defined
as alternating triangular, and then the implementation of the algorithm can be parallelized using
counter block sweeping.

If we put θ = 0 in (19), then we arrive at the block symmetric successive over relaxation
method (BSSOR, [3], [4]), which is an alternative to the compensation, or filtration, principle
considered above. In this case, it is necessary in (14) to replace P with ω−1P , where the
relaxation parameter ω has an optimal value on the interval [1,2].

In fact, in this case, in (11), the inversion of the matrices Gi is made iteratively by formulas
similar to (12), which generates a two-level process. Note that each auxiliary two-dimensional
SLAE has a strict diagonal dominance and a finite condition number, and the boundaries of its
spectrum can be estimated using Gershgorin circles.

3. Numerical experiments
For a comparative analysis of the effectiveness of the iterative processes under consideration for
various values of the computational parameters, we present the results of numerical experiments
on a series of 2D and 3D BVPs for the Poisson equation with Dirichlet boundary conditions
approximated by common schemes of the second order of accuracy on square or cubic grids.

All demonstrated calculations were performed with double precision. The criterion for
stopping the iterations is based on the residual vector

(rn, rn) ≤ ε2(f, f), ε� 1. (20)

In the first Table, we present the number of iterations for the 3D problem in cube ω = [0, 1]3

using the basic nested factorization method with the preconditioner (13) - (17), θ1 = θ2 = θ,
and conjugate gradient solver. Exact solution is u(x, y, z) = sinπx sinπy sinπz, stopping criteria
ε = 10−6 in (20), and initial guess is u0 = 0. In the Table 2, we present similar results for the
BSSOR method with the preconditioner
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B = (G+ L3)G
−1(G+ U3), G =

1

ω
D3, (21)

where D3 is defined in (18) and ω ∈ [1, 2) is the relaxation parameter. Here, the 5-diagonal
matrix G is inverted approximately using iterative method IMIF531, see below.

In all cases, the number of internal iterations for εint = 10−8 were n = 4, 5 because of
strong diagonal dominance of the matrix D3. The minimal number of external iterations for the
different grids are the following: for N = 32, n = 17 for ω0 ∈ [1.56, 1.62]; for N = 64, n = 22 for
ω0 ∈ [1.69, 1.80], and for N = 128, n = 30 for ω0 ∈ [1.88, 1.91]. If the relaxation parameter goes
above ω0, then the number of iterations n increases fast. In the Table 2, we denote such value
as n > 40.

Table 1. The number of iterations for 3D problem. The classic method of nested factorization
with conjugate gradients, ε = 10−6.

N\θ 0 0.95 0.975 0.9875 0.99375 1.0

32 17 11 11 11 12 14
64 29 16 15 15 15 20

128 54 26 25 22 21 30

Table 2. The results for 3D problem, SSOR two-level method, with IMIF531 internal iteration.

N\ω 1 1.4 1.6 1.8 1.9 1.95

32 24 20 17 >40 >40 >40
64 39 33 25 22 >40 >40

128 76 69 42 33 30 >40

In the remaining Tables, the results of numerical experiments for 2D problem are
demonstrated on square [0, 1]2 with exact solution u = sinπx on uniform grids with N2 nodes,
N = 128, 256, 512, 1024. The Table 3 presents the number of iterations for the method IMIF531
(Implicit Incomplete Factorization, 5-diagonal matrix A, 3-diagonal matrix G, one filtration
vector e with unit entries in compensation principle (3)) with stopping criteria ε = 10−8, and
standard triangular matrices L,U in (2), for varying values of parameter θ.

These results demonstrate that for any grid with the mesh size h, there is an optimal value
of compensation parameter which can be estimated as θ0 = 1−O(h).

In the Table 4, we demonstrate the results for counter sweeping method with alternating
triangular matrices L,U , see formulas (6)-(11). As we can see, the Counter Block Sweeping
(CBS) method demonstrates an advantage versus conventional one, in the sense potential
parallelizating for selected examples.

In the research conducted, we compared the number of iterations for the simple problems
only. To speedup parallel computations, we suggest to apply the counter sweeping in three
directions following the axes x, y, z in 3D computational domain. The corresponding parallel
implementation can be implemented based on the multi-threaded technologies using modern
multi-core CPU together with the vectorization.
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Table 3. The number of iterations for 2D problem. IMIF531 method with conjugate residuals,
ε = 10−8.

N\θ 0 0.8 0.9 0.95 0.975 0.99 0.995 1.0

128 41 27 26 27 29 34 37 46
256 73 47 42 37 36 38 41 65
512 121 82 73 65 57 50 50 95

1024 208 137 121 108 98 84 75 132

Table 4. The number of iterations for a two-dimensional model problem. IMIF531 CBS method
with conjugate residuals, ε = 10−8.

N\θ 0 0.8 0.9 0.95 0.975 0.99 0.995 1.0

128 36 34 34 39 47 59 70 94
256 65 57 53 52 57 73 89 193
512 104 101 97 92 89 93 112 416

1024 194 164 157 161 160 160 163 908

4. Conclusion
We present the results of numerical experimental analysis of several versions of nested
factorization methods for solving 3D and 2D BVPs approximated on the structured grids. The
classic nested factorization algorithm is combined with compensation principal, or generalized
row sum criteria, which provide the band approximation of the matrix which is inverse to the
original band matrix. This approach is responsible for the improvement of the condition number
of the preconditioned SLAEs to be solved. The second approach consists in the reordering
of the unknowns to obtain alternating triangular matrices which provide parallel three level
implementation of the algorithm based on multi-threaded technologies and vectorization of the
operations.
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