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Abstract. The simulation of thermal fields and melting permafrost is an important step
for engineering construction in many regions of Russia. Water-ice phase transitions in a 3-
D complicated computation domain must be taken into account. The enthalpy statement with
an implicit finite volume method was used to create a good discretization and a local mesh
refinement to focus an area near the oil well. System of linear algebraic equations is solved
using the iterative conjugate residual or conjugate gradient method in Krylov subspaces with
the incomplete factorization algorithm in the Eisenstat modification as a preconditioner. A
special high-parallel version of matrix generation and solving a system of the linear algebraic
equations code have been developed and then efficiency has been estimated. The performance
results of the developed code and temperature fields for different wells configuration (1 well and
4 wells placed as squared) during 5 years have been presented. The results validation was based
on the comparison with previous papers and other algorithms. The results of simulations are
close those to presented by other authors.

1. Introduction
The oil production in northern conditions requires the prediction of heating permafrost around
wells and engineering structures. The simulation of thermal fields should take into account
the complicated 3D geometry with contrasting material properties, water-ice phase transitions
and seasonal changes in the temperature of a medium. This problem has been focused by
many authors, see [1] - [6] but developing efficient high-parallel algorithm for a modern high
performance computation system with real input data to predict thermal fields in permafrost
still remains open.

We can use the enthalpy approach because we do not need to calculate the exact boundaries
of the phase transition, which is optional for the problem to be olved. The key issues of modeling
the thermal field near the wells are the following: the first is a different scale of the objects,
since the diameter of the well is usually about 20 centimeters, while the heating effects of a
region are measured as hundreds of meters; the second is the prediction during many years;
the third is the dependence of the model coefficients on temperature, which makes the problem
non-linear; and the last one is temperature on soil with allowance seasons conditions. The stable
implicit Crank-Nikolson finite volume schemes with respect to time [7] - [10] are used. Iterative
sparse solver has been adapted at each step to problem features. To solve complex thermal
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field modeling problem, we have to develop an efficient parallel algorithm and to provide code
optimizations for Intel Xeon Phi many-core hardware architecture.

A regular tetragonal mesh with local refinement was created to resolve the object size
imbalance between the domain size and the well diameter. This approximation has the first order
in time and space and requires a special type of the representation enthalpy. The resulting system
of linear algebraic equations is solved using the iterative conjugate residual (CR, Conjugate
Residual) or conjugate gradient (CG, Conjugate Gradient) method in the Krylov subspaces
using the incomplete factorization algorithm in the Eisenstat modification as a preconditioner.
Choosing the advanced initial guess for solving SLAEs helps to decrease the number of iterations
for each time step [11]. We take into account a general surface condition model which includes
seasonal changes in temperature.

The paper is organized as follows. Section 2 deals with to the problem statement, which
describes the heat equations and a difference between approach proposed and standard one.
Section 3 describes approximation methods in detail. Section 4 presents the mathematical
background to adapt an iterative solver and to find a good initial guess for time steps. Section
5 provides the details of computational experiments and results obtained. The last section
summarizes, gives the conclusion and discussion of further research.

2. Problem Statement
Let us consider the initial boundary value problem in the computational domain Ω × t, Ω ∈
R3, t ∈ R1 with a piecewise smooth boundary Γ of Ω. We assume that the phase state
changes at a constant predetermined temperature T = T ∗. By S(t) we denote the interface
between two phases of media, i.e. a medium with ice (denote by Ω+(t) = {(x, y, z) | (x, y, z) ∈
Ω, T (x, y, z, t) > T ∗}) and a medium with water (we denote by Ω−(t) = {(x, y, z) | (x, y, z) ∈
Ω, T (x, y, z, t) < T ∗}). The enthalpy setting given in [1] was used:

∂H

∂t
+ u ∗ grad(H)− div(λ ∗ grad(T )) = 0, (1)

where H(x, t) is the enthalpy, λ is the thermal conductivity and u is the flow velocity vector in
a porous medium, which, in our case, is equal to zero. Enthalpy is a function of temperature
T (x, y, z, t) and the ice coefficient ψ, which determines the proportion of ice/water in volume:

ψ =

 0, T < T ∗,
∈ [0, 1], T = T ∗,
1, T > T ∗,

(2)

such that H(T, ψ) = ρcT + ρLψ, L is the phase transition heat, c is the mass heat capacity and
ρ is the material density. We consider the phase transition defined in the neighborhood size ∆
of T ∗, as was presented in [2] or use the following modified enthalpy H(T ∗−∆) = H(T ∗−∆) =
ρ−c−(T ∗ − ∆), H(T ∗ + ∆) = H(T ∗ + ∆) = ρ+c+(T ∗ + ∆) + L, where c−, ρ− and c+, ρ+ are
mass the heat capacity and the material density in Ω− and Ω+ and we areable to define any
reasonable H(T ) for T ∈ [T ∗−∆, T ∗+∆] satisfying equations presented before. Then we obtain
the following statement:

(C∆ + ρ+Lψ∆)
∂T

∂t
− div(λ∆ ∗ grad(T )) = 0, (3)

C∆ =


ρ−c−, T ≤ T ∗ −∆,

ρ−c− + (ρ+c+ − ρ−c−) ∗ T−T ∗+∆
2∆ , T ∗ −∆ < T < T ∗ + ∆,

ρ+c+, T ≥ T ∗ −∆,
(4)
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ψ∆ =


0, T ≤ T ∗ −∆,

1
2∆ , T ∗ −∆ < T < T ∗ + ∆,
0, T ≥ T ∗ −∆.

(5)

λ∆ =


λ−, T ≤ T ∗ −∆,

λ− + (λ+ − λ−) ∗ T−T ∗+∆
2∆ , T ∗ −∆ < T < T ∗ + ∆,

λ+, T ≥ T ∗ −∆,
(6)

where λ− and λ+ are thermal conductivities in Ω− and Ω+. To use the approximation of
the thermal conductivity coefficient taking into account the phase transition comes from the
previous time step and constructing a first-order finite volume scheme with respects to time,
it is necessary to use the continuous enthalpy function together with its first derivative, which
leads to the following modification of the formulation [5] and the use of ψ∆ instead of ψ∆:

(C∆ + ρ+Lψ∆)
∂T

∂t
− div(λ∆ ∗ grad(T )) = 0, (7)

ψ∆ =


0, T ≤ T ∗ −∆,
T−(T ∗−∆)

∆2 , T ∗ ≤ T ≤ T ∗ + ∆,
1

2∆ −
T−(T ∗−∆)

∆2 , T ∗ −∆ ≤ T ≤ T ∗ + ∆,
0, T ≥ T ∗ −∆,

(8)

and the coefficients ρ−, ρ+, c−, c+, λ− and λ− in (3)-(8) are determined, as presented in [3]:
For simplicity, we construct the enthalpy functions (see Figure 1) for the case with a certain
fixed set of coefficients. As can be seen from Figure 1 for a different kind of ice coefficient, we
have a jump in the enthalpy function at the point T ∗ for ψ, the jump in the first derivative of
enthalpies at the points T ∗ ±∆ for ψ∆ and a continuous function of the enthalpy itself and its
first derivative for ψ∆. We supplement these statements with initial and boundary conditions.
The initial condition for the temperature distribution in the domain Ω is written down as

T |t=0 = T0(x, y, z). (9)

At the outer boundary Γ of the computational domain, which we take far remover from wells,
the following boundary conditions of the first kind are set (the Dirichlet condition, the given
temperature Td) or boundary conditions of the 2-nd kind (the Neumann condition, the given
heat flux, Jn):

T |ΓD
= Td(x, y, z, t), (10)

λ
∂T

∂n
|ΓN

= Jn(x, y, z, t), (11)

where Γ = ΓD ∪ ΓN .

3. Discretization and Approximation of the Initial Boundary Value Problem
A regular tetragonal mesh with a local refinement was created to resolve the object size imbalance
between computational domain size and well diameters. For the case with one well, we use a
single-level mesh refinement; for the case with four wells located in a parallelepiped, the two-
level mesh concentration is used as is shown in Figure 2. The initial boundary value problem
(3)-(11) is approximated in the computational domain Ω, and 0 < t < te with respect to
time using the implicit Crank-Nicolson scheme [6], and with respect to space using the finite
volume method on the quasi-structured grid [7, 8], obtained with integral conservation laws
taking into account the initial and boundary conditions (9)-(11),on an adaptive unstructured
grid [9]. In this case, adaptability is understood to mean that all the angular points of the
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Figure 1. The enthalpy function noted as Jumped Enthalpy in the case ψ; Entalphy in the
case ψ∆ and Refined Entalphy for ψ∆

external and internal boundaries are grid nodes. In approximating the initial boundary value
problem(1),(4,(7),(8),(9)-(11) we assume only the existence of its classical solution at all internal
points (x, y, z) ∈ Ω, which is sufficiently piecewise smooth up to the external border. The thermal
conductivity coefficient taking into account the phase transition was explicitly calculated at the
centers of finite elements according to the values of the temperature field from the previous
time step. This approximation has the first order with respect to time and space, which was
confirmed by a number of model problems with a well-known analytical solution, on a sequence
of condensing grids.

The finite volume methods (FVM) are used to approximate the problem coming from
integral conservation laws taking into account the boundary conditions and relations at
internal boundaries. As basis functions, we use the piecewise linear tetrahedron elements,
so approximation is made on an adaptive tetrahedral unstructured grid. Denoting by Γl the
boundary of the finite volume Vl and integrating equation (1) over time and space, we obtain
the following integral form of the conservation law:∫

Vl

c
(
Tn+1 − Tn

)
dv =

∫ tn+1

tn

∫
Γl

∂T

∂n
dsdt (12)

where Tn+1 and Tn are the temperatures for tn+1 and tn time steps. Let us consider local
matrices for the FVM and we can separately approximate each of the integrals given in equation
(12) as is presented in [7]. The element-by-element technology was used for an assembly of
global matrix in parallel. We give attention to choosing an effective approach to organizing
a parallel matrix assembly. As options, let us consider two options: the node-based and the
element-base of parallel assembling of a matrix. Element-base approach means computing a
local matrix for each entry only once and accumulation global matrix as the sum of thread
matrices with synchronization overhead, because many global matrix rows partially computed
by different threads, see Figure 3. The node-based approach is based on computation of a full
row in a thread, but it may require computing the local matrix of one grid element several
times - by the number of nodes of an element belonging to different threads, but accumulating
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Figure 2. The two-level regular mesh concentration in the three-dimensional domain for the
case with 4 shafts (from the top).

the global matrix does not require an extra effort (see Figure 4). We estimate the times based
on the roof-line model [12] and the node-based parallel algorithm looks better for many-core
architecture like Xeon Phi.

Figure 3. The element-based approach taking much time to thread assembling global matrix.

To solve the resulting system, the KRYLOV iterative sparse solvers library [13], to accelerate
special choice of the initial guess was used and described in detail below.

4. Choosing the Initial Guess for solving SLAEs
One important issue in solving a non-stationary problem consists in choosing the initial guess for
the iterative solution of SLAEs at each time step. It is natural that the temperature Tn denoted
as un would be a good approximation to un+1 to reduce the number of iterations, provided that
the time step τn = tn− tn−1 is sufficiently small. Another simple approach is based on the linear
extrapolation with respect to time [11]:

un+1 = un + (un − un−1)τn/τn−1 +O(τ2).
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Figure 4. The node-based approach takes a greater number of operations to calculate more
local matrices.

In this case, we need to save the numerical solution for one additional time step. One of the
popular methods for solving ODEs is based on the application of predictor-corrector schemes.
For example, if we use in the Crank-Nicolson scheme [8], written as

Cun+1 ≡ (τ−1
n B + θA)un+1 = gn+1,

gn+1 = [τ−1
n B + (1− θ)A]un + θfn+1 + (1− θ)fn, (13)

where A is the space approximation of the differential operator, ψτ = O(τ2) for θ = 1/2
and ψτ = O(τ) for the method with another weight parameter θ. This approach involves
implementing a preliminary predictor stage for computing an approximate value of un+1 by the
simple explicit formula

B(ūn+1 − un) = τn(fn −Aun) ≡ τnrn,

where B is a diagonal or another easily invertible matrix, and ūn+1 is considered to be a predicted
value of un+1. It can be interpreted as a zero iteration, un+1,0 = ūn+1, and corrected by m
iterations of the form

B(un+1,s − un) = τn[θ(fn+1 −Aun+1,s−1) + (1− θ)(fn −Aun)],

s = 1, ...,m.

This approach is called PCm and in practice in a few iterations provides an acceptable small
residual

rn+1,s = τn[θ(fn+1 −Aun+1,s−1) + (1− θ)rn]−B(un+1,s − un)

An improved idea to choose the initial guess based on the least-squares method can be
proposed (LSM, see [11]). Let us save several previous time-step solutions un−1, ..., un−q, and
compute the value un+1,0 by means of the linear combination

un+1,0 = un + c1v1 + ...+ cqvq = un + V c,
vl = un − un−l, l = 1, ..., q,
c = (c1, ..., cq)

T ∈ Rq, V = (v1, ..., vq) ∈ RN,q.
(14)

Thus it follows from relation (14) that the initial residual rn+1,0 = gn+1−Cun+1,0 of system
(13) satisfies the equality

rn+1,0 = rn − CV c.

Formally, here we can set rn+1,0 = 0 and obtain overdetermined SLAEs for the vector c:
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Wc ≡ CV c = rn, W ∈ RN,q.
The generalized normal (with a minimum norm and residual) solution of this system can

be computed by the SVD (Singular Value Decomposition) algorithm or by the least squares
method (LSM), which gives the same result in the exact arithmetic. The LSM gives the ”small”
symmetric system

Gc ≡W TWc = W T rn, G = V TCTCV ∈ Rq,q, (15)

which is non-singular if W is a full-rank matrix. It is easy to verify that (15) implies the
orthogonality property of the residual:

W T rn+1,0 = 0. (16)

Note that instead of the LSM approach (15), (16), it is possible to apply the so-called deflation
principle [8], which uses the following orthogonality property:

V T rn+1,0 = 0.

In this case to determine the vector c, we have to solve the SLAEs

Hc ≡ V TCV c = V T c, H ∈ Rq,q, (17)

If this vector is computed from system (15) or (17), then the initial guess un+1,0 for SLAEs (13)
is determined from (14). For solving a symmetric positive definite SLAEs

Cun+1 = gn+1 (18)

at each time step, we use the conjugate residual method in the Krylov subspaces based on an
incomplete factorization algorithm in the Eisenstat modification as a preconditioner. For the
matrix C = D−L−U , we define the explicit symmetric positive definite preconditioning matrix
as

P = (M − L)M−1(M − U), M =
1

ω
D − θS, Se = (

1− ω
ω

D + LM−1U)e, (19)

where ω and θ are relaxation and compensation parameter, respectively, e = {1} is the vector
with unit entries, S and M are the diagonal matrices.

System (18) is transformed to the equivalent preconditioned system

C̃ũn+1 = g̃n+1,

C̃ = M
1
2 (D − L)−1C(D − U)−1M

1
2 =

= (I − L̃)−1 + (I − Ũ)−1 − (I − L̃)−1(2I − D̃)(I − Ũ)−1,

L̃ = M− 1
2LM− 1

2 , Ũ = M− 1
2UM− 1

2 , D̃ = M− 1
2DM− 1

2 ,

ũn+1 = (I − Ũ)M
1
2un+1, g̃n+1 = (I − L̃)−1M− 1

2 gn+1.

(20)

To solve the obtained preconditioned SLAEs (20) with a symmetric positive definite matrix C̃,
one can apply the conjugate residuals method

r̃0 = ˜gn+1 − C̃ũn+1,0, p0 = r̃0,

ũn+1,i+1 = ũn+1,i + αip
i, r̃i+1 = r̃i − αiC̃pi, αi = (r̃i,C̃r̃i)

(C̃pi,C̃pi)
,

pi+1 = r̃i+1 + βip
i, βi = (r̃i+1,C̃r̃i+1)

(r̃i,C̃r̃i)
, i = 0, 1, 2, . . .

(21)

The stopping criterion of such iterations is as follows

‖rn+1,m‖ = ‖g̃n+1 − Cun+1,m‖ ≤ ε‖gn+1‖ (22)

for some given tolerance ε � 1. If condition (22) is satisfied, we set un+1 = un+1,m and go to
the next time step.
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5. Computational Experiments
We consider the following model problem: the computational domain of Ω = 120 ∗ 120 ∗ 60
meters contains 1 or 4 wells parallel to the axis z and diameter 0.2 meters with length to equal
60 meters during 5-years. The medium coefficients take from [3] are equal to:

ρ−c− = 1.62 ∗ 106, ρ+c+ = 2.04 ∗ 106,
λ− = 1.332, λ+ = 0.992.

(23)

We consider the area with one shaft located at the center and four shafts located in a square,
with a distance between the shafts of 1 m and the center of the square lying at the center of the
area. The developed software packages have been tested on several problems with the analytical
solution on a mesh of up to 2 000 000 nodes and more than 30 000 000 nonzero entries in a
sparse matrix. The number of iterations of iterative sparse solvers depends on the matrix size
but is less than 50 even for a big problem. Below is Figure 5 showing the spread of the thawing
zone after 5 years.

When specifying the following physical parameters of the media and the Dirichlet ’weather’
boundary conditions as presented in [4], we have got a qualitative picture of the spread of the
freezing zone (see Figure 5) that coincides with that obtained in this paper. A direct comparison
of quantitative values is impossible, since we calculated a well that does not have an additional
heat-shielding layer, as in [4]. Nevertheless, we got a good coincidence of the qualitative picture
and comparable sizes and shape of the freezing area (taking into account an additional thermal
protection). Also, the results for a bunch of four wells arranged in a square with a side between
the centers of 1 meter (see Figure 5) were obtained.

Figure 5. The temperature contours at T = 0 with an annual interval of 5 years with 1 year
time step, in the case of the 1 and 4 wells.

The results obtained correspond to the physical sense, in comparison with the single-well
option, and allow us to conclude that the technique proposed allows us to efficiently and with
a sufficient accuracy simulate thermal fields. Also, other algorithms have produced the same
results [14].
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6. Conclusion
The results presented of computational experiments in 3D complex geometry domains with
contrast material properties demonstrate the possibility of using the developed parallel software
package to solve the problem of calculating the thermal field taking into account the phase
transition. Using the adapted non-structured grids, choosing the initial guess in the iterative
solver for SLAEs and a special parallel algorithm to efficiently using many-threads devices such
as Intel Xeon Phi. In the future, it is planned to continue accelerating software through the
use of algorithms with a fewer number of operations and memory accesses and increasing the
parallelization efficiency.
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